(廣西課標(biāo)版)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 文

上傳人:Sc****h 文檔編號:121499601 上傳時間:2022-07-19 格式:DOCX 頁數(shù):10 大小:2.35MB
收藏 版權(quán)申訴 舉報 下載
(廣西課標(biāo)版)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 文_第1頁
第1頁 / 共10頁
(廣西課標(biāo)版)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 文_第2頁
第2頁 / 共10頁
(廣西課標(biāo)版)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 文_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(廣西課標(biāo)版)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 文》由會員分享,可在線閱讀,更多相關(guān)《(廣西課標(biāo)版)2020版高考數(shù)學(xué)二輪復(fù)習(xí) 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 文(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 一、能力突破訓(xùn)練 1.已知數(shù)列{an}為等比數(shù)列,且a8a9a10=-a132=-1 000,則a10a12=(  ) A.100 B.-100 C.10010 D.-10010 2.在等差數(shù)列{an}中,a1+a2+a3=3,a18+a19+a20=87,則此數(shù)列前20項的和等于(  ) A.290 B.300 C.580 D.600 3.設(shè){an}是等比數(shù)列,Sn是{an}的前n項和.若對任意正整數(shù)n,有an+2an+1+an+2=0,a1=2,則S101的值為(  ) A.2 B.200 C.-2 D.0 4.已知{an}是等差數(shù)列,

2、公差d不為零,前n項和是Sn.若a3,a4,a8成等比數(shù)列,則(  ) A.a1d>0,dS4>0 B.a1d<0,dS4<0 C.a1d>0,dS4<0 D.a1d<0,dS4>0 5.在等比數(shù)列{an}中,滿足a1+a2+a3+a4+a5=3,a12+a22+a32+a42+a52=15,則a1-a2+a3-a4+a5的值是(  ) A.3 B.5 C.-5 D.5 6.在數(shù)列{an}中,a1=2,an+1=2an,Sn為{an}的前n項和.若Sn=126,則n=     .? 7.(2019四川內(nèi)江等六市二診,14)中國古代數(shù)學(xué)專著《九章算術(shù)》中有這樣一題:今有男子善走,日增

3、等里,九日走1 260里,第一日、第四日、第七日所走之和為390里,則該男子第三日走的里數(shù)為     .? 8.設(shè)x,y,z是實數(shù),若9x,12y,15z成等比數(shù)列,且1x,1y,1z成等差數(shù)列,則xz+zx=     .? 9.(2018全國Ⅲ,文17)在等比數(shù)列{an}中,a1=1,a5=4a3. (1)求{an}的通項公式; (2)記Sn為{an}的前n項和,若Sm=63,求m. 10.(2019全國Ⅰ,文18)記Sn為等差數(shù)列{an}的前n項和.已知S9=-a5. (1)若a3=4,求{an}的通項公式; (2)若a1>0,求使得Sn≥an的n的取

4、值范圍. 11.(2019山東濰坊四市聯(lián)考,17)已知數(shù)列{an},{bn}滿足:an+1+1=2an+n,bn-an=n,b1=2. (1)證明數(shù)列{bn}是等比數(shù)列,并求數(shù)列{bn}的通項公式; (2)求數(shù)列{an}的前n項和Sn. 二、思維提升訓(xùn)練 12.已知數(shù)列{an},{bn}滿足a1=b1=1,an+1-an=bn+1bn=2,n∈N*,則數(shù)列{ban}的前10項的和為(  ) A.43(49-1) B.43(410-1) C.13(49-1) D.13(410-1) 13.若數(shù)列{an}為等比

5、數(shù)列,且a1=1,q=2,則Tn=1a1a2+1a2a3+…+1anan+1等于(  ) A.1-14n B.231-14n C.1-12n D.231-12n 14.如圖,點列{An},{Bn}分別在某銳角的兩邊上,且|AnAn+1|=|An+1An+2|,An≠An+2,n∈N*,|BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+2,n∈N*.(P≠Q(mào)表示點P與Q不重合)若dn=|AnBn|,Sn為△AnBnBn+1的面積,則(  ) A.{Sn}是等差數(shù)列 B.{Sn2}是等差數(shù)列 C.{dn}是等差數(shù)列 D.{dn2}是等差數(shù)列 15.(2019河北武邑中學(xué)調(diào)研,15

