2020年高考數(shù)學(xué)一輪復(fù)習(xí) 考點(diǎn)50 橢圓必刷題 理(含解析)
考點(diǎn)50 橢圓
1.(北京市昌平區(qū)2019屆高三5月綜合練習(xí)二模理)嫦娥四號(hào)月球探測(cè)器于2018年12月8日搭載長(zhǎng)征三號(hào)乙運(yùn)載火箭在西昌衛(wèi)星發(fā)射中心發(fā)射.12日下午4點(diǎn)43分左右,嫦娥四號(hào)順利進(jìn)入了以月球球心為一個(gè)焦點(diǎn)的橢圓形軌道,如圖中軌道③所示,其近月點(diǎn)與月球表面距離為公里,遠(yuǎn)月點(diǎn)與月球表面距離為公里.已知月球的直徑為公里,則該橢圓形軌道的離心率約為
A. B. C. D.
【答案】B
【解析】
如下圖,F(xiàn)為月球的球心,月球半徑為:×3476=1738,
依題意,|AF|=100+1738=1838,
?。麭F|=400+1738=2138.
2a=1838+2138,
a=1988,
a+c=2138,
c=2138-1988=150,
橢圓的離心率為:,
選B.
2.(山東省實(shí)驗(yàn)中學(xué)等四校2019屆高三聯(lián)合考試?yán)恚┮阎獧E圓:,的左、右焦點(diǎn)分別為,,為橢圓上異于長(zhǎng)軸端點(diǎn)的一點(diǎn),的內(nèi)心為,直線(xiàn)交軸于點(diǎn),若,則橢圓的離心率是( ?。?
A. B. C. D.
【答案】B
【解析】
解:的內(nèi)心為,連接和,
可得為的平分線(xiàn),即有,
,
可得,
即有,
即有,
故選:B.
3.(內(nèi)蒙古2019屆高三高考一模試卷數(shù)學(xué)理)以橢圓的兩個(gè)焦點(diǎn)為直徑的端點(diǎn)的圓與橢圓交于四個(gè)不同的點(diǎn),順次連接這四個(gè)點(diǎn)和兩個(gè)焦點(diǎn)恰好組成一個(gè)正六邊形,那么這個(gè)橢圓的離心率為( )
A. B. C. D.
【答案】B
【解析】
解:設(shè)橢圓的兩個(gè)焦點(diǎn)為,,圓與橢圓交于,,,四個(gè)不同的點(diǎn),
設(shè),則,.
橢圓定義,得,
所以,
故選:B.
4.(廣東省深圳市高級(jí)中學(xué)2019屆高三適應(yīng)性考試(6月)數(shù)學(xué)理)在平面直角坐標(biāo)系中,已知點(diǎn)分別為橢圓的右頂點(diǎn)和右焦點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)交橢圓于兩點(diǎn),線(xiàn)段的中點(diǎn)為,若三點(diǎn)共線(xiàn),則橢圓的離心率為( )
A. B. C. D.或
【答案】A
【解析】
如圖
設(shè),
又,
,
三點(diǎn)共線(xiàn),
,
即,
,
,
,故選A.
5.(陜西省漢中市2019屆高三全真模擬考試數(shù)學(xué)理)已知、分別是橢圓的左、右焦點(diǎn),點(diǎn)是關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn),且軸,則橢圓的離心率為_(kāi)________.
【答案】
【解析】
、分別是橢圓的左、右焦點(diǎn),點(diǎn)是關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn),且軸,可得的方程為,的方程,可得,
的中點(diǎn)為,代入直線(xiàn),可得:,,
可得,
解得.
故選:
6.(河南省洛陽(yáng)市2018-2019學(xué)年高二5月質(zhì)量檢測(cè)(期末)數(shù)學(xué)(理)已知是橢圓的右焦點(diǎn),是橢圓短軸的一個(gè)端點(diǎn),直線(xiàn)與橢圓另一交點(diǎn)為,且,則橢圓的離心率為_(kāi)_____.
【答案】
【解析】
設(shè),,作軸,垂足為,如下圖所示:
則:
由得: ,即:
由橢圓的焦半徑公式可知:
,整理可得:
,即
本題正確結(jié)果:
7.(安徽省合肥市2019屆高三第三次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)理)如圖是數(shù)學(xué)家Germinal Dandelin用來(lái)證明一個(gè)平面截圓錐得到的截口曲線(xiàn)是橢圓的模型(稱(chēng)為“Dandelin雙球”);在圓錐內(nèi)放兩個(gè)大小不同的小球,使得它們分別與圓錐的側(cè)面、截面相切,設(shè)圖中球,球的半徑分別為和,球心距離,截面分別與球,球切于點(diǎn),,(,是截口橢圓的焦點(diǎn)),則此橢圓的離心率等于______.
【答案】
【解析】
如圖,圓錐面與其內(nèi)切球,分別相切與B,A,連接則,,過(guò)作垂直于,連接, 交于點(diǎn)C
設(shè)圓錐母線(xiàn)與軸的夾角為 ,截面與軸的夾角為
在中, ,
解得
即
則橢圓的離心率
8.(吉林省長(zhǎng)春市北京師范大學(xué)長(zhǎng)春市附屬中學(xué)2019屆高三第四次模擬考試)已知橢圓與軸正半軸交于點(diǎn),離心率為.直線(xiàn)經(jīng)過(guò)點(diǎn)和點(diǎn).且與橢圖E交于A、B兩點(diǎn)(點(diǎn)A在第二象限).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若,當(dāng)時(shí),求的取值范圍.
【答案】(1)(2)
【解析】
解析:(1).由題意,且,所以,
所以橢圓E的標(biāo)準(zhǔn)方程為.
(2).因?yàn)橹本€(xiàn)l經(jīng)過(guò)點(diǎn)和點(diǎn),所以直線(xiàn)l的斜率為,設(shè),將其代入橢圓方程中,
消去得,
當(dāng)時(shí),設(shè)、,
則……①,……②
因?yàn)?,所以,所以……?
聯(lián)立①②③,消去、,整理得.
當(dāng)時(shí),,解
由且,
故,所以.
9.(山東省威海市2019屆高三二??荚嚁?shù)學(xué)理)在直角坐標(biāo)系中,設(shè)橢圓的左焦點(diǎn)為,短軸的兩個(gè)端點(diǎn)分別為,且,點(diǎn)在上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線(xiàn)與橢圓和圓分別相切于,兩點(diǎn),當(dāng)面積取得最大值時(shí),求直線(xiàn)的方程.
【答案】(Ⅰ) .(Ⅱ) .
【解析】
(Ⅰ)由,可得,①
由橢圓經(jīng)過(guò)點(diǎn),得,②
由①②得,
所以橢圓的方程為.
(Ⅱ)由消去整理得(*),
由直線(xiàn)與橢圓相切得,
,
整理得,
故方程(*)化為,即,
解得,
設(shè),則,故,
因此.
