2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 沖刺創(chuàng)新專題 題型1 選填題 練熟練穩(wěn) 少丟分 第8講 數(shù)列練習(xí) 文

上傳人:Sc****h 文檔編號:116493676 上傳時間:2022-07-05 格式:DOC 頁數(shù):13 大?。?.45MB
收藏 版權(quán)申訴 舉報 下載
2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 沖刺創(chuàng)新專題 題型1 選填題 練熟練穩(wěn) 少丟分 第8講 數(shù)列練習(xí) 文_第1頁
第1頁 / 共13頁
2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 沖刺創(chuàng)新專題 題型1 選填題 練熟練穩(wěn) 少丟分 第8講 數(shù)列練習(xí) 文_第2頁
第2頁 / 共13頁
2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 沖刺創(chuàng)新專題 題型1 選填題 練熟練穩(wěn) 少丟分 第8講 數(shù)列練習(xí) 文_第3頁
第3頁 / 共13頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 沖刺創(chuàng)新專題 題型1 選填題 練熟練穩(wěn) 少丟分 第8講 數(shù)列練習(xí) 文》由會員分享,可在線閱讀,更多相關(guān)《2020屆高考數(shù)學(xué)大二輪復(fù)習(xí) 沖刺創(chuàng)新專題 題型1 選填題 練熟練穩(wěn) 少丟分 第8講 數(shù)列練習(xí) 文(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第8講 數(shù)列 [考情分析] 數(shù)列為每年高考必考內(nèi)容之一,考查熱點主要有三個方面:(1)對等差、等比數(shù)列基本量和性質(zhì)的考查,常以客觀題的形式出現(xiàn),考查利用通項公式、前n項和公式建立方程(組)求解,利用性質(zhì)解決有關(guān)計算問題,屬于中、低檔題;(2)對數(shù)列通項公式的考查;(3)對數(shù)列求和及其簡單應(yīng)用的考查,主、客觀題均會出現(xiàn),常以等差、等比數(shù)列為載體,考查數(shù)列的通項、求和,難度中等. 熱點題型分析 熱點1 等差、等比數(shù)列的基本運算及性質(zhì) 1.等差(比)數(shù)列基本運算的解題策略 (1)設(shè)基本量a1和公差d(公比q); (2)列、解方程(組):把條件轉(zhuǎn)化為關(guān)于a1和d(q)的方程(組),然后

2、求解,注意整體計算,以減少運算量. 2.等差(比)數(shù)列性質(zhì)問題的求解策略 (1)解題關(guān)鍵:抓住項與項之間的關(guān)系及項的序號之間的關(guān)系,從這些特點入手選擇恰當(dāng)?shù)男再|(zhì)進行求解; (2)牢固掌握等差(比)數(shù)列的性質(zhì),可分為三類:①通項公式的變形;②等差(比)中項的變形;③前n項和公式的變形.比如:等差數(shù)列中,“若m+n=p+q,則am+an=ap+aq(m,n,p,q∈N*)”;等比數(shù)列中,“若m+n=p+q,則am·an=ap·aq(m,n,p,q∈N*)”. 1.已知在公比不為1的等比數(shù)列{an}中,a2a4=9,且2a3為3a2和a4的等差中項,設(shè)數(shù)列{an}的前n項積為Tn,則T8

3、=(  ) A.×37- B.310 C.318 D.320 答案 D 解析 由題意得a2a4=a=9. 設(shè)等比數(shù)列{an}的公比為q,由2a3為3a2和a4的等差中項可得4a3=3a2+a4,即4a3=+a3q,整理得q2-4q+3=0,由公比不為1,解得q=3. 所以T8=a1·a2·…·a8=aq28=(aq16)·q12=(a1q2)8·q12=a·q12=94×312=320.故選D. 2.(2019·江蘇高考)已知數(shù)列{an}(n∈N*)是等差數(shù)列,Sn是其前n項和.若a2a5+a8=0,S9=27,則S8的值是________. 答案 16 解析 解法一

4、:由S9=27?=27?a1+a9=6?2a5=6?2a1+8d=6且a5=3. 又a2a5+a8=0?2a1+5d=0,解得a1=-5,d=2. 故S8=8a1+d=16. 解法二:同解法一得a5=3. 又a2a5+a8=0?3a2+a8=0?2a2+2a5=0?a2=-3. ∴d==2,a1=a2-d=-5. 故S8=8a1+d=16. 3.在等比數(shù)列{an}中,若a7+a8+a9+a10=,a8·a9=-,則+++=________. 答案?。? 解析 由等比數(shù)列的性質(zhì)可得,a7·a10=a8·a9=-,∴+++=+=+==-. 在求解數(shù)列基本量運算中,要注意公式使

