(全國通用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題提分教程 第二編 專題三 數(shù)列 第3講 數(shù)列的綜合問題練習(xí) 理

上傳人:Sc****h 文檔編號:121556844 上傳時間:2022-07-19 格式:DOC 頁數(shù):15 大小:2.49MB
收藏 版權(quán)申訴 舉報 下載
(全國通用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題提分教程 第二編 專題三 數(shù)列 第3講 數(shù)列的綜合問題練習(xí) 理_第1頁
第1頁 / 共15頁
(全國通用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題提分教程 第二編 專題三 數(shù)列 第3講 數(shù)列的綜合問題練習(xí) 理_第2頁
第2頁 / 共15頁
(全國通用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題提分教程 第二編 專題三 數(shù)列 第3講 數(shù)列的綜合問題練習(xí) 理_第3頁
第3頁 / 共15頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(全國通用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題提分教程 第二編 專題三 數(shù)列 第3講 數(shù)列的綜合問題練習(xí) 理》由會員分享,可在線閱讀,更多相關(guān)《(全國通用)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題提分教程 第二編 專題三 數(shù)列 第3講 數(shù)列的綜合問題練習(xí) 理(15頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第3講 數(shù)列的綜合問題 「考情研析」    1.從具體內(nèi)容上,數(shù)列的綜合問題,主要考查:①數(shù)列與函數(shù)、不等式結(jié)合,探求數(shù)列中的最值或證明不等式.②以等差數(shù)列、等比數(shù)列為背景,利用函數(shù)觀點探求參數(shù)的值或范圍. 2.從高考特點上,常在選填題型的最后兩題及解答題第17題中出現(xiàn),分值一般為5~8分. 核心知識回顧 數(shù)列綜合應(yīng)用主要體現(xiàn)在以下兩點: (1)以數(shù)列知識為紐帶,在數(shù)列與函數(shù)、方程、不等式、解析幾何的交匯處命題,主要考查利用函數(shù)觀點、不等式的方法解決數(shù)列問題,往往涉及與數(shù)列相關(guān)的不等式證明、參數(shù)的范圍等. (2)以數(shù)列知識為背景的新概念、創(chuàng)新型問題,除了需要用到數(shù)列知識外,還要運用函

2、數(shù)、不等式等相關(guān)知識和方法,特別是題目條件中的“新知識”是解題的鑰匙,此類問題體現(xiàn)了即時學(xué)習(xí),靈活運用知識的能力. 熱點考向探究 考向1  數(shù)列與函數(shù)的綜合問題 例1 (2019·上海市青浦區(qū)高三二模)已知函數(shù)f(x)=x2+ax+b(a,b∈R),且不等式|f(x)|≤2019|2x-x2|對任意的x∈[0,10]都成立,數(shù)列{an}是以7+a為首項,公差為1的等差數(shù)列(n∈N*). (1)當(dāng)x∈[0,10]時,寫出方程2x-x2=0的解,并寫出數(shù)列{an}的通項公式(不必證明); (2)若bn=an·an(n∈N*),數(shù)列{bn}的前n項和為Sn,對任意的n∈N*,都有Sn<

3、m成立,求m的取值范圍. 解 (1)因為x∈[0,10]時,易知方程2x-x2=0的解為x=2,x=4, 由不等式|f(x)|≤2019|2x-x2|對任意的x∈[0,10]都成立,可得 即解得 所以f(x)=x2-6x+8,又?jǐn)?shù)列{an}是以7+a=1為首項,公差為1的等差數(shù)列,所以an=n. (2)由(1)知bn=an·an=n·n, 所以Sn=b1+b2+…+bn=1·+2·2+3·3+…+n·n,① Sn=1·2+2·3+3·4+…+n·n+1,② ①-②得,Sn=+2+3+…+n-n·n+1=-n·n+1=-, 整理得,Sn=-,由>0可得Sn<, 由Sn