又直線(xiàn)與圓相切,可得.
所以,
所以,
將式代入上式可得
,
由得,
所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即時(shí)取得最大值.
由,得,
所以直線(xiàn)的方程為.
10.(山東省日照市2019屆高三5月校際聯(lián)合考試數(shù)學(xué)理)如圖,已知橢圓,是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心,且.
(1)求橢圓的方程.
(2)過(guò)橢圓右焦點(diǎn)的直線(xiàn),交橢圓于兩點(diǎn),交直線(xiàn)于點(diǎn),判定直線(xiàn)的斜率是否依次構(gòu)成等差數(shù)列?請(qǐng)說(shuō)明理由.
【答案】(1);(2)是,理由見(jiàn)詳解.
【解析】
(1)由,得,即,
所以是等腰三角形,
又,∴點(diǎn)的橫坐標(biāo)為2;
又,
設(shè)點(diǎn)的縱坐標(biāo)為,∴,解得,
應(yīng)取,
又點(diǎn)在橢圓上,∴,解得,
∴所求橢圓的方程為;
(2)由題意知橢圓的右焦點(diǎn)為,,
由題意可知直線(xiàn)的斜率存在,
設(shè)直線(xiàn)的方程為,
代入橢圓并整理,得;
設(shè),,直線(xiàn)的斜率分別為,
則有,,
可知的坐標(biāo)為;
∴
,
又;
所以,
即直線(xiàn)的斜率成等差數(shù)列.
11.(天津市河北區(qū)2019屆高三一模數(shù)學(xué)理)已知橢圓C:過(guò)點(diǎn),且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過(guò)原點(diǎn)的直線(xiàn)與橢圓C交于P、Q兩點(diǎn),且在直線(xiàn)上存在點(diǎn)M,使得為等邊三角形,求直線(xiàn)的方程。
【答案】(Ⅰ)(Ⅱ)y=0或y=
【解析】
(Ⅰ)由題解得a=,b=,c=,橢圓C的方程為
(Ⅱ)由題,當(dāng)?shù)男甭蔾=0時(shí),此時(shí)PQ=4 直線(xiàn)與y軸的交點(diǎn)(0,滿(mǎn)足題意;
當(dāng)?shù)男甭蔾0時(shí),設(shè)直線(xiàn)與橢圓聯(lián)立得=8,,設(shè)P(),則Q(),,又PQ的垂直平分線(xiàn)方程為由,解得,,, ∵為等邊三角形即解得k=0(舍去),k=,直線(xiàn)的方程為y=
綜上可知,直線(xiàn)的方程為y=0或y=.
12.(湖南省2017屆高三高考沖刺預(yù)測(cè)卷六理)已知橢圓的右頂點(diǎn)為,上頂點(diǎn)為,下頂點(diǎn)為是的中點(diǎn)(為原點(diǎn)),連接并延長(zhǎng)交橢圓于點(diǎn),連接,得.
(1)求橢圓的離心率;
(2)若是上一點(diǎn),以為直徑的圓經(jīng)過(guò)橢圓的右焦點(diǎn),求直線(xiàn)的斜率.
【答案】(1)(2)
【解析】
試題分析:(1)求出點(diǎn)坐標(biāo),根據(jù)可得,結(jié)合可得結(jié)果;(2)方程為,由,結(jié)合韋達(dá)定理可得 點(diǎn)坐標(biāo),利用列方程,進(jìn)而可得結(jié)果.
試題解析:(1),直線(xiàn)方程為,
由得點(diǎn)坐標(biāo),
∵,∴,∴,
∵,∴,∴離心率;
(2)分析題意,易知直線(xiàn)的斜率存在,設(shè)方程為,
由得,由以為直徑的圓經(jīng)過(guò)右焦點(diǎn)得
,∴,
∵,∴,∴.
13.(2017屆安徽省合肥市高三第一次模擬考試數(shù)學(xué)理)已知點(diǎn)為橢圓的左焦點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等邊三角形,直線(xiàn)與橢圓有且僅有一個(gè)交點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)與軸交于,過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩不同點(diǎn),,若,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程,只要求出參數(shù),由于有,因此要列出關(guān)于的兩個(gè)方程,而由條件兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等邊三角形得,再利用已知直線(xiàn)與橢圓只有一個(gè)公共點(diǎn),即判別式為0可求得橢圓方程;
(Ⅱ)由(Ⅰ)得點(diǎn)的坐標(biāo),從而可得,要求范圍只要求得的范圍,為此可直線(xiàn)分類(lèi),對(duì)斜率不存在時(shí),求得,而當(dāng)直線(xiàn)斜率存在時(shí),可設(shè)出直線(xiàn)方程為,同時(shí)設(shè),則,由韋達(dá)定理可把表示為的函數(shù),注意直線(xiàn)與橢圓相交,判別式>0,確定的范圍,從而可得的范圍,最后可得的取值范圍.
試題解析:(Ⅰ)由題意,得,則橢圓為:,
由,得 ,
直線(xiàn)與橢圓有且僅有一個(gè)交點(diǎn),
,
橢圓的方程為 ;
(Ⅱ)由(Ⅰ)得,直線(xiàn)與軸交于 ,
,
當(dāng)直線(xiàn)與軸垂直時(shí), ,
由 ,
當(dāng)直線(xiàn)與軸不垂直時(shí),設(shè)直線(xiàn)的方程為, ,
由 ,
依題意得,,且 ,
,
,
,
綜上所述,的取值范圍是 .
14.(山西省晉城市2019屆高三第三次模擬考試數(shù)學(xué)理)已知的周長(zhǎng)為6,,關(guān)于原點(diǎn)對(duì)稱(chēng),且.點(diǎn)的軌跡為.
(Ⅰ)求的方程;
(Ⅱ)若,直線(xiàn):與交于,兩點(diǎn),若,,成等差數(shù)列,求的值.
【答案】(Ⅰ);(Ⅱ)2.
【解析】
(Ⅰ)依題意,,,故,則,
故點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓(不含左、右兩頂點(diǎn)),
故的方程為.
(Ⅱ)依題意,,故.
聯(lián)立整理得.
設(shè),,則,.
故
,
則.
15.(遼寧省葫蘆島市普通高中2019屆高三第二次模擬考試數(shù)學(xué)理)在平面直角坐標(biāo)系中,橢圓的上頂點(diǎn)為A,左、右焦點(diǎn)分別為,,直線(xiàn)的斜率為,點(diǎn)在橢圓E上,其中P是橢圓上一動(dòng)點(diǎn),Q點(diǎn)坐標(biāo)為.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)作直線(xiàn)l與x軸垂直,交橢圓于兩點(diǎn)(兩點(diǎn)均不與P點(diǎn)重合),直線(xiàn),與x軸分別交于點(diǎn).求的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
【答案】(1)(2)的最小值為,此時(shí)點(diǎn)P的坐標(biāo)為或
【解析】
(1)由直線(xiàn)的斜率為可知直線(xiàn)的傾斜角為.