5、用時的準(zhǔn)確性與合理性,更要注意運算的準(zhǔn)確性.如第1題要注意整體代換思想的運用,避免繁雜的運算出錯;第3題易忽視等比數(shù)列性質(zhì)“若m+n=p+q,則am·an=ap·aq(m,n,p,q∈N*)”,而導(dǎo)致計算量過大. 熱點2 求數(shù)列的通項公式 1.已知Sn求an的步驟 (1)先利用a1=S1求出a1; (2)用n-1替換Sn中的n得到一個新的關(guān)系,利用an=Sn-Sn-1(n≥2)便可求出當(dāng)n≥2時an的表達式; (3)注意檢驗n=1時的表達式是否可以與n≥2的表達式合并. 2.由遞推關(guān)系式求數(shù)列的通項公式 (1)對于遞推關(guān)系式可轉(zhuǎn)化為=f(n)的數(shù)列,并且容易在求數(shù)列{f(n)

6、}前n項的積時,采用疊乘法求數(shù)列{an}的通項公式; (2)對于遞推關(guān)系式可轉(zhuǎn)化為an+1=an+f(n)的數(shù)列,通常采用疊加法(逐差相加法)求其通項公式; (3)對于遞推關(guān)系式形如an+1=pan+q(p≠0,1,q≠0)的數(shù)列,采用構(gòu)造法求數(shù)列的通項公式. 1.(2019·長沙雅禮中學(xué)、河南實驗中學(xué)聯(lián)考)在數(shù)列{an}中,a1=2,=+ln ,則an等于(  ) A.2+nln n B.2n+(n-1)ln n C.2n+nln n D.1+n+nln n 答案 C 解析 由題意得-=ln (n+1)-ln n,n分別用1,2,3,…,(n-1)取代,累加得-=ln

7、n-ln 1=ln n,=2+ln n,∴an=(ln n+2)n,故選C. 2.已知數(shù)列{an}的前n項和為Sn,且a1=1,an+1=2Sn,則數(shù)列{an}的通項公式為________. 答案 an= 解析 當(dāng)n≥2時,an=2Sn-1,∴an+1-an=2Sn-2Sn-1=2an,即an+1=3an,∴數(shù)列{an}的第2項及以后各項構(gòu)成等比數(shù)列,a2=2a1=2,公比為3, ∴an=2·3n-2,n≥2,當(dāng)n=1時,a1=1, ∴數(shù)列{an}的通項公式為an= 1.利用an=Sn-Sn-1求通項時,應(yīng)注意n≥2這一前提條件.第2題易錯解為an=2·3n-2. 2.利用遞

8、推關(guān)系式求數(shù)列通項時,要合理轉(zhuǎn)化確定相鄰兩項之間的關(guān)系.第1題易錯點有二:一是已知條件的轉(zhuǎn)化不明確導(dǎo)致無從下手;二是疊加法求通項公式不熟練導(dǎo)致出錯. 熱點3 數(shù)列求和問題 1.分組求和的常用方法 (1)根據(jù)等差、等比數(shù)列分組; (2)根據(jù)正、負(fù)項分組,此時數(shù)列的通項式中常會有(-1)n等特征. 2.裂項相消的規(guī)律 (1)裂項系數(shù)取決于前后兩項分母的差; (2)裂項相消后前、后保留的項數(shù)一樣多. 3.錯位相減法的關(guān)注點 (1)適用題型:等差數(shù)列{an}與等比數(shù)列{bn}對應(yīng)項相乘{an·bn}型數(shù)列求和; (2)步驟 ①求和時先乘以等比數(shù)列{bn}的公比; ②把兩個和

9、的形式錯位相減; ③整理結(jié)果形式. 1.已知數(shù)列{an}的前n項和為Sn=2n+1+m,且a1,a4,a5-2成等差數(shù)列,bn=,數(shù)列{bn}的前n項和為Tn,則滿足Tn>的最小正整數(shù)n的值為(  ) A.11 B.10 C.9 D.8 答案 B 解析 根據(jù)Sn=2n+1+m可以求得an= 所以有a1=m+4,a4=16,a5=32, 根據(jù)a1,a4,a5-2成等差數(shù)列, 可得m+4+32-2=32,從而求得m=-2, 所以a1=2滿足an=2n, 從而求得an=2n(n∈N*), 所以bn== =-, 所以Tn=1-+-+-+…+-=1-, 令1->,整

