(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練20 統(tǒng)計與統(tǒng)計案例 理
《(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練20 統(tǒng)計與統(tǒng)計案例 理》由會員分享,可在線閱讀,更多相關(guān)《(通用版)2020版高考數(shù)學(xué)大二輪復(fù)習(xí) 專題突破練20 統(tǒng)計與統(tǒng)計案例 理(24頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、專題突破練20 統(tǒng)計與統(tǒng)計案例 1.(2019四川成都二模,理18)為了讓稅收政策更好地為社會發(fā)展服務(wù),國家在修訂《中華人民共和國個人所得稅法》之后,發(fā)布了《個人所得稅專項附加扣除暫行辦法》,明確“專項附加扣除”就是子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息、住房租金、贍養(yǎng)老人等費用,并公布了相應(yīng)的定額扣除標準,決定自2019年1月1日起施行.某企業(yè)為了調(diào)查內(nèi)部職員對新個稅方案的滿意程度與年齡的關(guān)系,通過問卷調(diào)查,整理數(shù)據(jù)得如下2×2列聯(lián)表: 40歲及以下 40歲以上 合計 基本滿意 25 10 35 很滿意 15 30 45 合計 40 40 80
2、(1)根據(jù)列聯(lián)表,能否有99%的把握認為滿意程度與年齡有關(guān)?
(2)為了幫助年齡在40歲以下的未購房的8名員工解決實際困難,該企業(yè)擬按員工貢獻積分x(單位:分)給予相應(yīng)的住房補貼y(單位:元),現(xiàn)有兩種補貼方案,方案甲:y=1 000+700x;方案乙:y=3000,0
3、(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d. 參考數(shù)據(jù): P(K2≥k0) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 2.下圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額y(單位:億元)的折線圖. 為了預(yù)測該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額,建立了y與時間變量t的兩個線性回歸模型.根據(jù)2000年至2016年的
4、數(shù)據(jù)(時間變量t的值依次為1,2,…,17)建立模型①;y^=-30.4+13.5t;根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為1,2,…,7)建立模型②:y^=99+17.5t. (1)分別利用這兩個模型,求該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值; (2)你認為用哪個模型得到的預(yù)測值更可靠?并說明理由. 3.海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下: 舊養(yǎng)殖法 新養(yǎng)殖法 (1)設(shè)兩種養(yǎng)殖方法
5、的箱產(chǎn)量相互獨立,記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg,新養(yǎng)殖法的箱產(chǎn)量不低于50 kg”,估計A的概率; (2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān); 箱產(chǎn)量<50kg 箱產(chǎn)量≥50kg 舊養(yǎng)殖法 新養(yǎng)殖法 (3)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計值(精確到0.01). 附: P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828 K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).
6、 4.為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過程,檢驗員每隔30 min從該生產(chǎn)線上隨機抽取一個零件,并測量其尺寸(單位:cm).下面是檢驗員在一天內(nèi)依次抽取的16個零件的尺寸: 抽取次序 1 2 3 4 5 6 7 8 零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序 9 10 11 12 13 14 15 16 零件尺寸 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 經(jīng)計算得x=116∑i=11
7、6xi=9.97,s=116∑i=116(xi-x)2=116(∑i=116xi2-16x2)≈0.212,∑i=116(i-8.5)2≈18.439,∑i=116(xi-x)(i-8.5)=-2.78,其中xi為抽取的第i個零件的尺寸,i=1,2,…,16. (1)求(xi,i)(i=1,2,…,16)的相關(guān)系數(shù)r,并回答是否可以認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變小(若|r|<0.25,則可以認為零件的尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變小). (2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(x-3s,x+3s)之外的零件,就認為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了