在中,,于是,
橢圓,將代入得
所以,橢圓E的標(biāo)準(zhǔn)方程
(2)設(shè)點(diǎn).
于是,直線(xiàn),令,
所以
直線(xiàn),令,
所以
又.代入上式并化簡(jiǎn)
即,
當(dāng)(即)時(shí)取得最小值,
(Ⅰ)時(shí),化簡(jiǎn)得
根據(jù)題意:,若亦與題意不符,
所以,此時(shí)或
(Ⅱ)時(shí),化簡(jiǎn)得
將代入并化簡(jiǎn)得:
根據(jù)題意:,若,而
所以 不成立,即不成立
綜上,或,點(diǎn)P的坐標(biāo)為或
16.(內(nèi)蒙古呼倫貝爾市2019屆高三模擬統(tǒng)一考試一數(shù)學(xué)(理)已知橢圓:離心率為,直線(xiàn)被橢圓截得的弦長(zhǎng)為.
(1)求橢圓方程;
(2)設(shè)直線(xiàn)交橢圓于,兩點(diǎn),且線(xiàn)段的中點(diǎn)在直線(xiàn)上,求證:線(xiàn)段的中垂線(xiàn)恒過(guò)定點(diǎn).
【答案】(1)(2)見(jiàn)解析
【解析】
【分析】
(1)根據(jù)題意易得橢圓過(guò)點(diǎn),結(jié)合,求出即可得結(jié)果;(2)聯(lián)立直線(xiàn)與橢圓的方程,結(jié)合韋達(dá)定理根據(jù)中點(diǎn)坐標(biāo)公式化簡(jiǎn)可得,求出,列出的中垂線(xiàn)方程即可得結(jié)果.
【詳解】
(1)由直線(xiàn)被橢圓截得的弦長(zhǎng)為,得橢圓過(guò)點(diǎn),即,
又,得,
所以,,即橢圓方程為.
(2)由得,
由,
得.
由,
設(shè)的中點(diǎn)為,
得,即,
∴.
∴的中垂線(xiàn)方程為.
即,故的中垂線(xiàn)恒過(guò)點(diǎn).
17.(湖南省益陽(yáng)市桃江縣第一中學(xué)2019屆高三5月模擬考試?yán)恚┮阎獧E圓:的離心率為,焦距為.
(1)求的方程;
(2)若斜率為的直線(xiàn)與橢圓交于,兩點(diǎn)(點(diǎn),均在第一象限),為坐標(biāo)原點(diǎn).
①證明:直線(xiàn)的斜率依次成等比數(shù)列.
②若與關(guān)于軸對(duì)稱(chēng),證明:.
【答案】(1); (2)①見(jiàn)解析;②見(jiàn)解析.
【解析】
(1)由題意可得:,解得:
橢圓的方程為:
(2)證明:①設(shè)直線(xiàn)的方程為:,,
由消去得:
則,且,
即直線(xiàn)的斜率依次成等比數(shù)列
②由題可知:
由①可知:,,
若,則兩點(diǎn)重合,不符合題意;可知無(wú)法取得等號(hào)
18.(安徽省泗縣第一中學(xué)2019屆高三高考最后一模數(shù)學(xué)理)已知橢圓:的離心率為,且橢圓上一點(diǎn)的坐標(biāo)為.
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)與橢圓交于,兩點(diǎn),且以線(xiàn)段為直徑的圓過(guò)橢圓的右頂點(diǎn),求面積的最大值.
【答案】(1);(2)
【解析】
(1)由已知,又,則.
橢圓方程為,將代入方程得,,
故橢圓的方程為;
(2)不妨設(shè)直線(xiàn)的方程,
聯(lián)立消去得.
設(shè),,則有,①
又以線(xiàn)段為直徑的圓過(guò)橢圓的右頂點(diǎn),∴,
由,得,
將,代入上式得
,
將①代入上式求得或(舍),
則直線(xiàn)恒過(guò)點(diǎn).
∴,
設(shè),則在上單調(diào)遞增,
當(dāng)時(shí),取得最大值.
19.(廣東省潮州市2019屆高三第二次模擬考試數(shù)學(xué)理)已知橢圓,是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心,點(diǎn)在第一象限,且,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、為橢圓上不重合的兩點(diǎn)且異于、,若的平分線(xiàn)總是垂直于軸,問(wèn)是否存在實(shí)數(shù),使得?若不存在,請(qǐng)說(shuō)明理由;若存在,求取得最大值時(shí)的的長(zhǎng).
【答案】(1) (2)
【解析】
(1)∵,∴,
∵.即,
∴是等腰直角三角形,
∵,∴,
而點(diǎn)在橢圓上,∴,,∴,
∴所求橢圓方程為.
(2)對(duì)于橢圓上兩點(diǎn),,
∵的平分線(xiàn)總是垂直于軸,
∴與所在直線(xiàn)關(guān)于對(duì)稱(chēng),
,則,
∵,∴的直線(xiàn)方程為,①
的直線(xiàn)方程為,②
將①代入,得,③
∵在橢圓上,∴是方程③的一個(gè)根,
∴,
以替換,得到.
∴,
∵,,,弦過(guò)橢圓的中心,
∴,,∴,
∴,∴,
∴存在實(shí)數(shù),使得,
,
當(dāng)時(shí),即時(shí)取等號(hào),
,
又, ,
∴取得最大值時(shí)的的長(zhǎng)為.
20.(安徽省合肥市2019屆高三第三次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)理)已知直線(xiàn)經(jīng)過(guò)橢圓的右焦點(diǎn),交橢圓于點(diǎn),,點(diǎn)為橢圓的左焦點(diǎn),的周長(zhǎng)為..
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線(xiàn)與直線(xiàn)的傾斜角互補(bǔ),且交橢圓于點(diǎn)、,,求證:直線(xiàn)與直線(xiàn)的交點(diǎn)在定直線(xiàn)上.
【答案】(Ⅰ)(Ⅱ)見(jiàn)證明
【解析】
解:(Ⅰ)由已知,得,,,
橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)若直線(xiàn)的斜率不存在,則直線(xiàn)的斜率也不存在,這與直線(xiàn)與直線(xiàn)相交于點(diǎn)矛盾,所以直線(xiàn)的斜率存在.
令,,,,,.
將直線(xiàn)的方程代入橢圓方程得:,
,,
同理,.
由得,此時(shí),,
直線(xiàn),
,即點(diǎn)的定直線(xiàn)上.
21.(湖南省師范大學(xué)附屬中學(xué)2019屆高三下學(xué)期模擬三理)已知橢圓過(guò)點(diǎn),右焦點(diǎn)是拋物線(xiàn)的焦點(diǎn).