10、理得2n+1>2019,解得n≥10. 2.已知數(shù)列{an}的前n項和為Sn,且an=n·2n,則Sn=________. 答案 (n-1)2n+1+2 解析 由an=n·2n且Sn=a1+a2+…+an得, Sn=1×21+2×22+3×23+…+(n-1)×2n-1+n×2n, ∴2Sn=1×22+2×23+…+(n-1)×2n+n×2n+1. 兩式相減得, -Sn=21+22+23+…+2n-n×2n+1 =-n×2n+1=2n+1-2-n×2n+1 ∴Sn=n×2n+1-2n+1+2=(n-1)2n+1+2. 裂項相消后一般情況下剩余項是對稱的,即前面剩余的項和

11、后面剩余的項是對應(yīng)的.第1題易搞錯剩余項,導(dǎo)致求和出錯.第2題錯位相減法求和時,易出現(xiàn)以下兩種錯誤:一是兩式錯位相減時最后一項n×2n+1沒有變號;二是對相減后的和式的結(jié)構(gòu)認(rèn)識模糊,把項數(shù)數(shù)錯. 熱點4 數(shù)列的綜合應(yīng)用 1.解決數(shù)列周期性問題的方法 先根據(jù)已知條件求出數(shù)列的前幾項,確定數(shù)列的周期,再根據(jù)周期性求值. 2.數(shù)列與函數(shù)綜合問題的注意點 (1)數(shù)列是一類特殊的函數(shù),其定義域是正整數(shù)集,在求數(shù)列最值或不等關(guān)系時要特別注意; (2)利用函數(shù)的方法研究數(shù)列中相關(guān)問題時,應(yīng)準(zhǔn)確構(gòu)造函數(shù),注意數(shù)列中相關(guān)限制條件的轉(zhuǎn)化. 1.設(shè)數(shù)列{an}的前n項和為Sn,已知a1=,an

12、+1=則S2018等于(  ) A. B. C. D. 答案 B 解析 由題知,a1=,a2=2×-1=,a3=2×-1=,a4=2×=,a5=2×=,∴數(shù)列{an}是以4為周期的周期數(shù)列,∴a1+a2+a3+a4=+++=2,∴S2018=504×(a1+a2+a3+a4)+a1+a2=1008+=.故選B. 2.已知數(shù)列{an}滿足a1=33,an+1-an=2n,則的最小值為________. 答案  解析 由題意得,a2-a1=2×1,a3-a2=2×2,a4-a3=2×3,…,an-an-1=2(n-1), 將上述n-1個式子累加,得(a2-a1)+(

13、a3-a2)+…+(an-an-1)=2[1+2+…+(n-1)], 即an-a1=n(n-1),得an=a1+n(n-1)=n2-n+33, 所以==n+-1. 設(shè)f(x)=x+-1(x>0),則f′(x)=1-, 由f′(x)>0,解得x>; 由f′(x)<0,解得0

14、基本不等式n+≥2求解最值;二是即使考慮了n為正整數(shù),但把取最小值時的n值弄錯. 真題自檢感悟 1.(2018·全國卷Ⅰ)設(shè)Sn為等差數(shù)列{an}的前n項和.若3S3=S2+S4,a1=2,則a5=(  ) A.-12 B.-10 C.10 D.12 答案 B 解析 設(shè)該等差數(shù)列的公差為d,根據(jù)題中的條件可得 3×=2×2+d+4×2+·d, 整理解得d=-3,所以a5=a1+4d=2-12=-10,故選B. 2.(2019·北京高考)設(shè)等差數(shù)列{an}的前n項和為Sn,若a2=-3,S5=-10,則a5=________,Sn的最小值為________. 答案 0?。?/p>

15、10 解析 ∵a2=a1+d=-3,S5=5a1+10d=-10, ∴a1=-4,d=1,∴a5=a1+4d=0, ∴an=a1+(n-1)d=n-5. 令an<0,則n<5,即數(shù)列{an}中前4項為負(fù),a5=0,第6項及以后為正. ∴Sn的最小值為S4=S5=-10. 3.(2018·全國卷Ⅰ)記Sn為數(shù)列{an}的前n項和.若Sn=2an+1,則S6=________. 答案?。?3 解析 根據(jù)Sn=2an+1,可得Sn+1=2an+1+1, 兩式相減得an+1=2an+1-2an,即an+1=2an, 當(dāng)n=1時,S1=a1=2a1+1,解得a1=-1, 所以數(shù)列{