8、異常情況,需對當天的生產(chǎn)過程進行檢查. ①從這一天抽檢的結(jié)果看,是否需對當天的生產(chǎn)過程進行檢查? ②在(x-3s,x+3s)之外的數(shù)據(jù)稱為離群值,試剔除離群值,估計這條生產(chǎn)線當天生產(chǎn)的零件尺寸的均值與標準差.(精確到0.01) 附:樣本(xi,yi)(i=1,2,…,n)的相關(guān)系數(shù)r=∑i=1n(xi-x)(yi-y)∑i=1n(xi-x)2∑i=1n(yi-y)2.0.008≈0.09. 5.(2019山東實驗等四校聯(lián)考,理19)隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購是非常方便的購物方式,為了了解網(wǎng)購在我市的普及情況,某調(diào)查機構(gòu)進行了有關(guān)網(wǎng)購
9、的調(diào)查問卷,并從參與調(diào)查的市民中隨機抽取了男女各100人進行分析,從而得到下表(單位:人). 經(jīng)常網(wǎng)購 偶爾或不用網(wǎng)購 合計 男性 50 100 女性 70 100 合計 (1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關(guān)? (2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購的概率; ②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機抽取10人贈送禮品,記其中經(jīng)常網(wǎng)購的人數(shù)為X,求隨機變量X的數(shù)學(xué)期望和方差. 參考
10、公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d. P(K2≥k0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828 6.隨著食品安全問題逐漸引起人們的重視,有機、健康的高端綠色蔬菜越來越受到消費者的歡迎,同時生產(chǎn)—運輸—銷售一體化的直銷供應(yīng)模式,不僅減少了成本,而且減去了蔬菜的二次污染等問題. (1)在有機蔬菜的種植過程中,有機肥料使用
11、是必不可少的.根據(jù)統(tǒng)計某種有機蔬菜的產(chǎn)量與有機肥料的用量有關(guān)系,每個有機蔬菜大棚產(chǎn)量的增加量y(百斤)與使用堆漚肥料x(千克)之間對應(yīng)數(shù)據(jù)如下表: 使用堆漚肥料x(千克) 2 4 5 6 8 產(chǎn)量增加量y(百斤) 3 4 4 4 5 依據(jù)表中的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y^=b^x+a^;并根據(jù)所求線性回歸方程,估計如果每個有機蔬菜大棚使用堆漚肥料10千克,則每個有機蔬菜大棚產(chǎn)量增加量y是多少百斤? (2)某大棚蔬菜種植基地將采摘的有機蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價格銷售到生鮮超市.“樂購”生鮮超市以每份15元的價格賣給顧客,如
12、果當天前8小時賣不完,則超市通過促銷以每份5元的價格賣給顧客(根據(jù)經(jīng)驗,當天能夠把剩余的有機蔬菜都低價處理完畢,且處理完畢后,當天不再進貨).該生鮮超市統(tǒng)計了100天有機蔬菜在每天的前8小時內(nèi)的銷售量(單位:份),制成如下表格(注:x,y∈N*,且x+y=30): 每日前8個小時 銷售量(單位:份) 15 16 17 18 19 20 21 頻數(shù) 10 x 16 16 15 13 y 若以100天記錄的頻率作為每日前8小時銷售量發(fā)生的概率,該生鮮超市當天銷售有機蔬菜利潤的期望值為決策依據(jù),當購進17份比購進18份的利潤的期望值大時,求x的取值范圍. 附
13、:b^=∑i=1n(xi-x)(yi-y)∑i=1n(xi-x)2=∑i=1nxiyi-nxy∑i=1nxi2-nx2,a^=y-b^x. 7.(2019陜西第二次質(zhì)檢,理18)某市場研究人員為了了解產(chǎn)業(yè)園引進的甲公司前期的經(jīng)營狀況,對該公司2018年連續(xù)6個月的利潤進行了統(tǒng)計,并根據(jù)得到的數(shù)據(jù)繪制了相應(yīng)的折線圖,如圖所示. (1)由折線圖可以看出,可用線性回歸模型擬合月利潤y(單位:百萬元)與月份代碼x之間的關(guān)系,求y關(guān)于x的線性回歸方程,并預(yù)測該公司2019年3月份的利潤; (2)甲公司新研制了一款產(chǎn)品,需要
14、采購一批新型材料,現(xiàn)有采購成本分別為10萬元/包和12萬元/包的A,B兩種型號的新型材料可供選擇,按規(guī)定每種新型材料最多可使用4個月,但新材料的不穩(wěn)定性會導(dǎo)致材料損壞的年限不相同,現(xiàn)對A,B兩種新型材料對應(yīng)的產(chǎn)品各100件進行科學(xué)模擬測試,得到兩種新型材料使用壽命的頻數(shù)統(tǒng)計如下表: 使用壽命 材料類型 1個月 2個月 3個月 4個月 總計 A 20 35 35 10 100 B 10 30 40 20 100 經(jīng)甲公司測算,平均每包新型材料每月可以帶來5萬元收入,不考慮除采購成本之外的其他成本,假設(shè)每包新型材料的使用壽命都是整數(shù)月,且以頻
15、率作為每包新型材料使用壽命的概率,如果你是甲公司的負責人,以每包新型材料產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款新型材料? 參考數(shù)據(jù):∑i=16yi=96,∑i=16xiyi=371. 附:b^=∑i=1n(xi-x)(yi-y)∑i=1n(xi-x)2=∑i=1nxiyi-nxy∑i=1nxi2-nx2,a^=y-b^x. 8.(2019山東青島二模,理20)“愛國,是人世間最深層、最持久的情感,是一個人立德之源、立功之本.”在中華民族幾千年綿延發(fā)展的歷史長河中,愛國主義始終是激昂的主旋律.愛國汽車公司擬對“東方紅
16、”款高端汽車發(fā)動機進行科技改造,根據(jù)市場調(diào)研與模擬,得到科技改造投入x(億元)與科技改造直接收益y(億元)的數(shù)據(jù)統(tǒng)計如下:
x
2
3
4
6
8
10
13
21
22
23
24
25
y
13
22
31
42
50
56
58
68.5
68
67.5
66
66
當0 17、并選擇擬合精度更高、更可靠的模型,預(yù)測對“東方紅”款汽車發(fā)動機科技改造的投入為17億元時的直接收益.