(1)求橢圓的方程;
(2)已知?jiǎng)又本€(xiàn)過(guò)右焦點(diǎn),且與橢圓分別交于,兩點(diǎn).試問(wèn)軸上是否存在定點(diǎn),使得恒成立?若存在求出點(diǎn)的坐標(biāo):若不存在,說(shuō)明理由.
【答案】(1) (2)見(jiàn)解析
【解析】
(1)因?yàn)闄E圓過(guò)點(diǎn),所以,
又拋物線(xiàn)的焦點(diǎn)為,所以.
所以,解得(舍去)或.
所以橢圓的方程為.
(2)假設(shè)在軸上存在定點(diǎn),使得.
①當(dāng)直線(xiàn)的斜率不存在時(shí),則,,,,
由,解得或;
②當(dāng)直線(xiàn)的斜率為0時(shí),則,,,,
由,解得或.
由①②可得,即點(diǎn)的坐標(biāo)為.
下面證明當(dāng)時(shí),恒成立.
當(dāng)直線(xiàn)的斜率不存在或斜率為0時(shí),由①②知結(jié)論成立.
當(dāng)直線(xiàn)的斜率存在且不為0時(shí),設(shè)其方程為,,.直線(xiàn)與橢圓聯(lián)立得,
直線(xiàn)經(jīng)過(guò)橢圓內(nèi)一點(diǎn),一定與橢圓有兩個(gè)交點(diǎn),且,.
,
所以
恒成立
綜上所述,在軸上存在點(diǎn),使得恒成立.
22.(湖北省黃岡中學(xué)2019屆高三第三次模擬考試數(shù)學(xué)理)已知橢圓的離心率為,左、右焦點(diǎn)分別為、,為相圓上一點(diǎn),與軸交于,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)右焦點(diǎn)的直線(xiàn)交橢圓于、兩點(diǎn)若的中點(diǎn)為,為原點(diǎn),直線(xiàn)交直線(xiàn)于點(diǎn).求的最大值.
【答案】(I);(II)
【解析】
(I)連接,由題意得,所以為的中位線(xiàn),
又因?yàn)?,所以,?
又,,得,,
故所求橢圓方程為.
(II)聯(lián)立,可得.
設(shè)、,則,,
所以為
所以的中點(diǎn)坐標(biāo)為,
因此直線(xiàn)的方程為,從而點(diǎn)為,,
設(shè),令,則
,
因此當(dāng),即時(shí)取得最大值.
23.(貴州省遵義航天高級(jí)中學(xué)2019屆高三第十一模)已知橢圓C:的離心率,左、右焦點(diǎn)分別為,拋物線(xiàn)的焦點(diǎn)F恰好是該橢圓的一個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)已知圓M:的切線(xiàn)與橢圓相交于A、B兩點(diǎn),那么以AB為直徑的圓是否經(jīng)過(guò)定點(diǎn)?如果是,求出定點(diǎn)的坐標(biāo);如果不是,請(qǐng)說(shuō)明理由,
【答案】(1);(2)見(jiàn)解析
【解析】
(1)因?yàn)闄E圓的離心率,所以,即.
因?yàn)閽佄锞€(xiàn)的焦點(diǎn)恰好是該橢圓的一個(gè)頂點(diǎn),
所以,所以.所以橢圓的方程為.
(2)(i)當(dāng)直線(xiàn)的斜率不存在時(shí).
因?yàn)橹本€(xiàn)與圓相切,故其中的一條切線(xiàn)方程為.
由,不妨設(shè),,
則以為直徑的圓的方程為.
(ii)當(dāng)直線(xiàn)的斜率為零時(shí).
因?yàn)橹本€(xiàn)與圓相切,所以其中的一條切線(xiàn)方程為.
由,不妨設(shè),,
則以為直徑的圓的方程為.
顯然以上兩圓都經(jīng)過(guò)點(diǎn).
(iii)當(dāng)直線(xiàn)的斜率存在且不為零時(shí).
設(shè)直線(xiàn)的方程為.
由消去,得,
所以設(shè),,則,.
所以.
所以.①
因?yàn)橹本€(xiàn)和圓相切,所以圓心到直線(xiàn)的距離,
整理,得, ②
將②代入①,得,顯然以為直徑的圓經(jīng)過(guò)定點(diǎn),
綜上可知,以為直徑的圓過(guò)定點(diǎn).
24.(廣東省深圳市高級(jí)中學(xué)2019屆高三適應(yīng)性考試(6月)數(shù)學(xué)理)在平面直角坐標(biāo)系中,離心率為的橢圓過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)上存在點(diǎn),且過(guò)點(diǎn)的橢圓的兩條切線(xiàn)相互垂直,求實(shí)數(shù)的取值范圍.
【答案】(1) (2)
【解析】
(1)由題意,解得,又,解得
所以橢圓C的標(biāo)準(zhǔn)方程為.
(2)①當(dāng)過(guò)點(diǎn)的橢圓的一條切線(xiàn)的斜率不存在時(shí),另一條切線(xiàn)必垂直于軸,易得
②當(dāng)過(guò)點(diǎn)的橢圓的切線(xiàn)的斜率均存在時(shí),設(shè)
切線(xiàn)方程為,
代入橢圓方程得,
,
化簡(jiǎn)得:,
由此得,
設(shè)過(guò)點(diǎn)的橢圓的切線(xiàn)的斜率分別為,所以.
因?yàn)閮蓷l切線(xiàn)相互垂直,所以,即,
由①②知在圓上,又點(diǎn)在直線(xiàn)上,
所以直線(xiàn)與圓有公共點(diǎn),
所以,所以.
綜上所述,的取值范圍為.
25.(甘肅省蘭州市第一中學(xué)2019屆高三6月最后高考沖刺模擬數(shù)學(xué)理)橢圓的左、右焦點(diǎn)分別為,離心率為,過(guò)焦點(diǎn)且垂直于軸的直線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)為橢圓上一動(dòng)點(diǎn),連接、,設(shè)的角平分線(xiàn)交橢圓的長(zhǎng)軸于點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)將代入中,由可得,
所以弦長(zhǎng)為,
故有,解得,所以橢圓的方程為:.
(Ⅱ)設(shè)點(diǎn),又,則直線(xiàn)的方程分別為; .
由題意可知.
由于點(diǎn)為橢圓上除長(zhǎng)軸外的任一點(diǎn),所以,
所以,
因?yàn)椋?
所以,即
因此, .