6、)若兩個等差數(shù)列{an}和{bn}的前n項和分別是Sn,Tn,SnTn=5nn+5,則a10b9+b12+a11b8+b13=     .? 16.(2019江蘇常州高三期末,19)在數(shù)列{an}中,a1=1,且an+1+3an+4=0,n∈N*. (1)求證:{an+1}是等比數(shù)列,并求數(shù)列{an}的通項公式; (2)數(shù)列{an}中是否存在不同的三項按照一定順序重新排列后,構(gòu)成等差數(shù)列?若存在,求滿足條件的項;若不存在,請說明理由. 17.若數(shù)列{an}是公差為正數(shù)的等差數(shù)列,且對任意n∈N*有an·Sn=2n3-n2. (1)求數(shù)列{an}的通項公

7、式; (2)是否存在數(shù)列{bn},使得數(shù)列{anbn}的前n項和為An=5+(2n-3)2n-1(n∈N*)?若存在,求出數(shù)列{bn}的通項公式及其前n項和Tn;若不存在,請說明理由. 專題能力訓(xùn)練11 等差數(shù)列與等比數(shù)列 一、能力突破訓(xùn)練 1.C 解析∵{an}為等比數(shù)列, ∴a8a9a10=-a132=a93=-1000, ∴a9=-10,a132=1000. 又a10a12=a102q2>0, ∴a10a12=|a9a13|=10010. 2.B 解析由a1+a2+a3=3,a18+a19+a20=87,得a1+a20=30,故S20=20×(a1+a20)2=300.

8、 3.A 解析設(shè)公比為q,∵an+2an+1+an+2=0,∴a1+2a2+a3=0,∴a1+2a1q+a1q2=0,∴q2+2q+1=0,∴q=-1.又a1=2,∴S101=a1(1-q101)1-q=2[1-(-1)101]1+1=2. 4.B 解析設(shè){an}的首項為a1,公差為d,則a3=a1+2d,a4=a1+3d,a8=a1+7d. ∵a3,a4,a8成等比數(shù)列,∴(a1+3d)2=(a1+2d)(a1+7d),即3a1d+5d2=0. ∵d≠0,∴a1d=-53d2<0,且a1=-53d. ∵dS4=4d(a1+a4)2=2d(2a1+3d)=-23d2<0,故選B.

9、5.D 解析由條件知a1(1-q5)1-q=3,a12(1-q10)1-q2=15,則a1(1+q5)1+q=5, 故a1-a2+a3-a4+a5=a1[1-(-q)5]1-(-q)=a1(1+q5)1+q=5. 6.6 解析∵an+1=2an,即an+1an=2, ∴{an}是以2為公比的等比數(shù)列. 又a1=2, ∴Sn=2(1-2n)1-2=126.∴2n=64,∴n=6. 7.120 解析男子每天走的里數(shù)構(gòu)成等差數(shù)列,設(shè)為{an},其公差為d,前n項和為Sn. 根據(jù)題意可知,S9=1260,a1+a4+a7=390, (方法一)∵S9=9(a1+a9)2=9a5=1260

10、,∴a5=140. 又a1+a4+a7=3a4=390,∴a4=130,∴d=a5-a4=10, ∴a3=a4-d=120. (方法二)由題意,得S9=1260,a1+a4+a7=390, 9a1+9×82d=1260,a1+a1+3d+a1+6d=390, 解得a1=100,d=10,所以a3=a1+2d=120. 8.3415 解析由題意知(12y)2=9x×15z,2y=1x+1z, 解得xz=1229×15y2=1615y2,x+z=3215y, 從而xz+zx=x2+z2xz=(x+z)2-2xzxz=(x+z)2xz-2=32152y21615y2-2=3415.

11、 9.解(1)設(shè){an}的公比為q,由題設(shè)得an=qn-1. 由已知得q4=4q2,解得q=0(舍去)或q=-2或q=2. 故an=(-2)n-1或an=2n-1. (2)若an=(-2)n-1,則Sn=1-(-2)n3.由Sm=63得(-2)m=-188,此方程沒有正整數(shù)解. 若an=2n-1,則Sn=2n-1.由Sm=63得2m=64,解得m=6. 綜上,m=6. 10.解(1)設(shè){an}的公差為d. 由S9=-a5,得a1+4d=0. 由a3=4,得a1+2d=4. 于是a1=8,d=-2. 因此{(lán)an}的通項公式為an=10-2n. (2)由(1)得a1=-4d,