回歸模型
模型①
模型②
回歸方程
y^=4.1x+11.8
y^=21.3x-14.4
∑i=17(yi-y^i)2
182.4
79.2
附:刻畫回歸效果的相關(guān)指數(shù)R2=1-∑i=1n(yi-y^i)2∑i=1n(yi-y)2,17≈4.1.
(2)為鼓勵科技創(chuàng)新,當科技改造的投入不少于20億元時,國家給予公司補貼收益10億元,以回歸方程為預(yù)測依據(jù),比較科技改造投入17億元與20億元時公司實際收益的大小;
(附:用最小二乘法求線性回歸方程y^=b^x+a^的系數(shù) 18、公式
b^=∑i=1nxiyi-nx·y∑i=1nxi2-nx2=∑i=1n(xi-x)(yi-y)∑i=1n(xi-x)2;a^=y-b^x)
(3)科技改造后,“東方紅”款汽車發(fā)動機的熱效率X大幅提高,X服從正態(tài)分布N(0.52,0.012),公司對科技改造團隊的獎勵方案如下:若發(fā)動機的熱效率不超過50%,不予獎勵;若發(fā)動機的熱效率超過50%但不超過53%,每臺發(fā)動機獎勵2萬元;若發(fā)動機的熱效率超過53%,每臺發(fā)動機獎勵5萬元.求每臺發(fā)動機獲得獎勵的數(shù)學(xué)期望.
(附:隨機變量ξ服從正態(tài)分布N(μ,σ2),則P(μ-σ<ξ<μ+σ)=0.682 6,P(μ-2σ<ξ<μ+2σ)=0.9 19、54 4.)
參考答案
專題突破練20 統(tǒng)計與統(tǒng)計案例
1.解(1)根據(jù)列聯(lián)表可以求得K2的觀測值:
k=80(25×30-10×15)235×45×40×40=807≈11.429>6.635,
故有99%的把握認為滿意程度與年齡有關(guān).
(2)據(jù)題意,該8名員工的貢獻積分及按甲乙兩種方案所獲補貼情況為:
積分
2
3
6
7
7
11
12
12
方案甲
2400
3100
5200
5900
5900
8700
9400
9400
方案乙
30 20、00
3000
5600
5600
5600
9000
9000
9000
由表可知,“A類員工”有5名,設(shè)從這8名員工中隨機抽取4名進行面談,恰好抽到3名“A類員工”的概率為P,則P=C53C31C84=37.
2.解(1)利用模型①,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值為y^=-30.4+13.5×19=226.1(億元).
利用模型②,該地區(qū)2018年的環(huán)境基礎(chǔ)設(shè)施投資額的預(yù)測值為y^=99+17.5×9=256.5(億元).
(2)利用模型②得到的預(yù)測值更可靠.
理由如下:
(i)從折線圖可以看出,2000年至2016年的數(shù)據(jù)對應(yīng)的點沒有隨機散布在 21、直線y=-30.4+13.5t上下,這說明利用2000年至2016年的數(shù)據(jù)建立的線性模型①不能很好地描述環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢.2010年相對2009年的環(huán)境基礎(chǔ)設(shè)施投資額有明顯增加,2010年至2016年的數(shù)據(jù)對應(yīng)的點位于一條直線的附近,這說明從2010年開始環(huán)境基礎(chǔ)設(shè)施投資額的變化規(guī)律呈線性增長趨勢,利用2010年至2016年的數(shù)據(jù)建立的線性模型y^=99+17.5t可以較好地描述2010年以后的環(huán)境基礎(chǔ)設(shè)施投資額的變化趨勢,因此利用模型②得到的預(yù)測值更可靠.