32
收藏
編號(hào):117283139
類(lèi)型:共享資源
大?。?span id="rtogfng" class="font-tahoma">5.39MB
格式:DOC
上傳時(shí)間:2022-07-08
32
積分
- 關(guān) 鍵 詞:
-
2020年高考數(shù)學(xué)一輪復(fù)習(xí)
考點(diǎn)50
橢圓必刷題
理含解析
2020
年高
數(shù)學(xué)
一輪
復(fù)習(xí)
考點(diǎn)
50
橢圓
必刷題
解析
- 資源描述:
-
考點(diǎn)50 橢圓
1.(北京市昌平區(qū)2019屆高三5月綜合練習(xí)二模理)嫦娥四號(hào)月球探測(cè)器于2018年12月8日搭載長(zhǎng)征三號(hào)乙運(yùn)載火箭在西昌衛(wèi)星發(fā)射中心發(fā)射.12日下午4點(diǎn)43分左右,嫦娥四號(hào)順利進(jìn)入了以月球球心為一個(gè)焦點(diǎn)的橢圓形軌道,如圖中軌道③所示,其近月點(diǎn)與月球表面距離為公里,遠(yuǎn)月點(diǎn)與月球表面距離為公里.已知月球的直徑為公里,則該橢圓形軌道的離心率約為
A. B. C. D.
【答案】B
【解析】
如下圖,F(xiàn)為月球的球心,月球半徑為:×3476=1738,
依題意,|AF|=100+1738=1838,
|BF|=400+1738=2138.
2a=1838+2138,
a=1988,
a+c=2138,
c=2138-1988=150,
橢圓的離心率為:,
選B.
2.(山東省實(shí)驗(yàn)中學(xué)等四校2019屆高三聯(lián)合考試?yán)恚┮阎獧E圓:,的左、右焦點(diǎn)分別為,,為橢圓上異于長(zhǎng)軸端點(diǎn)的一點(diǎn),的內(nèi)心為,直線(xiàn)交軸于點(diǎn),若,則橢圓的離心率是( )
A. B. C. D.
【答案】B
【解析】
解:的內(nèi)心為,連接和,
可得為的平分線(xiàn),即有,
,
可得,
即有,
即有,
故選:B.
3.(內(nèi)蒙古2019屆高三高考一模試卷數(shù)學(xué)理)以橢圓的兩個(gè)焦點(diǎn)為直徑的端點(diǎn)的圓與橢圓交于四個(gè)不同的點(diǎn),順次連接這四個(gè)點(diǎn)和兩個(gè)焦點(diǎn)恰好組成一個(gè)正六邊形,那么這個(gè)橢圓的離心率為( )
A. B. C. D.
【答案】B
【解析】
解:設(shè)橢圓的兩個(gè)焦點(diǎn)為,,圓與橢圓交于,,,四個(gè)不同的點(diǎn),
設(shè),則,.
橢圓定義,得,
所以,
故選:B.
4.(廣東省深圳市高級(jí)中學(xué)2019屆高三適應(yīng)性考試(6月)數(shù)學(xué)理)在平面直角坐標(biāo)系中,已知點(diǎn)分別為橢圓的右頂點(diǎn)和右焦點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)交橢圓于兩點(diǎn),線(xiàn)段的中點(diǎn)為,若三點(diǎn)共線(xiàn),則橢圓的離心率為( )
A. B. C. D.或
【答案】A
【解析】
如圖
設(shè),
又,
,
三點(diǎn)共線(xiàn),
,
即,
,
,
,故選A.
5.(陜西省漢中市2019屆高三全真模擬考試數(shù)學(xué)理)已知、分別是橢圓的左、右焦點(diǎn),點(diǎn)是關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn),且軸,則橢圓的離心率為_(kāi)________.
【答案】
【解析】
、分別是橢圓的左、右焦點(diǎn),點(diǎn)是關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn),且軸,可得的方程為,的方程,可得,
的中點(diǎn)為,代入直線(xiàn),可得:,,
可得,
解得.
故選:
6.(河南省洛陽(yáng)市2018-2019學(xué)年高二5月質(zhì)量檢測(cè)(期末)數(shù)學(xué)(理)已知是橢圓的右焦點(diǎn),是橢圓短軸的一個(gè)端點(diǎn),直線(xiàn)與橢圓另一交點(diǎn)為,且,則橢圓的離心率為_(kāi)_____.
【答案】
【解析】
設(shè),,作軸,垂足為,如下圖所示:
則:
由得: ,即:
由橢圓的焦半徑公式可知:
,整理可得:
,即
本題正確結(jié)果:
7.(安徽省合肥市2019屆高三第三次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)理)如圖是數(shù)學(xué)家Germinal Dandelin用來(lái)證明一個(gè)平面截圓錐得到的截口曲線(xiàn)是橢圓的模型(稱(chēng)為“Dandelin雙球”);在圓錐內(nèi)放兩個(gè)大小不同的小球,使得它們分別與圓錐的側(cè)面、截面相切,設(shè)圖中球,球的半徑分別為和,球心距離,截面分別與球,球切于點(diǎn),,(,是截口橢圓的焦點(diǎn)),則此橢圓的離心率等于______.
【答案】
【解析】
如圖,圓錐面與其內(nèi)切球,分別相切與B,A,連接則,,過(guò)作垂直于,連接, 交于點(diǎn)C
設(shè)圓錐母線(xiàn)與軸的夾角為 ,截面與軸的夾角為
在中, ,
解得
即
則橢圓的離心率
8.(吉林省長(zhǎng)春市北京師范大學(xué)長(zhǎng)春市附屬中學(xué)2019屆高三第四次模擬考試)已知橢圓與軸正半軸交于點(diǎn),離心率為.直線(xiàn)經(jīng)過(guò)點(diǎn)和點(diǎn).且與橢圖E交于A、B兩點(diǎn)(點(diǎn)A在第二象限).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若,當(dāng)時(shí),求的取值范圍.
【答案】(1)(2)
【解析】
解析:(1).由題意,且,所以,
所以橢圓E的標(biāo)準(zhǔn)方程為.
(2).因?yàn)橹本€(xiàn)l經(jīng)過(guò)點(diǎn)和點(diǎn),所以直線(xiàn)l的斜率為,設(shè),將其代入橢圓方程中,
消去得,
當(dāng)時(shí),設(shè)、,
則……①,……②
因?yàn)椋?,所以……?
聯(lián)立①②③,消去、,整理得.
當(dāng)時(shí),,解
由且,
故,所以.
9.(山東省威海市2019屆高三二??荚嚁?shù)學(xué)理)在直角坐標(biāo)系中,設(shè)橢圓的左焦點(diǎn)為,短軸的兩個(gè)端點(diǎn)分別為,且,點(diǎn)在上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線(xiàn)與橢圓和圓分別相切于,兩點(diǎn),當(dāng)面積取得最大值時(shí),求直線(xiàn)的方程.
【答案】(Ⅰ) .(Ⅱ) .
【解析】
(Ⅰ)由,可得,①
由橢圓經(jīng)過(guò)點(diǎn),得,②
由①②得,
所以橢圓的方程為.
(Ⅱ)由消去整理得(*),
由直線(xiàn)與橢圓相切得,
,
整理得,
故方程(*)化為,即,
解得,
設(shè),則,故,
因此.