4、立,可得m≥. 數(shù)列與函數(shù)的綜合問題一般是利用函數(shù)作為背景,給出數(shù)列所滿足的條件,通常利用點在曲線上給出Sn的表達(dá)式,還有以曲線上的切點為背景的問題,解決這類問題的關(guān)鍵在于利用數(shù)列與函數(shù)的對應(yīng)關(guān)系,將條件進(jìn)行準(zhǔn)確的轉(zhuǎn)化. 已知數(shù)列{an}的前n項和為Sn,向量a=(Sn,1),b=,滿足條件a∥b. (1)求數(shù)列{an}的通項公式; (2)設(shè)函數(shù)f(x)=x,數(shù)列{bn}滿足條件b1=1,f(bn+1)=. ①求數(shù)列{bn}的通項公式; ②設(shè)cn=,求數(shù)列{cn}的前n項和Tn. 解 (1)∵a∥b,∴Sn=2n-1,Sn=2n+1-2. 當(dāng)n≥2時,an=Sn-Sn-

5、1=2n;當(dāng)n=1時,a1=S1=2,滿足上式, ∴an=2n. (2)①∵f(x)=x,f(bn+1)=, ∴bn+1=,∴=. ∴bn+1=bn+1,即bn+1-bn=1.又∵b1=1,∴{bn}是以1為首項,1為公差的等差數(shù)列,∴bn=n. ②cn==,Tn=++…++, 兩邊同乘得,Tn=++…++, 上述兩式相減得Tn=+++…+- =-=1-, ∴Tn=2-(n∈N*).                        考向2  數(shù)列與不等式的綜合問題 例2 (2019·云南玉溪第一中學(xué)高三第五次調(diào)研)若數(shù)列{an}的前n項和為Sn,首項a1>0且2Sn=a+

6、an(n∈N*). (1)求數(shù)列{an}的通項公式; (2)若an>0,令bn=,數(shù)列{bn}的前n項和為Tn,若Tn0,則a1=1, 當(dāng)n≥2時,an=Sn-Sn-1=-, 即(an+an-1)(an-an-1-1)=0?an=-an-1或an=an-1+1, ∴an=(-1)n-1或an=n(n≥2), 又a1=1滿足上式,∴an=(-1)n-1或an=n,n∈N*. (2)由an>0,∴an=n,bn==2, Tn=2=2=3-<3,若Tn

7、 (1)數(shù)列中的不等式證明,大多是不等式的一端為一個數(shù)列的前n項和,另一端為常數(shù)的形式,證明的關(guān)鍵是放縮:①如果不等式一端的和式可以通過公式法、裂項法、錯位相減法求得,則先求和再放縮;②如果不等式一端的和式無法求和,則要通過對數(shù)列通項的合適放縮使之能夠求和,這時先放縮再求和,最后再放縮. (2)注意放縮的尺度:如<,<. (2019·安徽黃山高三第二次質(zhì)檢)已知數(shù)列的前n項和Sn=n,n∈N*. (1)求數(shù)列{an}的通項公式; (2)令bn=,數(shù)列{bn}的前n項和為Tn,求證:對于任意的n∈N*,都有Tn<1. 解 (1)因為Sn=n, ① 當(dāng)n≥2時,Sn-1=n-

8、1,?、? 由①-②,得=1,故an=n+1, 又因為a1=2適合上式,所以an=n+1(n∈N*). (2)證明:由(1)知,bn===-,Tn=++…+=1-,所以Tn<1. 考向3  奇(偶)數(shù)項和問題 例3 設(shè)數(shù)列{an}的前n項和為Sn.已知a1=1,a2=2,且an+2=3Sn-Sn+1+3,n∈N*. (1)證明:an+2=3an; (2)求Sn. 解 (1)證明:由條件,對任意n∈N*,有an+2=3Sn-Sn+1+3,因而對任意n∈N*,n≥2,有an+1=3Sn-1-Sn+3. 兩式相減,得an+2-an+1=3an-an+1,即an+2=3an,n≥2

9、. 又a1=1,a2=2,所以a3=3S1-S2+3=3a1-(a1+a2)+3=3a1.故對一切n∈N*,an+2=3an. (2)由(1)知,an≠0,所以=3. 于是數(shù)列{a2n-1}是首項a1=1,公比為3的等比數(shù)列; 數(shù)列{a2n}是首項a2=2,公比為3的等比數(shù)列. 因此a2n-1=3n-1,a2n=2×3n-1. 于是S2n=a1+a2+…+a2n =(a1+a3+…+a2n-1)+(a2+a4+…+a2n) =(1+3+…+3n-1)+2(1+3+…+3n-1) =3(1+3+…+3n-1)=, 從而S2n-1=S2n-a2n=-2×3n-1=(5×3n-2