(ii)從計算結(jié)果看,相對于2016年的環(huán)境基礎(chǔ)設(shè)施投資額220億元,由模型①得到的預(yù)測值226.1億元的增幅明顯偏低,而 22、利用模型②得到的預(yù)測值的增幅比較合理,說明利用模型②得到的預(yù)測值更可靠.
(以上給出了2種理由,答出其中任意一種或其他合理理由均可)
3.解(1)記B表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50kg”,C表示事件“新養(yǎng)殖法的箱產(chǎn)量不低于50kg”.
由題意知P(A)=P(BC)=P(B)P(C).
舊養(yǎng)殖法的箱產(chǎn)量低于50kg的頻率為(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估計值為0.62.
新養(yǎng)殖法的箱產(chǎn)量不低于50kg的頻率為(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估計值為0.66.
因此,事件A的概 23、率估計值為0.62×0.66=0.4092.
(2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表
箱產(chǎn)量<50kg
箱產(chǎn)量≥50kg
舊養(yǎng)殖法
62
38
新養(yǎng)殖法
34
66
K2=200×(62×66-34×38)2100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān).
(3)因為新養(yǎng)殖法的箱產(chǎn)量頻率分布直方圖中,箱產(chǎn)量低于50kg的直方圖面積為(0.004+0.020+0.044)×5=0.34<0.5,
箱產(chǎn)量低于55kg的直方圖面積為(0.004+0.020+0.044+0.068)×5=0.68>0 24、.5,故新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計值為50+0.5-0.340.068≈52.35(kg).
4.解(1)由樣本數(shù)據(jù)得(xi,i)(i=1,2,…,16)的相關(guān)系數(shù)為
r=∑i=116(xi-x)(i-8.5)∑i=116(xi-x)2∑i=116(i-8.5)2=-2.780.212×16×18.439≈-0.18.
由于|r|<0.25,因此可以認為這一天生產(chǎn)的零件尺寸不隨生產(chǎn)過程的進行而系統(tǒng)地變大或變小.
(2)①由于x=9.97,s≈0.212,由樣本數(shù)據(jù)可以看出抽取的第13個零件的尺寸在(x-3s,x+3s)以外,因此需對當天的生產(chǎn)過程進行檢查.
②剔除離群值,即第13個 25、數(shù)據(jù),剩下數(shù)據(jù)的平均數(shù)為115(16×9.97-9.22)=10.02,這條生產(chǎn)線當天生產(chǎn)的零件尺寸的均值的估計值為10.02.∑i=116xi2=16×0.2122+16×9.972≈1591.134,剔除第13個數(shù)據(jù),剩下數(shù)據(jù)的樣本方差為115(1591.134-9.222-15×10.022)≈0.008,這條生產(chǎn)線當天生產(chǎn)的零件尺寸的標準差的估計值為0.008≈0.09.
5.解(1)
經(jīng)常網(wǎng)購
偶爾或不用網(wǎng)購
合計
男性
50
50
100
女性
70
30
100
合計
120
80
200
k2=200×(50×30-50×70)2120 26、×80×100×100=253≈8.333>6.635,
故能在犯錯誤的概率不超過0.01的前提下認為我市市民網(wǎng)購與性別有關(guān).
(2)①由題意,所抽取的10名女市民中,經(jīng)常網(wǎng)購的有10×70100=7人,
偶爾或不用網(wǎng)購的有10-7=3人,
所以選取的3人中至少有2人經(jīng)常網(wǎng)購的概率P=C72C31+C73C103=4960.
②由2×2列聯(lián)表可知,抽到經(jīng)常網(wǎng)購的市民頻率為120200=0.6.
將頻率視為概率,從我市所有參與調(diào)查的市民中隨機抽取1人,恰好抽到經(jīng)常網(wǎng)購市民的概率為0.6.由題意X~B(10,0.6),E(X)=10×0.6=6,D(X)=10×0.6×(1-0.6)= 27、2.4.
6.解(1)x=2+4+5+6+85=5,
y=3+4+4+4+55=4.
∑i=15xiyi=2×3+4×4+5×4+6×4+8×5=106,
∑i=15xi2=22+42+52+62+82=145,
b^=106-5×5×4145-5×52=0.3,a^=y-b^x=4-0.3×5=2.5,
所以y關(guān)于x的線性回歸方程為y^=0.3x+2.5.