12、故an=(n-5)d,Sn=n(n-9)d2. 由a1>0知d<0,故Sn≥an等價于n2-11n+10≤0,解得1≤n≤10. 所以n的取值范圍是{n|1≤n≤10,n∈N}. 11.解(1)因為bn-an=n,所以bn=an+n. 因為an+1=2an+n-1,所以an+1+(n+1)=2(an+n),即bn+1=2bn. 又b1=2,所以{bn}是首項為2,公比為2的等比數(shù)列,bn=2×2n-1=2n. (2)由(1)可得an=bn-n=2n-n, 所以Sn=(21+22+23+…+2n)-(1+2+3+…+n) =2(1-2n)1-2-n(1+n)2=2n+1-2-n2

13、+n2. 二、思維提升訓(xùn)練 12.D 解析由a1=1,an+1-an=2,得an=2n-1. 由bn+1bn=2,b1=1得bn=2n-1. 則ban=2an-1=22(n-1)=4n-1, 故數(shù)列{ban}的前10項和為1-4101-4=13(410-1). 13.B 解析因為an=1×2n-1=2n-1,所以anan+1=2n-1·2n=22n-1=2×4n-1,所以1anan+1=12×14n-1. 所以1anan+1是等比數(shù)列. 故Tn=1a1a2+1a2a3+…+1anan+1=12×1×1-14n1-14=231-14n. 14.A 解析如圖,延長AnA1,BnB

14、1交于P,過An作對邊BnBn+1的垂線,其長度記為h1,過An+1作對邊Bn+1Bn+2的垂線,其長度記為h2, 則Sn=12|BnBn+1|h1,Sn+1=12|Bn+1Bn+2|h2. ∴Sn+1-Sn=12|Bn+1Bn+2|h2-12|BnBn+1|h1. ∵|BnBn+1|=|Bn+1Bn+2|, ∴Sn+1-Sn=12|BnBn+1|(h2-h1). 設(shè)此銳角為θ, 則h2=|PAn+1|sinθ,h1=|PAn|sinθ, ∴h2-h1=sinθ(|PAn+1|-|PAn|)=|AnAn+1|sinθ. ∴Sn+1-Sn=12|BnBn+1||AnAn+1|

15、sinθ. ∵|BnBn+1|,|AnAn+1|,sinθ均為定值,∴Sn+1-Sn為定值. ∴{Sn}是等差數(shù)列.故選A. 15.4 解析由等差數(shù)列的性質(zhì)可得a10b9+b12+a11b8+b13=a10b1+b20+a11b1+b20=a1+a20b1+b20 =20(a1+a20)220(b1+b20)2=S20T20=5×2020+5=4. 16.解(1)因為an+1+3an+4=0,所以an+1+1an+1=-3an-3an+1=-3. 因為a1+1=2≠0,所以數(shù)列{an+1}是以2為首項,以-3為公比的等比數(shù)列, 所以an+1=2×(-3)n-1,即an=2×(-3

16、)n-1-1. (2)假設(shè)存在三項ar,as,at(r

17、r, 等式的右邊是-3的整數(shù)倍,左邊不是-3的整數(shù)倍,故等式不成立. ③若as+at=2ar,則2×(-3)s-1-1+2×(-3)t-1-1=4×(-3)r-1-2, 整理得(-3)s+(-3)t=2×(-3)r,兩邊同除以(-3)r, 可得(-3)s-r+(-3)t-r=2, 等式的左邊是-3的整數(shù)倍,右邊不是-3的整數(shù)倍,故等式不成立. 綜上,數(shù)列{an}中不存在不同的三項符合題意. 17.解(1)設(shè)等差數(shù)列{an}的公差為d,則d>0, an=dn+(a1-d),Sn=12dn2+a1-12dn. 對任意n∈N*,恒有 an·Sn=2n3-n2,則[dn+(a1-d

18、)]·12dn2+a1-12dn=2n3-n2, 即[dn+(a1-d)]·12dn+a1-12d=2n2-n. ∴12d2=2,12d(a1-d)+da1-12d=-1,(a1-d)a1-12d=0. ∵d>0,∴a1=1,d=2,∴an=2n-1. (2)∵數(shù)列{anbn}的前n項和為An=5+(2n-3)·2n-1(n∈N*), ∴當(dāng)n=1時,a1b1=A1=4, ∴b1=4, 當(dāng)n≥2時,anbn=An-An-1=5+(2n-3)2n-1-[5+(2n-5)2n-2]=(2n-1)2n-2. ∴bn=2n-2.假設(shè)存在數(shù)列{bn}滿足題設(shè),且數(shù)列{bn}的通項公式bn=4,n=1,2n-2,n≥2, ∴T1=4,當(dāng)n≥2時,Tn=4+1-2n-11-2=2n-1+3,當(dāng)n=1時也適合, ∴數(shù)列{bn}的前n項和為Tn=2n-1+3. 10

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!