數學 第一部分 教材第一單元 數與式 第4課時 整式及因式分解

上傳人:s****u 文檔編號:113695241 上傳時間:2022-06-26 格式:PPT 頁數:19 大?。?6.56MB
收藏 版權申訴 舉報 下載
數學 第一部分 教材第一單元 數與式 第4課時 整式及因式分解_第1頁
第1頁 / 共19頁
數學 第一部分 教材第一單元 數與式 第4課時 整式及因式分解_第2頁
第2頁 / 共19頁
數學 第一部分 教材第一單元 數與式 第4課時 整式及因式分解_第3頁
第3頁 / 共19頁

下載文檔到電腦,查找使用更方便

5 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《數學 第一部分 教材第一單元 數與式 第4課時 整式及因式分解》由會員分享,可在線閱讀,更多相關《數學 第一部分 教材第一單元 數與式 第4課時 整式及因式分解(19頁珍藏版)》請在裝配圖網上搜索。

1、第一單元 數與式 第第4課時課時 整式及因式分解整式及因式分解 中考考點清單考點考點1:代數式及其求值:代數式及其求值考點考點2:整式及其運算:整式及其運算(高頻高頻)考點考點3:因式分解:因式分解(高頻高頻)整式整式及因及因式分式分解解代數式及其求值代數式及其求值1. 代數式:代數式:把數與表示數的字母用運算符號連接而成的把數與表示數的字母用運算符號連接而成的式子叫做代數式單獨的一個字母或一個數也是代數式式子叫做代數式單獨的一個字母或一個數也是代數式2. 列代數式:列代數式:用含有數、字母及運算符號的式子把問題用含有數、字母及運算符號的式子把問題中的數量關系表示出來叫做列代數式中的數量關系表

2、示出來叫做列代數式【溫馨提示【溫馨提示】(1)根據關鍵詞列代數式根據關鍵詞列代數式, 正確理解關鍵詞正確理解關鍵詞: 和、和、差、積、商、大、小、多、少、幾倍、增加、減少等差、積、商、大、小、多、少、幾倍、增加、減少等; (2)根據等量關系列代數式根據等量關系列代數式; 如如: 單價單價數量數量=總價,現有總價,現有量量=原有量原有量(1增長率增長率)等等考點考點 1 1 4. 非負數非負數(1)常見的非負數有常見的非負數有 (a0),|a|,a2. (2)若幾個非負數的和為若幾個非負數的和為0,則每個非負數的值為,則每個非負數的值為0,如:,如:a2|b| =0,則,則a2=0,|b|=0,

3、 =0.3. 代數式求值代數式求值(1)直接代入法:直接代入法:把已知字母的值直接代入,求值即可把已知字母的值直接代入,求值即可(2)整體代入法:整體代入法:利用提公因式法、平方差公式和完全平利用提公因式法、平方差公式和完全平方公式將所求代數式變形后與已知代數式成倍數關系,把方公式將所求代數式變形后與已知代數式成倍數關系,把已知代數式看作整體進行代值運算已知代數式看作整體進行代值運算acc整式及其運算整式及其運算(高頻高頻)1. 整式的相關概念整式的相關概念(1)單項式:單項式:由數與字母的由數與字母的_組成的代數式組成的代數式(如單項如單項式式 ab2) ).單獨的一個數或一個字母也是單項式

4、單獨的一個數或一個字母也是單項式(如如 ,x).(2)單項式的系數:單項式的系數:單項式中與字母相乘的數單項式中與字母相乘的數(3)單項式的次數:單項式的次數:單項式中單項式中_(4)多項式:多項式:由幾個單項式的和組成的代數式叫做多項由幾個單項式的和組成的代數式叫做多項式組成多項式的每個單項式叫做多項式的項,其中不含式組成多項式的每個單項式叫做多項式的項,其中不含字母的項叫常數項字母的項叫常數項1257積積 所有字母的指數的和所有字母的指數的和 考點考點 2 2 (5)多項式的次數:多項式的次數:多項式中次數多項式中次數_項的次數,如:項的次數,如:多項式多項式3x2y22xy1的次數是的次

5、數是_(6)整式:整式:單項式和多項式統稱為整式單項式和多項式統稱為整式(7)同類項:同類項:含有的字母相同,并且相同字母的含有的字母相同,并且相同字母的_也分別相同幾個常數項也是同類項也分別相同幾個常數項也是同類項最高最高四四指數指數2. 整式加減運算整式加減運算(1)合并同類項:合并同類項:合并同類項時,把合并同類項時,把_相加,所含相加,所含字母和字母的指數不變字母和字母的指數不變(2)運算法則:運算法則:先去括號再合并同類項先去括號再合并同類項(3)去括號法則:去括號法則:a(bc)_,a(bc)_(口訣:口訣:“”變變“”不變不變)系數系數abcabc3. 冪的運算冪的運算(m,n為