當x=10時,y^=0.3×10+2.5=5.5百斤,所以如果每個有機蔬菜大棚使用堆漚肥料10千克,估計每個有機蔬菜大棚產(chǎn)量的增加量y是5.5百斤.
(2)若該超市一天購進17份這種有機蔬菜,Y1表示當天的利潤(單位:元) 28、,那么Y1的分布列為
Y1
65
75
85
P
10100
x100
90-x100
Y1的數(shù)學(xué)期望是E(Y1)=65×10100+75×x100+85×90-x100=8300-10x100;
若該超市一天購進18份這種有機蔬菜,Y2表示當天的利潤(單位:元),那么Y2的分布列為
Y2
60
70
80
90
P
10100
x100
16100
74-x100
Y2的數(shù)學(xué)期望是E(Y2)=60×10100+70×x100+80×16100+90×74-x100=8540-20x100;
又購進17份比購進18份的利潤的期望值大,故830 29、0-10x100>8540-20x100,求得x>24,故x的取值范圍是(24,30),x∈N*.
7.解(1)由折線圖可知統(tǒng)計數(shù)據(jù)(xi,yi)共6組,即(1,11),(2,13),(3,16),(4,15),(5,20),(6,21),計算可得x=16(1+2+3+4+5+6)=3.5,
y=16∑i=16yi=16×96=16,
∑i=1nxi2-nx2=12+22+32+42+52+62-6×3.52=17.5.
故b^=371-6×3.5×1617.5=2,
故a^=y-b^x=16-2×3.5=9,
∴x關(guān)于y的線性回歸方程為y^=2x+9,故x=11時,則y^=2×1 30、1+9=31,即預(yù)測公司2019年3月份(即x=11時)的利潤為31百萬元.
(2)由頻率估計概率,A型材料可使用1個月,2個月,3個月、4個月的概率分別為0.2,0.35,0.35,0.1,
∴A型材料利潤的數(shù)學(xué)期望為(5-10)×0.2+(10-10)×0.35+(15-10)×0.35+(20-10)×0.1=1.75萬元;
B型材料可使用1個月,2個月,3個月、4個月的概率分別為0.1,0.3,0.4,0.2,
∴B型材料利潤的數(shù)學(xué)期望為(5-12)×0.1+(10-12)×0.3+(15-12)×0.4+(20-12)×0.2=1.50萬元;
∵1.75>1.50,∴應(yīng)該采 31、購A型材料.
8.解(1)由表格中的數(shù)據(jù),有182.4>79.2,即182.4∑i=17(yi-y)2>79.2∑i=17(yi-y)2,
所以模型①的R2小于模型②,說明回歸模型②刻畫的擬合效果更好.
所以當x=17億元時,科技改造直接收益的預(yù)測值為y^=21.3×17-14.4≈21.3×4.1-14.4=72.93(億元).
(2)由已知可得:x-20=1+2+3+4+55=3,所以x=23,
y-60=8.5+8+7.5+6+65=7.2,所以y=67.2.
所以a^=y+0.7x=67.2+0.7×23=83.3.
所以當x>17億元時,y與x滿足的線性回歸方程為:y^ 32、=-0.7x+83.3.
所以當x=20億元時,科技改造直接收益的預(yù)測值y^=-0.7×20+83.3=69.3,
所以當x=20億元時,實際收益的預(yù)測值為69.3+10=79.3億元>72.93億元,
所以科技改造投入20億元時,公司的實際收益的更大.
(3)因為P(0.52-0.02
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024《增值稅法》全文學(xué)習(xí)解讀(規(guī)范增值稅的征收和繳納保護納稅人的合法權(quán)益)
- 2024《文物保護法》全文解讀學(xué)習(xí)(加強對文物的保護促進科學(xué)研究工作)
- 銷售技巧培訓(xùn)課件:接近客戶的套路總結(jié)
- 20種成交的銷售話術(shù)和技巧
- 銷售技巧:接近客戶的8種套路
- 銷售套路總結(jié)
- 房產(chǎn)銷售中的常見問題及解決方法
- 銷售技巧:值得默念的成交話術(shù)
- 銷售資料:讓人舒服的35種說話方式
- 汽車銷售績效管理規(guī)范
- 銷售技巧培訓(xùn)課件:絕對成交的銷售話術(shù)
- 頂尖銷售技巧總結(jié)
- 銷售技巧:電話營銷十大定律
- 銷售逼單最好的二十三種技巧
- 銷售最常遇到的10大麻煩