又直線(xiàn)與圓相切,可得.
所以,
所以,
將式代入上式可得
,
由得,
所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即時(shí)取得最大值.
由,得,
所以直線(xiàn)的方程為.
10.(山東省日照市2019屆高三5月校際聯(lián)合考試數(shù)學(xué)理)如圖,已知橢圓,是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心,且.
(1)求橢圓的方程.
(2)過(guò)橢圓右焦點(diǎn)的直線(xiàn),交橢圓于兩點(diǎn),交直線(xiàn)于點(diǎn),判定直線(xiàn)的斜率是否依次構(gòu)成等差數(shù)列?請(qǐng)說(shuō)明理由.
【答案】(1);(2)是,理由見(jiàn)詳解.
【解析】
(1)由,得,即,
所以是等腰三角形,
又,∴點(diǎn)的橫坐標(biāo)為2;
又,
設(shè)點(diǎn)的縱坐標(biāo)為,∴,解得,
應(yīng)取,
又點(diǎn)在橢圓上,∴,解得,
∴所求橢圓的方程為;
(2)由題意知橢圓的右焦點(diǎn)為,,
由題意可知直線(xiàn)的斜率存在,
設(shè)直線(xiàn)的方程為,
代入橢圓并整理,得;
設(shè),,直線(xiàn)的斜率分別為,
則有,,
可知的坐標(biāo)為;
∴
,
又;
所以,
即直線(xiàn)的斜率成等差數(shù)列.
11.(天津市河北區(qū)2019屆高三一模數(shù)學(xué)理)已知橢圓C:過(guò)點(diǎn),且離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過(guò)原點(diǎn)的直線(xiàn)與橢圓C交于P、Q兩點(diǎn),且在直線(xiàn)上存在點(diǎn)M,使得為等邊三角形,求直線(xiàn)的方程。
【答案】(Ⅰ)(Ⅱ)y=0或y=
【解析】
(Ⅰ)由題解得a=,b=,c=,橢圓C的方程為
(Ⅱ)由題,當(dāng)?shù)男甭蔾=0時(shí),此時(shí)PQ=4 直線(xiàn)與y軸的交點(diǎn)(0,滿(mǎn)足題意;
當(dāng)?shù)男甭蔾0時(shí),設(shè)直線(xiàn)與橢圓聯(lián)立得=8,,設(shè)P(),則Q(),,又PQ的垂直平分線(xiàn)方程為由,解得,,, ∵為等邊三角形即解得k=0(舍去),k=,直線(xiàn)的方程為y=
綜上可知,直線(xiàn)的方程為y=0或y=.
12.(湖南省2017屆高三高考沖刺預(yù)測(cè)卷六理)已知橢圓的右頂點(diǎn)為,上頂點(diǎn)為,下頂點(diǎn)為是的中點(diǎn)(為原點(diǎn)),連接并延長(zhǎng)交橢圓于點(diǎn),連接,得.
(1)求橢圓的離心率;
(2)若是上一點(diǎn),以為直徑的圓經(jīng)過(guò)橢圓的右焦點(diǎn),求直線(xiàn)的斜率.
【答案】(1)(2)
【解析】
試題分析:(1)求出點(diǎn)坐標(biāo),根據(jù)可得,結(jié)合可得結(jié)果;(2)方程為,由,結(jié)合韋達(dá)定理可得 點(diǎn)坐標(biāo),利用列方程,進(jìn)而可得結(jié)果.
試題解析:(1),直線(xiàn)方程為,
由得點(diǎn)坐標(biāo),
∵,∴,∴,
∵,∴,∴離心率;
(2)分析題意,易知直線(xiàn)的斜率存在,設(shè)方程為,
由得,由以為直徑的圓經(jīng)過(guò)右焦點(diǎn)得
,∴,
∵,∴,∴.
13.(2017屆安徽省合肥市高三第一次模擬考試數(shù)學(xué)理)已知點(diǎn)為橢圓的左焦點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等邊三角形,直線(xiàn)與橢圓有且僅有一個(gè)交點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線(xiàn)與軸交于,過(guò)點(diǎn)的直線(xiàn)與橢圓交于兩不同點(diǎn),,若,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
(Ⅰ)求橢圓標(biāo)準(zhǔn)方程,只要求出參數(shù),由于有,因此要列出關(guān)于的兩個(gè)方程,而由條件兩焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成一個(gè)等邊三角形得,再利用已知直線(xiàn)與橢圓只有一個(gè)公共點(diǎn),即判別式為0可求得橢圓方程;
(Ⅱ)由(Ⅰ)得點(diǎn)的坐標(biāo),從而可得,要求范圍只要求得的范圍,為此可直線(xiàn)分類(lèi),對(duì)斜率不存在時(shí),求得,而當(dāng)直線(xiàn)斜率存在時(shí),可設(shè)出直線(xiàn)方程為,同時(shí)設(shè),則,由韋達(dá)定理可把表示為的函數(shù),注意直線(xiàn)與橢圓相交,判別式>0,確定的范圍,從而可得的范圍,最后可得的取值范圍.
試題解析:(Ⅰ)由題意,得,則橢圓為:,
由,得 ,
直線(xiàn)與橢圓有且僅有一個(gè)交點(diǎn),
,
橢圓的方程為 ;
(Ⅱ)由(Ⅰ)得,直線(xiàn)與軸交于 ,
,
當(dāng)直線(xiàn)與軸垂直時(shí), ,
由 ,
當(dāng)直線(xiàn)與軸不垂直時(shí),設(shè)直線(xiàn)的方程為, ,
由 ,
依題意得,,且 ,
,
,
,
綜上所述,的取值范圍是 .
14.(山西省晉城市2019屆高三第三次模擬考試數(shù)學(xué)理)已知的周長(zhǎng)為6,,關(guān)于原點(diǎn)對(duì)稱(chēng),且.點(diǎn)的軌跡為.
(Ⅰ)求的方程;
(Ⅱ)若,直線(xiàn):與交于,兩點(diǎn),若,,成等差數(shù)列,求的值.
【答案】(Ⅰ);(Ⅱ)2.
【解析】
(Ⅰ)依題意,,,故,則,
故點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓(不含左、右兩頂點(diǎn)),
故的方程為.
(Ⅱ)依題意,,故.
聯(lián)立整理得.
設(shè),,則,.
故
,
則.
15.(遼寧省葫蘆島市普通高中2019屆高三第二次模擬考試數(shù)學(xué)理)在平面直角坐標(biāo)系中,橢圓的上頂點(diǎn)為A,左、右焦點(diǎn)分別為,,直線(xiàn)的斜率為,點(diǎn)在橢圓E上,其中P是橢圓上一動(dòng)點(diǎn),Q點(diǎn)坐標(biāo)為.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)作直線(xiàn)l與x軸垂直,交橢圓于兩點(diǎn)(兩點(diǎn)均不與P點(diǎn)重合),直線(xiàn),與x軸分別交于點(diǎn).求的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
【答案】(1)(2)的最小值為,此時(shí)點(diǎn)P的坐標(biāo)為或
【解析】
(1)由直線(xiàn)的斜率為可知直線(xiàn)的傾斜角為.