16、an}是以-1為首項,以2為公比的等比數(shù)列, 所以S6==-63. 4.(2018·江蘇高考)已知集合A={x|x=2n-1,n∈N*},B={x|x=2n,n∈N*}.將A∪B的所有元素從小到大依次排列構(gòu)成一個數(shù)列{an}.記Sn為數(shù)列{an}的前n項和,則使得Sn>12an+1成立的n的最小值為________. 答案 27 解析 S26=+=503,a27=43,則12a27=516,不滿足Sn>12an+1;S27=+=546,a28=45,則12a28=540,滿足Sn>12an+1.所以n的最小值為27. 專題作業(yè) 一、選擇題 1.(2017·全國卷Ⅰ)記Sn為等差數(shù)

17、列{an}的前n項和.若a4+a5=24,S6=48,則{an}的公差為(  ) A.1 B.2 C.4 D.8 答案 C 解析 設(shè){an}的公差為d,則 由得 解得d=4.故選C. 2.(2019·河北衡水模擬)已知等差數(shù)列{an}的前n項和為Sn,且S9=6π,則tana5=(  ) A. B. C.- D.- 答案 C 解析 由等差數(shù)列的性質(zhì)可得,S9=6π==9a5,∴a5=,則tana5=tan=-,故選C. 3.(2019·廣州綜合測試)已知數(shù)列{an}為等比數(shù)列,若a4+a6=10,則a7(a1+2a3)+a3a9的值為(  ) A.1

18、0 B.20 C.100 D.200 答案 C 解析 a7(a1+2a3)+a3a9=a7a1+2a7a3+a3a9=a+2a4a6+a=(a4+a6)2=100,故選C. 4.(2019·大連模擬)設(shè)等比數(shù)列{an}的前n項和為Sn,S2=3,S4=15,則S6等于(  ) A.27 B.31 C.63 D.75 答案 C 解析 由題意得S2,S4-S2,S6-S4成等比數(shù)列,所以3,12,S6-15成等比數(shù)列,所以122=3×(S6-15),解得S6=63. 5.若Sn為數(shù)列{an}的前n項和,且Sn=2an-2,則S8等于(  ) A.255 B.256

19、C.510 D.511 答案 C 解析 當(dāng)n=1時,a1=S1=2a1-2,據(jù)此可得a1=2, 當(dāng)n≥2時,Sn=2an-2,Sn-1=2an-1-2, 兩式作差可得an=2an-2an-1,則an=2an-1, 據(jù)此可得數(shù)列{an}是首項為2,公比為2的等比數(shù)列, 其前8項和為S8==29-2=512-2=510. 6.設(shè)Sn是公差不為0的等差數(shù)列{an}的前n項和,S3=a,且S1,S2,S4成等比數(shù)列,則a10等于(  ) A.15 B.19 C.21 D.30 答案 B 解析 設(shè)等差數(shù)列{an}的公差為d, 因為S3=a,所以3a2=a,解得a2=0或a2

20、=3, 又因為S1,S2,S4構(gòu)成等比數(shù)列,所以S=S1S4, 所以(2a2-d)2=(a2-d)(4a2+2d), 若a2=0,則d2=-2d2, 此時d=0,不符合題意,舍去, 當(dāng)a2=3時,可得(6-d)2=(3-d)(12+2d), 解得d=2(d=0舍去), 所以a10=a2+8d=3+8×2=19. 7.(2019·煙臺模擬)已知{an}為等比數(shù)列,數(shù)列{bn}滿足b1=2,b2=5,且an(bn+1-bn)=an+1,則數(shù)列{bn}的前n項和為(  ) A.3n+1 B.3n-1 C. D. 答案 C 解析 ∵b1=2,b2=5,且an(bn+1-

21、bn)=an+1, ∴a1(b2-b1)=a2,即a2=3a1, 又?jǐn)?shù)列{an}為等比數(shù)列, ∴數(shù)列{an}的公比q=3,且an≠0, ∴bn+1-bn==3, ∴數(shù)列{bn}是首項為2,公差為3的等差數(shù)列, ∴數(shù)列{bn}的前n項和為 Sn=2n+×3=. 8.(2016·四川高考)某公司為激勵創(chuàng)新,計劃逐年加大研發(fā)資金投入.若該公司2015年全年投入研發(fā)資金130萬元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長12%,則該公司全年投入的研發(fā)資金開始超過200萬元的年份是(  ) (參考數(shù)據(jù):lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A.20

