2020年中考數(shù)學(xué)第一輪復(fù)習(xí)專題 第16課 平行四邊形

上傳人:搶*** 文檔編號:142855781 上傳時間:2022-08-25 格式:DOCX 頁數(shù):11 大?。?36.65KB
收藏 版權(quán)申訴 舉報 下載
2020年中考數(shù)學(xué)第一輪復(fù)習(xí)專題 第16課 平行四邊形_第1頁
第1頁 / 共11頁
2020年中考數(shù)學(xué)第一輪復(fù)習(xí)專題 第16課 平行四邊形_第2頁
第2頁 / 共11頁
2020年中考數(shù)學(xué)第一輪復(fù)習(xí)專題 第16課 平行四邊形_第3頁
第3頁 / 共11頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020年中考數(shù)學(xué)第一輪復(fù)習(xí)專題 第16課 平行四邊形》由會員分享,可在線閱讀,更多相關(guān)《2020年中考數(shù)學(xué)第一輪復(fù)習(xí)專題 第16課 平行四邊形(11頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第四單元 四邊形 第?16?課?平行四邊形 平行四邊形是四邊形中應(yīng)用廣泛的一種圖形,它是研究特殊四邊形的基礎(chǔ),是研究線段 和直線平等的根據(jù)之一。廣東省近?5?年試題規(guī)律:常以選擇、填空題考查四邊形的性質(zhì)與判 定,屬于基礎(chǔ)題;但與折疊、旋轉(zhuǎn)、圓、函數(shù)等問題結(jié)合在一起考查,卻有難度,特別地, 平行四邊形是必考內(nèi)容。 知識清單 知識點一 平行四邊形的性質(zhì) 序號 平行四邊形的性質(zhì) 1 2 3 平行四邊形的對邊平行且相等. 平行四邊形的對角相等. 平行四邊形的對角線互相平分. .

2、 4 平行四邊形是中心對稱圖形,它的對稱中心是兩條對角線的交點 知識點二 平行四邊形的判定方法 序號 1 2 3 4 5 平行四邊形的判定方法 兩組對邊分別平行的四邊形是平行四邊形(定義法). 兩組對邊分別相等的四邊形是平行四邊形. 兩組對角分別相等的四邊形是平行四邊形. 一組對邊平行且相等的四邊形是平行四邊形. 對角線平分的四邊形是平行四邊形. 課前小測 1.(平行四邊形的性質(zhì))在£ABCD?中,∠?A=50°,則∠?C?為( ) A.40° B.50° C.130° D.140° 2.(平行四邊

3、形的性質(zhì))已知£ABCD?的周長為?24,AB=5,則?BC=( ) A.5 B.6 C.7 D.8 3.(平行四邊形的性質(zhì))平行四邊形的對角線( ) A.相等 B.不相等 C.互相平分 D.互相垂直 4.(平行四邊形的判定)能判定四邊形是平行四邊形的是( ) A.對角線互相垂直 B.對角線相等 C.對角線互相垂直且相等 D.對角線互相平分 5.(平行四邊形的判定)四邊形?ABCD?中,下列條件不能判定四邊形?ABCD?是平 行四邊形的是( ) 1

4、 A.AB∥?CD,AD∥?BC C.AB=CD,AD=BC B.AB∥?CD,AB=CD D.AD∥?BC,AB=CD 經(jīng)典回顧 考點一?平行四邊形的性質(zhì) 【例?1】已知:如圖,在□?ABCD?中,點?E、F?分別是邊?AD、BC?的中點.求證: BE=DF. 【點拔】此題考查了平行四邊形的判定與性質(zhì).此題難度不大,注意掌握數(shù) 形結(jié)合思想的應(yīng)用. 考點二?平行四邊形的判定 【例?2】(2019?柳州)平行四邊形的其中一個判定定理是:兩組對邊分別相等的 四邊形是

5、平行四邊形.請你證明這個判定定理. 已知:如圖,在四邊形?ABCD?中,AB=CD,AD=BC. 求證:四邊形?ABCD?是平行四邊形. 證明: 【點拔】本題考查了平行四邊形的判定、全等三角形的判定與性質(zhì)、平行線的判 定;熟練掌握平行四邊形的判定定理,證明三角形全等是解題的關(guān)鍵. 對應(yīng)訓(xùn)練 ( 1.?2019?瀘州)四邊形?ABCD?的對角線?AC?與?BD?相交于點?O,下列四組條件中, 一定能判定四邊形?ABCD?為平行四邊形的是( ) 2 A.AD∥?BC