在中,,于是,
橢圓,將代入得
所以,橢圓E的標(biāo)準(zhǔn)方程
(2)設(shè)點(diǎn).
于是,直線(xiàn),令,
所以
直線(xiàn),令,
所以
又.代入上式并化簡(jiǎn)
即,
當(dāng)(即)時(shí)取得最小值,
(Ⅰ)時(shí),化簡(jiǎn)得
根據(jù)題意:,若亦與題意不符,
所以,此時(shí)或
(Ⅱ)時(shí),化簡(jiǎn)得
將代入并化簡(jiǎn)得:
根據(jù)題意:,若,而
所以 不成立,即不成立
綜上,或,點(diǎn)P的坐標(biāo)為或
16.(內(nèi)蒙古呼倫貝爾市2019屆高三模擬統(tǒng)一考試一數(shù)學(xué)(理)已知橢圓:離心率為,直線(xiàn)被橢圓截得的弦長(zhǎng)為.
(1)求橢圓方程;
(2)設(shè)直線(xiàn)交橢圓于,兩點(diǎn),且線(xiàn)段的中點(diǎn)在直線(xiàn)上,求證:線(xiàn)段的中垂線(xiàn)恒過(guò)定點(diǎn).
【答案】(1)(2)見(jiàn)解析
【解析】
【分析】
(1)根據(jù)題意易得橢圓過(guò)點(diǎn),結(jié)合,求出即可得結(jié)果;(2)聯(lián)立直線(xiàn)與橢圓的方程,結(jié)合韋達(dá)定理根據(jù)中點(diǎn)坐標(biāo)公式化簡(jiǎn)可得,求出,列出的中垂線(xiàn)方程即可得結(jié)果.
【詳解】
(1)由直線(xiàn)被橢圓截得的弦長(zhǎng)為,得橢圓過(guò)點(diǎn),即,
又,得,
所以,,即橢圓方程為.
(2)由得,
由,
得.
由,
設(shè)的中點(diǎn)為,
得,即,
∴.
∴的中垂線(xiàn)方程為.
即,故的中垂線(xiàn)恒過(guò)點(diǎn).
17.(湖南省益陽(yáng)市桃江縣第一中學(xué)2019屆高三5月模擬考試?yán)恚┮阎獧E圓:的離心率為,焦距為.
(1)求的方程;
(2)若斜率為的直線(xiàn)與橢圓交于,兩點(diǎn)(點(diǎn),均在第一象限),為坐標(biāo)原點(diǎn).
①證明:直線(xiàn)的斜率依次成等比數(shù)列.
②若與關(guān)于軸對(duì)稱(chēng),證明:.
【答案】(1); (2)①見(jiàn)解析;②見(jiàn)解析.
【解析】
(1)由題意可得:,解得:
橢圓的方程為:
(2)證明:①設(shè)直線(xiàn)的方程為:,,
由消去得:
則,且,
即直線(xiàn)的斜率依次成等比數(shù)列
②由題可知:
由①可知:,,
若,則兩點(diǎn)重合,不符合題意;可知無(wú)法取得等號(hào)
18.(安徽省泗縣第一中學(xué)2019屆高三高考最后一模數(shù)學(xué)理)已知橢圓:的離心率為,且橢圓上一點(diǎn)的坐標(biāo)為.
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)與橢圓交于,兩點(diǎn),且以線(xiàn)段為直徑的圓過(guò)橢圓的右頂點(diǎn),求面積的最大值.
【答案】(1);(2)
【解析】
(1)由已知,又,則.
橢圓方程為,將代入方程得,,
故橢圓的方程為;
(2)不妨設(shè)直線(xiàn)的方程,
聯(lián)立消去得.
設(shè),,則有,①
又以線(xiàn)段為直徑的圓過(guò)橢圓的右頂點(diǎn),∴,
由,得,
將,代入上式得
,
將①代入上式求得或(舍),
則直線(xiàn)恒過(guò)點(diǎn).
∴,
設(shè),則在上單調(diào)遞增,
當(dāng)時(shí),取得最大值.
19.(廣東省潮州市2019屆高三第二次模擬考試數(shù)學(xué)理)已知橢圓,是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心,點(diǎn)在第一象限,且,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)、為橢圓上不重合的兩點(diǎn)且異于、,若的平分線(xiàn)總是垂直于軸,問(wèn)是否存在實(shí)數(shù),使得?若不存在,請(qǐng)說(shuō)明理由;若存在,求取得最大值時(shí)的的長(zhǎng).
【答案】(1) (2)
【解析】
(1)∵,∴,
∵.即,
∴是等腰直角三角形,
∵,∴,
而點(diǎn)在橢圓上,∴,,∴,
∴所求橢圓方程為.
(2)對(duì)于橢圓上兩點(diǎn),,
∵的平分線(xiàn)總是垂直于軸,
∴與所在直線(xiàn)關(guān)于對(duì)稱(chēng),
,則,
∵,∴的直線(xiàn)方程為,①
的直線(xiàn)方程為,②
將①代入,得,③
∵在橢圓上,∴是方程③的一個(gè)根,
∴,
以替換,得到.
∴,
∵,,,弦過(guò)橢圓的中心,
∴,,∴,
∴,∴,
∴存在實(shí)數(shù),使得,
,
當(dāng)時(shí),即時(shí)取等號(hào),
,
又, ,
∴取得最大值時(shí)的的長(zhǎng)為.
20.(安徽省合肥市2019屆高三第三次教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)理)已知直線(xiàn)經(jīng)過(guò)橢圓的右焦點(diǎn),交橢圓于點(diǎn),,點(diǎn)為橢圓的左焦點(diǎn),的周長(zhǎng)為..
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線(xiàn)與直線(xiàn)的傾斜角互補(bǔ),且交橢圓于點(diǎn)、,,求證:直線(xiàn)與直線(xiàn)的交點(diǎn)在定直線(xiàn)上.
【答案】(Ⅰ)(Ⅱ)見(jiàn)證明
【解析】
解:(Ⅰ)由已知,得,,,
橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)若直線(xiàn)的斜率不存在,則直線(xiàn)的斜率也不存在,這與直線(xiàn)與直線(xiàn)相交于點(diǎn)矛盾,所以直線(xiàn)的斜率存在.
令,,,,,.
將直線(xiàn)的方程代入橢圓方程得:,
,,
同理,.
由得,此時(shí),,
直線(xiàn),
,即點(diǎn)的定直線(xiàn)上.