10、-1). 當(dāng)n為偶數(shù)時,數(shù)列中的奇數(shù)項與偶數(shù)項相同,分別為項;當(dāng)n為奇數(shù)時,數(shù)列中的奇數(shù)項比偶數(shù)項多一項,此時偶數(shù)項為項,奇數(shù)項為+1=項. 已知函數(shù)f(x)=ln x+cosx-x的導(dǎo)數(shù)為f′(x),且數(shù)列{an}滿足an+1+an=nf′+3(n∈N*). (1)若數(shù)列{an}是等差數(shù)列,求a1的值; (2)若對任意n∈N*,都有an+2n2≥0成立,求a1的取值范圍. 解 f′(x)=-sinx-+,則f′=4,故an+1+an=4n+3. (1)設(shè)等差數(shù)列{an}的公差為d, 則an=a1+(n-1)d,an+1=a1+nd, 由an+1+an=4n+3得(a

11、1+nd)+[a1+(n-1)d]=4n+3,解得d=2,a1=. (2)由an+1+an=4n+3得an+2+an+1=4n+7,兩式相減得an+2-an=4, 故數(shù)列{a2n-1}是首項為a1,公差為4的等差數(shù)列;數(shù)列{a2n}是首項為a2,公差為4的等差數(shù)列, 又a1+a2=7,a2=7-a1, 所以an= ①當(dāng)n為奇數(shù)時,an=2n-2+a1,an+2n2≥0,則有a1≥-2n2-2n+2對任意的奇數(shù)n恒成立, 令f(n)=-2n2-2n+2=-22+,n為奇數(shù), 則f(n)max=f(1)=-2,所以a1≥-2. ②當(dāng)n為偶數(shù)時,an=2n+3-a1,an+2n2≥0

12、,則有a1≤2n2+2n+3對任意的偶數(shù)n恒成立, 令g(n)=2n2+2n+3=22+,n為偶數(shù),則g(n)min=g(2)=15,故a1≤15. 綜上,a1的取值范圍是[-2,15]. 真題押題 『真題模擬』 1.(2019·齊齊哈爾高三二模)已知等差數(shù)列{an}的前n項和為Sn,且S10=120,a2-a1,a4-a2,a1+a2成等比數(shù)列. (1)求數(shù)列{an}的通項公式; (2)設(shè)Tn為數(shù)列的前n項和,求滿足Tn>的最小的n值. 解 (1)設(shè)等差數(shù)列{an}的公差為d, 由S10=120得10a1+45d=120,2a1+9d=24, 由a2-a1,a4-a2

13、,a1+a2成等比數(shù)列, 得d(2a1+d)=4d2且d≠0, ∴2a1=3d,∴a1=3,d=2, ∴等差數(shù)列{an}的通項公式為an=a1+(n-1)d=3+(n-1)·2=2n+1. (2)∵Sn=na1+=n(n+2), ∴==, ∴Tn==, 由Tn>得+<,n(3n-35)>60, ∴n的最小值為14. 2.(2019·河北衡水中學(xué)高三下學(xué)期一調(diào))已知數(shù)列{an}的前n項和Sn滿足--=0,a1=1. (1)求數(shù)列{an}的通項公式; (2)在數(shù)列{an}的前100項中,是否存在兩項am,at(m,t∈N*,且m

14、的m,t的取值;若不存在,請說明理由. 解 (1)因為--=0, 所以 -=1,所以數(shù)列{}是以1為首項,1為公差的等差數(shù)列,所以=1+(n-1)×1=n, 所以Sn=n2. 當(dāng)n≥2時,an=Sn-Sn-1=n2-(n-1)2=2n-1. 又2×1-1=1=a1,所以an=2n-1(n∈N*). (2)若,,三項成等比數(shù)列, 則×=2,即×=2, 即(2m-1)2=3(2t-1). 因為t≤100,所以(2m-1)2≤597,又m∈N*,所以2m-1≤24,所以m≤12. 又2m-1為3的奇數(shù)倍,所以m=2,5,8,11, 驗證得 3.(2019·浙江高考)設(shè)等差數(shù)列