6、C.AD∥?BC,AB=DC B.OA=OC,OB=OD D.AC⊥BD 2.(2019?湘潭)如圖,在四邊形?ABCD?中,若?AB=CD,則添加一個條件 , 能得到平行四邊形?ABCD.(不添加輔助線,任意添加一個符合題意的條件即 可) 3.(2019?吉林)如圖,在□ABCD?中,點?E?在邊?AD?上,以?C?為圓心,AE?長為半 徑畫弧,交邊?BC?于點?F,連接?BE、DF.求證:△?ABE≌?△?CDF. 4.(2019?郴州)如圖,□

7、ABCD?中,點?E?是邊?AD?的中點,連接?CE?并延長交?BA 的延長線于點?F,連接?AC,DF.求證:四邊形?ACDF?是平行四邊形. 中考沖刺 夯實基礎(chǔ) 1.(2018?黔西南州)如圖,在□ABCD?中,已知?AC=4cm ACD?的周長為 13cm ABCD?的周長為( ) 3 A.26cm B.24cm C.20cm D.18cm 2.(2018?綏化)下列選項中,不能判定四邊形?

8、ABCD?是平行四邊形的是( ) A.AD∥?BC,AB∥?CD C.AD∥?BC,AB=DC B.AB∥?CD,AB=CD D.AB=DC,AD=BC 3.(2019?河池)如圖,在△?ABC?中,D,E?分別是?AB,BC?的中點,點?F?在?DE 延長線上,添加一個條件使四邊形?ADFC?為平行四邊形,則這個條件是( ) A.∠?B=∠?F B.∠?B=∠?BCF C.AC=CF D.AD=CF 4.(2019?福建)在平面直角坐標系?xO

9、y?中,□OABC?的三個頂點?O(0,0)、A (3,0)、B(4,2),則其第四個頂點是 . 5.(2019?達州)如圖,□ABCD?的對角線?AC、BD?相交于點?O,點?E?是?AB?的中 BEO?的周長是?8 BCD?的周長為 . 6.(2019?雞西)如圖,在四邊形?ABCD?中,AD=BC,在不添加任何輔助線的情 況下,請你添加一個條件 ,使四邊形?ABCD?是平行四邊形. 7.(2019?廣安)如圖,點?E? ABCD?的?CD?邊的中點,AE、BC?的

10、延長線交于點 F,CF=3,CE=2 ABCD?的周長. 4 8.(2019?遂寧)如圖,在四邊形?ABCD?中,AD∥?BC,延長?BC?到?E,使?CE=BC, 連接?AE?交?CD?于點?F,點?F?是?CD?的中點.求證: (1 ADF≌?△?ECF. (2)四邊形?ABCD?是平行四邊形. 能力提升 9.(2019?遂寧)如圖,□ABCD?中,對角線?AC、BD?相交于點

11、?O,OE⊥BD?交?AD 于點?E,連接?BE ABCD?的周長為?28 ABE?的周長為( ) A.28 B.24 C.21 D.14 F??G??H 10.(2019?廣州)如圖,□ABCD?中,AB=2,AD=4,對角線?AC,BD?相交于點 O,且?E,?,?,?分別是?AO,BO,CO,DO?的中點,則下列說法正確的是( ) A.EH=HG B.四邊形?EFGH?是平行四邊形 C.AC⊥BD D ABO?的面積是△?EFO?的面積的?2?倍

12、 5 11.(2019?梧州)如圖,□?ABCD?中,∠?ADC=119°,BE⊥DC?于點?E,DF⊥BC?于 點?F,BE?與?DF?交于點?H,則∠?BHF= 度. 12.(2017?撫順)如圖,剪兩張對邊平行的紙條,隨意交叉疊放在一起,重合部 分構(gòu)成了一個四邊形?ABCD,當(dāng)線段?AD=3?時,線段?BC?的長為 . 13.(2019?本溪)如圖,在四邊形?ABCD?中,AB∥?CD,AD⊥CD,∠?B=45°,延 長?CD?到點?E,

13、使?DE=DA,連接?AE. (1)求證:AE=BC; (2)若?AB=3,CD=1,求四邊形?ABCE?的面積. (2)若?DA=DB=2,cosA=? ,求點?B?到點?E?的距離. 14.(2019?貴陽)如圖,四邊形?ABCD?是平行四邊形,延長?AD?至點?E,使?DE= AD,連接?BD. (1)求證:四邊形?BCED?是平行四邊形; 1 4 6 第四單元 四邊形