22、18年 B.2019年 C.2020年 D.2021年 答案 B 解析 根據(jù)題意,知每年投入的研發(fā)資金增長的百分率相同,所以,從2015年起,每年投入的研發(fā)資金組成一個等比數(shù)列{an},其中,首項a1=130,公比q=1+12%=1.12,所以an=130×1.12n-1.由130×1.12n-1>200,兩邊同時取對數(shù),得n-1>,又≈=3.8,則n>4.8,即a5開始超過200,所以2019年投入的研發(fā)資金開始超過200萬元,故選B. 9.已知數(shù)列{an}滿足a1=0,an+1=(n∈N*),則a56等于(  ) A.- B.0 C. D. 答案 A 解析 

23、因為an+1=(n∈N*),a1=0, 所以a2=-,a3=,a4=0,a5=-,a6=,…, 故此數(shù)列的周期為3. 所以a56=a18×3+2=a2=-. 10.在數(shù)列{an}中,an=++…+,又bn=,則數(shù)列{bn}的前n項和為(  ) A. B. C. D. 答案 D 解析 由已知得an=++…+ =·(1+2+…+n)=, 從而bn===4,所以數(shù)列{bn}的前n項和為Sn=4=4=.故選D. 11.(2017·全國卷Ⅰ)幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動.這款軟

24、件的激活碼為下面數(shù)學(xué)問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項和為2的整數(shù)冪.那么該款軟件的激活碼是(  ) A.440 B.330 C.220 D.110 答案 A 解析 設(shè)首項為第1組,接下來的兩項為第2組,再接下來的三項為第3組,依此類推,則第n組的項數(shù)為n,前n組的項數(shù)和為. 由題意知,N>100,令>100?n≥14且n∈N*,即N出現(xiàn)在第13組之后. 第n組的各項和為=2n-1,前n

25、組所有項的和為-n=2n+1-2-n. 設(shè)N是第n+1組的第k項,若要使前N項和為2的整數(shù)冪,則N-項的和即第n+1組的前k項的和2k-1應(yīng)與-2-n互為相反數(shù),即2k-1=2+n(k∈N*,n≥14),k=log2(n+3)?n最小為29,此時k=5,則N=+5=440.故選A. 12.已知數(shù)列{an}中,a1=2,n(an+1-an)=an+1,n∈N*,若對于任意的a∈[-2,2],n∈N*,不等式<2t2+at-1恒成立,則實數(shù)t的取值范圍為(  ) A.(-∞,-2]∪[2,+∞) B.(-∞,-2]∪[1,+∞) C.(-∞,-1]∪[2,+∞) D.[-2,2] 答

26、案 A 解析 根據(jù)題意,數(shù)列{an}中,n(an+1-an)=an+1,即nan+1-(n+1)an=1,則有-==-,則有=+++…++a1=+++…++2=3-<3,<2t2+at-1,即3-<2t2+at-1,∵對于任意的a∈[-2,2],n∈N*,不等式<2t2+at-1恒成立,∴2t2+at-1≥3,化為2t2+at-4≥0,設(shè)f(a)=2t2+at-4,a∈[-2,2],可得f(2)≥0且f(-2)≥0,即有即 可得t≥2或t≤-2,則實數(shù)t的取值范圍是(-∞,-2]∪[2,+∞),故選A. 二、填空題 13.(2018·北京高考)設(shè){an}是等差數(shù)列,且a1=3,a2+a

27、5=36,則{an}的通項公式為________. 答案 an=6n-3 解析 ∵a1=3,a2+a5=36,∴3+d+3+4d=36, ∴d=6,∴an=3+6(n-1)=6n-3. 14.(2019·全國卷Ⅲ)已知各項均為正數(shù)的等比數(shù)列{an}的前4項和為15,且a5=3a3+4a1,則a3=________. 答案 4 解析 由題意知 解得∴a3=a1q2=4. 15.(2019·全國卷Ⅲ)記Sn為等差數(shù)列{an}的前n項和.若a1≠0,a2=3a1,則=________. 答案 4 解析 由a1≠0,a2=3a1,可得d=2a1, 所以S10=10a1+d=100

28、a1, S5=5a1+d=25a1,所以=4. 16.(2019·沈陽模擬)在數(shù)列{an}中,a1=-2,anan-1=2an-1-1(n≥2,n∈N*),數(shù)列{bn}滿足bn=,則數(shù)列{an}的通項公式為an=________,數(shù)列{bn}的前n項和Sn的最小值為________. 答案 ?。? 解析 由題意知,an=2-(n≥2,n∈N*),∴bn====1+=1+bn-1,即bn-bn-1=1(n≥2,n∈N*).又b1==-,∴數(shù)列{bn}是以-為首項,1為公差的等差數(shù)列,∴bn=n-,即=n-, ∴an=.又b1=-<0,b2=>0, ∴Sn的最小值為S1=b1=-. - 13 -

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!