15、{an}的前n項和為Sn,a3=4,a4=S3.數(shù)列{bn}滿足:對每個n∈N*,Sn+bn,Sn+1+bn,Sn+2+bn成等比數(shù)列. (1)求數(shù)列{an},{bn}的通項公式; (2)記cn=,n∈N*,證明:c1+c2+…+cn<2,n∈N*. 解 (1)設(shè)數(shù)列{an}的公差為d, 由題意得解得 從而an=2n-2,n∈N*.所以Sn=n2-n,n∈N*. 由Sn+bn,Sn+1+bn,Sn+2+bn成等比數(shù)列,得 (Sn+1+bn)2=(Sn+bn)(Sn+2+bn). 解得bn=(S-SnSn+2).所以bn=n2+n,n∈N*. (2)證明:cn= = = ,n∈

16、N*. 我們用數(shù)學(xué)歸納法證明. ①當(dāng)n=1時,c1=0<2,不等式成立; ②假設(shè)當(dāng)n=k(k∈N*)時不等式成立,即c1+c2+…+ck<2.那么,當(dāng)n=k+1時, c1+c2+…+ck+ck+1<2+ <2+ <2+=2+2(-)=2, 即當(dāng)n=k+1時不等式也成立. 根據(jù)①和②,不等式c1+c2+…+cn<2對任意n∈N*成立. 『金版押題』 4.已知函數(shù)f(x)=cosπx-sinπx(x∈R)的所有正的零點構(gòu)成遞增數(shù)列{an}(n∈N*). (1)求數(shù)列{an}的通項公式; (2)設(shè)bn=n,求數(shù)列{bn}的前n項和Tn. 解 (1)f(x)=cosπx-sinπ

17、x=2cos, 由題意令πx+=kπ+(k∈Z),解得x=k+(k∈Z). 又函數(shù)f(x)的所有正的零點構(gòu)成遞增數(shù)列{an},所以{an}是以為首項,1為公差的等差數(shù)列,所以an=n-(n∈N*). (2)由(1)知bn=n=n·n, 則Tn=1·1+2·2+3·3+…+(n-1)·n-1+n·n,① Tn=1·2+2·3+3·4+…+(n-1)·n+n·n+1,② ①-②得,Tn=+2+3+…+n-n·n+1=-n·n+1=1-(n+2)·n+1,所以Tn=2-(n+2)n. 配套作業(yè) 1.(2019·北京市海淀區(qū)高三4月模擬)已知等差數(shù)列{an}的公差d=2,且a2+a

18、5=2,{an}的前n項和為Sn. (1)求{an}的通項公式; (2)若Sm,a9,a15成等比數(shù)列,求m的值. 解 (1)因為a5+a2=2,d=2,所以2a1+5d=2a1+10=2,所以a1=-4,所以an=2n-6. (2)Sm==m2-5m,又a9=12,a15=24, 因為Sm,a9,a15是等比數(shù)列,所以a=Sma15, 所以m2-5m-6=0,m=6或m=-1, 因為m∈N*,所以m=6. 2.設(shè)數(shù)列{an}的前n項和是Sn,若點An在函數(shù)f(x)=-x+c的圖象上運動,其中c是與x無關(guān)的常數(shù),且a1=3. (1)求數(shù)列{an}的通項公式; (2)記bn=

19、aan,求數(shù)列{bn}的前n項和Tn的最小值. 解 (1)因為點An在函數(shù)f(x)=-x+c的圖象上運動,所以=-n+c,所以Sn=-n2+cn. 因為a1=3,所以c=4,所以Sn=-n2+4n,所以an=Sn-Sn-1=-2n+5(n≥2). 又a1=3滿足上式,所以an=-2n+5(n∈N*). (2)由(1)知,bn=aan=-2an+5=-2(-2n+5)+5=4n-5,所以{bn}為等差數(shù)列,所以Tn==2n2-3n, 當(dāng)n=1時,Tn取最小值,所以Tn的最小值是T1=-1. 3.(2019·廣東東莞高三二調(diào))已知數(shù)列{an}滿足a2=3,an+1=2an+1,設(shè)bn=