14、 第?16?課?平行四邊形 課前小測 1.B. 2.C. 3.C. 4.D. 5.D. 經(jīng)典回顧 考點一?平行四邊形的性質(zhì) 【例?1】證明:∵?四邊形?ABCD?是平行四邊形, ∴?AD∥?BC,AD=BC, ∵?點?E、F?分別是□?ABCD?邊?AD、BC?的中點, ∴?DE=?1?AD,BF=?1?BC, 2 2 ∴?DE=BF, ∴?四邊形?BFDE?是平行四邊形, ∴?BE=DF. 考點二?平行四邊形的判定 【例?2】證明:連接?AC,如圖所示:

15、 í?AD?=?CB?, ??AC?=?CA ABC? CDA?中, ì?AB?=?CD ? ? 7 í∠A?=?∠C?, ??AB?=?CD ∴?△?ABC≌?△?CDA(SSS), ∴?∠?BAC=∠?DCA,∠?ACB=∠?CAD, ∴?AB∥?CD,BC∥?AD, ∴?四邊形?ABCD?是平行四邊形. 對應(yīng)訓(xùn)練 1.B. 2.AD=BC(答案不唯一). 3.證明:由題意可得:AE=FC, ∵四邊形?ABCD?是平行四邊形, ∴AB=DC

16、,∠?A=∠?C ABE? CDF?中, ì?AE?=?CF ? ? ABE≌?△?CDF(SAS). 4.解:∵?四邊形?ABCD?是平行四邊形, ∴?AB∥?CD, ∴?∠?FAE=∠?CDE, ∵?E?是?AD?的中點, ∴?AE=DE, 又∵?∠?FEA=∠?CED, ∴?△?FAE≌?△?CDE(ASA), ∴?CD=FA, 又∵?CD∥?AF, ∴?四邊形?ACDF?是平行四邊形. 中考沖刺 夯實基礎(chǔ) 1.D. 8 í∠DA

17、F?=?∠E?? , ??DF?=?CF 2.C. 3.B. 4.(1,2). 5.16. 6.AD∥?BC(答案不唯一). 7.解:∵?四邊形?ABCD?是平行四邊形, ∴?AD∥?BC, ∴?∠?DAE=∠?F,∠?D=∠?ECF. 又?ED=EC, ∴?△?ADE≌?△?FCE(AAS). ∴?AD=CF=3,DE=CE=2. ∴?DC=4. ∴?平行四邊形?ABCD?的周長為?2(AD+DC)=14. 8.證明:(1)∵?AD∥?BC, ∴?∠?DAF=∠?E, ∵?點?F?是?CD?的中點,

18、 ∴?DF=CF, ADF? ECF?中, ì∠AFD?=?∠EFC ? ? ∴?△?ADF≌?△?ECF(AAS); (2)∵?△?ADF≌?△?ECF, ∴?AD=EC, ∵?CE=BC, ∴?AD=BC, ∵?AD∥?BC, ∴?四邊形?ABCD?是平行四邊形. 能力提升 9.D. 9 10.B. 11.61. 12.3. 13.證明:(1)∵?AB∥?CD,∠?B=45° ∴?∠?C+∠?B=180° ∴?∠?C=135° ∵?D

19、E=DA,AD⊥CD ∴?∠?E=45° ∵?∠?E+∠?C=180° ∴?AE∥?BC,且?AB∥?CD ∴?四邊形?ABCE?是平行四邊形 ∴?AE=BC (2)∵?四邊形?ABCE?是平行四邊形 ∴?AB=CE=3 ∴?AD=DE=AB﹣CD=2 ∴?四邊形?ABCE?的面積=3×2=6 14.(1)證明:∵?四邊形?ABCD?是平行四邊形, ∴?AD=BC,AD∥?BC, ∵?DE=AD, ∴?DE=BC,DE∥?BC, ∴?四邊形?BCED?是平行四邊形; (2)解:連接?BE,

20、 ∵?DA=DB=2,DE=AD, ∴?AD=BD=DE=2, ∴?∠?ABE=90°,AE=4, ∵?cosA=?1?, 4 10 ∴?AB=1, ∴?BE=?42?12?=?15?. 11

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!