21.(湖南省師范大學(xué)附屬中學(xué)2019屆高三下學(xué)期模擬三理)已知橢圓過(guò)點(diǎn),右焦點(diǎn)是拋物線(xiàn)的焦點(diǎn).
(1)求橢圓的方程;
(2)已知?jiǎng)又本€(xiàn)過(guò)右焦點(diǎn),且與橢圓分別交于,兩點(diǎn).試問(wèn)軸上是否存在定點(diǎn),使得恒成立?若存在求出點(diǎn)的坐標(biāo):若不存在,說(shuō)明理由.
【答案】(1) (2)見(jiàn)解析
【解析】
(1)因?yàn)闄E圓過(guò)點(diǎn),所以,
又拋物線(xiàn)的焦點(diǎn)為,所以.
所以,解得(舍去)或.
所以橢圓的方程為.
(2)假設(shè)在軸上存在定點(diǎn),使得.
①當(dāng)直線(xiàn)的斜率不存在時(shí),則,,,,
由,解得或;
②當(dāng)直線(xiàn)的斜率為0時(shí),則,,,,
由,解得或.
由①②可得,即點(diǎn)的坐標(biāo)為.
下面證明當(dāng)時(shí),恒成立.
當(dāng)直線(xiàn)的斜率不存在或斜率為0時(shí),由①②知結(jié)論成立.
當(dāng)直線(xiàn)的斜率存在且不為0時(shí),設(shè)其方程為,,.直線(xiàn)與橢圓聯(lián)立得,
直線(xiàn)經(jīng)過(guò)橢圓內(nèi)一點(diǎn),一定與橢圓有兩個(gè)交點(diǎn),且,.
,
所以
恒成立
綜上所述,在軸上存在點(diǎn),使得恒成立.
22.(湖北省黃岡中學(xué)2019屆高三第三次模擬考試數(shù)學(xué)理)已知橢圓的離心率為,左、右焦點(diǎn)分別為、,為相圓上一點(diǎn),與軸交于,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)右焦點(diǎn)的直線(xiàn)交橢圓于、兩點(diǎn)若的中點(diǎn)為,為原點(diǎn),直線(xiàn)交直線(xiàn)于點(diǎn).求的最大值.
【答案】(I);(II)
【解析】
(I)連接,由題意得,所以為的中位線(xiàn),
又因?yàn)?,所以,?
又,,得,,
故所求橢圓方程為.
(II)聯(lián)立,可得.
設(shè)、,則,,
所以為
所以的中點(diǎn)坐標(biāo)為,
因此直線(xiàn)的方程為,從而點(diǎn)為,,
設(shè),令,則
,
因此當(dāng),即時(shí)取得最大值.
23.(貴州省遵義航天高級(jí)中學(xué)2019屆高三第十一模)已知橢圓C:的離心率,左、右焦點(diǎn)分別為,拋物線(xiàn)的焦點(diǎn)F恰好是該橢圓的一個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)已知圓M:的切線(xiàn)與橢圓相交于A、B兩點(diǎn),那么以AB為直徑的圓是否經(jīng)過(guò)定點(diǎn)?如果是,求出定點(diǎn)的坐標(biāo);如果不是,請(qǐng)說(shuō)明理由,
【答案】(1);(2)見(jiàn)解析
【解析】
(1)因?yàn)闄E圓的離心率,所以,即.
因?yàn)閽佄锞€(xiàn)的焦點(diǎn)恰好是該橢圓的一個(gè)頂點(diǎn),
所以,所以.所以橢圓的方程為.
(2)(i)當(dāng)直線(xiàn)的斜率不存在時(shí).
因?yàn)橹本€(xiàn)與圓相切,故其中的一條切線(xiàn)方程為.
由,不妨設(shè),,
則以為直徑的圓的方程為.
(ii)當(dāng)直線(xiàn)的斜率為零時(shí).
因?yàn)橹本€(xiàn)與圓相切,所以其中的一條切線(xiàn)方程為.
由,不妨設(shè),,
則以為直徑的圓的方程為.
顯然以上兩圓都經(jīng)過(guò)點(diǎn).
(iii)當(dāng)直線(xiàn)的斜率存在且不為零時(shí).
設(shè)直線(xiàn)的方程為.
由消去,得,
所以設(shè),,則,.
所以.
所以.①
因?yàn)橹本€(xiàn)和圓相切,所以圓心到直線(xiàn)的距離,
整理,得, ②
將②代入①,得,顯然以為直徑的圓經(jīng)過(guò)定點(diǎn),
綜上可知,以為直徑的圓過(guò)定點(diǎn).
24.(廣東省深圳市高級(jí)中學(xué)2019屆高三適應(yīng)性考試(6月)數(shù)學(xué)理)在平面直角坐標(biāo)系中,離心率為的橢圓過(guò)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線(xiàn)上存在點(diǎn),且過(guò)點(diǎn)的橢圓的兩條切線(xiàn)相互垂直,求實(shí)數(shù)的取值范圍.
【答案】(1) (2)
【解析】
(1)由題意,解得,又,解得
所以橢圓C的標(biāo)準(zhǔn)方程為.
(2)①當(dāng)過(guò)點(diǎn)的橢圓的一條切線(xiàn)的斜率不存在時(shí),另一條切線(xiàn)必垂直于軸,易得
②當(dāng)過(guò)點(diǎn)的橢圓的切線(xiàn)的斜率均存在時(shí),設(shè)
切線(xiàn)方程為,
代入橢圓方程得,
,
化簡(jiǎn)得:,
由此得,
設(shè)過(guò)點(diǎn)的橢圓的切線(xiàn)的斜率分別為,所以.
因?yàn)閮蓷l切線(xiàn)相互垂直,所以,即,
由①②知在圓上,又點(diǎn)在直線(xiàn)上,
所以直線(xiàn)與圓有公共點(diǎn),
所以,所以.
綜上所述,的取值范圍為.
25.(甘肅省蘭州市第一中學(xué)2019屆高三6月最后高考沖刺模擬數(shù)學(xué)理)橢圓的左、右焦點(diǎn)分別為,離心率為,過(guò)焦點(diǎn)且垂直于軸的直線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)為橢圓上一動(dòng)點(diǎn),連接、,設(shè)的角平分線(xiàn)交橢圓的長(zhǎng)軸于點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)將代入中,由可得,
所以弦長(zhǎng)為,
故有,解得,所以橢圓的方程為:.
(Ⅱ)設(shè)點(diǎn),又,則直線(xiàn)的方程分別為; .
由題意可知.
由于點(diǎn)為橢圓上除長(zhǎng)軸外的任一點(diǎn),所以,
所以,
因?yàn)椋?
所以,即
因此, .
32
展開(kāi)閱讀全文
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶(hù)自行上傳分享,僅供網(wǎng)友學(xué)習(xí)交流,未經(jīng)上傳用戶(hù)書(shū)面授權(quán),請(qǐng)勿作他用。