20、an+1. (1)求a1,a3; (2)判斷數(shù)列{bn}是否為等比數(shù)列,并說明理由; (3)求a1+a3+a5+…+a2n+1. 解 (1)數(shù)列{an}滿足a2=3,an+1=2an+1, 當(dāng)n=1時,a2=2a1+1,解得a1=1. 當(dāng)n=2時,解得a3=7. (2)當(dāng)n=1時,b1=2,所以==2(常數(shù)), 則數(shù)列{bn}是以2為首項,2為公比的等比數(shù)列. (3)由(1)和(2)得an=2n-1, 所以a1+a3+…+a2n+1=(21+23+…+22n+1)-(n+1)=-(n+1)=. 4.已知數(shù)列{an}的前n項和為Sn,若a1=,3Sn+1=Sn+1. (1

21、)求數(shù)列{an}的通項公式; (2)若bn=logan,數(shù)列{an·bn}的前n項和為Tn,求Tn. 解 (1)當(dāng)n=1時,3S2=,a2=,∴3a2=a1; 當(dāng)n≥2時,3Sn=Sn-1+1,∴3an+1=an(n≥2),故數(shù)列{an}是以為首項,為公比的等比數(shù)列,則an=×n-1=n. (2)由(1)知bn=logan=n,則an·bn=n·n. 從而Tn=1×+2×2+…+(n-1)×n-1+n·n,① Tn=1×2+2×3+…+(n-1)×n+n·n+1,② 由①-②得,Tn=+2+…+n-n·n+1=-n·n+1, 因此Tn=-(2n+3)·n. 5.(2019·衡

22、水第二中學(xué)高三上學(xué)期期中)已知等差數(shù)列{an}與公比為正數(shù)的等比數(shù)列{bn}滿足b1=2a1=2,a2+b3=10,a3+b2=7. (1)求{an},{bn}的通項公式; (2)若cn=,求數(shù)列{cn}的前n項和Sn. 解 (1)由題意a1=1,b1=2. 設(shè)公差為d,公比為q,則解得 故an=a1+(n-1)d=n,bn=b1·qn-1=2n. (2)因為cn=, 所以cn==-, 故Sn=-+-+…+-=-. 6.設(shè)等差數(shù)列{an}的公差為d,點(an,bn)在函數(shù)f(x)=2x的圖象上(n∈N*). (1)若a1=-2,點(a8,4b7)在函數(shù)f(x)的圖象上,求數(shù)

23、列{an}的前n項和Sn; (2)若a1=1,函數(shù)f(x)的圖象在點(a2,b2)處的切線在x軸上的截距為2-,求數(shù)列的前n項和Tn. 解 (1)由已知得,b7=2a7,b8=2a8=4b7,有2a8=4×2a7=2a7+2.所以d=a8-a7=2. 所以Sn=na1+d=-2n+n(n-1)=n2-3n. (2)f′(x)=2xln 2,f′(a2)=2a2ln 2,故函數(shù)f(x)=2x的圖象在(a2,b2)處的切線方程為y-2a2=2a2ln 2(x-a2), 它在x軸上的截距為a2-. 由題意得,a2-=2-,解得a2=2. 所以d=a2-a1=1.從而an=n,bn=2n

24、,=. 所以Tn=+++…++, 2Tn=+++…+. 因此,2Tn-Tn=1+++…+- =2--=. 所以,Tn=. 7.(2019·安徽六安第一中學(xué)高三模擬)已知a,b,c分別為△ABC的三內(nèi)角A,B,C的對邊,其面積S=,B=60°,a2+c2=2b2,在等差數(shù)列{an}中,a1=a,公差d=b.數(shù)列{bn}的前n項和為Tn,且Tn-2bn+1=0,n∈N*. (1)求數(shù)列{an},{bn}的通項公式; (2)若cn=anbn,求數(shù)列{cn}的前n項和Sn. 解 (1)S=acsinB=ac·=,∴ac=4, 又a2+c2=2b2,b2=a2+c2-2accosB,

25、 ∴b2=ac=4,∴b=2, 從而(a+c)2=a2+c2+2ac=16,得a+c=4, ∴a=c=2, 故可得∴an=2+2(n-1)=2n. ∵Tn-2bn+1=0,?、? ∴當(dāng)n=1時,b1=1; 當(dāng)n≥2時,Tn-1-2bn-1+1=0, ② ①-②,得bn=2bn-1(n≥2), ∴數(shù)列{bn}為等比數(shù)列,∴bn=2n-1. (2)由(1)得cn=2n·2n-1=n·2n, ∴Sn=a1·b1+a2·b2+…+an·bn=1×21+2×22+3×23+…+n·2n,?、? ∴2Sn=1×22+2×23+3×24+…+n·2n+1,?、? ③-④得-Sn=1×21

26、+(22+23+…+2n)-n·2n+1, 即-Sn=(1-n)2n+1-2,∴Sn=(n-1)2n+1+2. 8.(2019·貴州凱里第一中學(xué)高三下學(xué)期模擬)在等差數(shù)列{an}中,已知a3+a4=84-a5,a8=36. (1)求數(shù)列{an}的通項公式an; (2)記Sn為數(shù)列{an}的前n項和,求的最小值. 解 (1)由a3+a4=84-a5,得a4=28, ∴由得 即數(shù)列{an}的通項公式為an=22+(n-1)×2=2n+20. (2)由(1)得,Sn=22n+×2=n2+21n, ∴=n++21,令f(x)=x++21,n∈N*, f′(x)=1-,當(dāng)x∈(0,2

27、)時,f′(x)<0; 當(dāng)x∈(2,+∞)時,f′(x)>0,則f(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增, 又n∈N*,f(4)=f(5)=30, ∴當(dāng)n=4或5時,f(n)取到最小值30,即的最小值為30. 數(shù)列類解答題  (12分)已知各項均不為零的數(shù)列{an}的前n項和為Sn,且對任意的n∈N*,滿足Sn=a1(an-1). (1)求數(shù)列{an}的通項公式; (2)設(shè)數(shù)列{bn}滿足anbn=log2an,數(shù)列{bn}的前n項和為Tn,求證:Tn<. 解題思路 (1)根據(jù)Sn-Sn-1=an(n≥2)及遞推關(guān)系式化簡得an和an-1的關(guān)系式,從而求出a

28、n;(2)采用錯位相減法求Tn,從而證明結(jié)論. 解 (1)當(dāng)n=1時,a1=S1=a1(a1-1)=a-a1, ∵a1≠0,∴a1=4.(2分) ∴Sn=(an-1),∴當(dāng)n≥2時,Sn-1=(an-1-1), 兩式相減得an=4an-1(n≥2),(4分) ∴數(shù)列{an}是首項為4,公比為4的等比數(shù)列,∴an=4n.(6分) (2)證明:∵anbn=log2an=2n,∴bn=,(7分) ∴Tn=+++…+, Tn=+++…+,(8分) 兩式相減得Tn=++++…+-=2-=2×-=--=-.(10分) ∴Tn=-<.(12分) 1.正確求出a1的值給2分. 2.

29、利用an與Sn的關(guān)系構(gòu)造等比數(shù)列給2分. 3.寫出數(shù)列{an}的通項公式給2分. 4.求出數(shù)列{bn}的通項公式給1分. 5.采取錯位相減法給1分. 6.兩式相減后的正確化簡計算給2分. 7.放縮法證明不等式給2分. 1.由an與Sn的關(guān)系求通項公式,易忽略條件n≥2而出錯. 2.錯位相減法中兩式相減后,一定成等比數(shù)列的有n-1項,整個式子共有n+1項. 3.放縮法證明不等式時,要注意放縮適度,放的過大或過小都不能達(dá)到證明的目的. [跟蹤訓(xùn)練] (2019·沈陽模擬)(12分)設(shè)Sn為數(shù)列{an}的前n項和,a1=1,S=an(n≥2). (1)求Sn; (2)設(shè)bn=,求數(shù)列{bn}的前n項和Tn. 解 (1)當(dāng)n≥2時,由S=an得, S=(Sn-Sn-1), 整理得,Sn-1-Sn=2Sn-1Sn?-=2,(3分) 又==1, ∴數(shù)列是以2為公差、以1為首項的等差數(shù)列,則 =1+2(n-1),故Sn=.(6分) (2)由(1)知,bn== =,(9分) ∴Tn===.(12分) - 15 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!