6、正整數為正整數)名稱名稱運算法則運算法則公式表示公式表示舉例舉例同底數冪同底數冪的乘法的乘法底數不變,底數不變,指數相加指數相加 aman=amn a2a3=_ 同底數同底數冪的除法冪的除法 底數不變,底數不變,指數相減指數相減 aman=_ (a0) a6a2=a4 冪的乘方冪的乘方底數不變,底數不變,指數相乘指數相乘 (am)n=amn (a2)3=_ 積的乘方積的乘方各因式分別各因式分別乘方的積乘方的積 (ambn)p=ampbnp ( ab2)3=_12a5am- -na618a3b64. 整式的乘法運算整式的乘法運算單項式乘單項式乘以單項式以單項式把系數、同底數冪分別相乘,對于只在一

7、把系數、同底數冪分別相乘,對于只在一個單項式里含有的字母,則連同它的指數個單項式里含有的字母,則連同它的指數作為積的一個因式如作為積的一個因式如3ab2a=_單項式乘以單項式乘以多項式多項式用單項式分別去乘以多項式的每一項,再用單項式分別去乘以多項式的每一項,再把所得的積相加即把所得的積相加即m(abc)=_多項式乘多項式乘以多項式以多項式用一個多項式的每一個項分別乘以另一個用一個多項式的每一個項分別乘以另一個多項式的每一項,再把所得的積相加多項式的每一項,再把所得的積相加乘法公式乘法公式平方差公式:平方差公式:(ab)(ab)=_完全平方公式:完全平方公式:(ab)2=a22abb26a2b

8、mb+mcma+a2b25. 整式化簡及其求值的解題步驟整式化簡及其求值的解題步驟步驟一:步驟一:計算各項乘法利用整式乘法法則將每一項乘計算各項乘法利用整式乘法法則將每一項乘法展開;法展開;步驟二:步驟二:去括號;去括號;步驟三:步驟三:找出同類項并合并;找出同類項并合并;步驟四:步驟四:得出運算結果化簡結果中各項都是單項式加得出運算結果化簡結果中各項都是單項式加法的形式,且不存在同類項;法的形式,且不存在同類項;步驟五:步驟五:代值計算代值計算因式分解因式分解( (高頻高頻) )1. 定義:定義:把一個多項式表示成若干個多項式的乘積的形把一個多項式表示成若干個多項式的乘積的形式,稱把這個多項

9、式因式分解式,稱把這個多項式因式分解2. 基本方法基本方法(1)提公因式法:即提公因式法:即mambmc_公因式的確定公因式的確定系數:取各項系數的最大公約數系數:取各項系數的最大公約數字母:取各項相同的字母字母:取各項相同的字母指數:取各項相同字母的最低次數指數:取各項相同字母的最低次數m(a+b+c)考點考點 3 3 (2)公式法:公式法:Aa2b2 _Ba22abb2 _【溫馨提示【溫馨提示】使用基本方法不能直接進行分解的可使使用基本方法不能直接進行分解的可使用十字相乘法或分組分解法用十字相乘法或分組分解法.如如x2(pq)xpq=(xp)(xq), axaybxby=(ab)x(ab)

10、y=(ab)(xy)(ab)2分解因式整式乘法(a+b)(a- -b)分解因式整式乘法3. 一般步驟一般步驟(1)如果多項式各項有公因式,應先提取公因式;如果多項式各項有公因式,應先提取公因式;(2)如果各項沒有公因式,可以嘗試使用公式法:為兩項如果各項沒有公因式,可以嘗試使用公式法:為兩項時,考慮平方差公式;為三項時,考慮完全平方公式;為時,考慮平方差公式;為三項時,考慮完全平方公式;為四項時,考慮用分組分解法;四項時,考慮用分組分解法;(3)檢查因式分解是否徹底,因式分解的結果為幾個整式檢查因式分解是否徹底,因式分解的結果為幾個整式的積的形式且每個整式不能再分解的積的形式且每個整式不能再分

11、解【思維教練思維教練】32x4y 32(x2y) 得到結果得到結果 ??碱愋推饰龃鷶凳角笾荡鷶凳角笾道?(2016濟寧濟寧)已知已知x2y=3,那么代數式,那么代數式32x4y的的值是值是()A. 3B. 0C. 6D. 923xy變已知式 代值A類型類型 一一 【解析解析】x2y=3,32x4y=32(x2y)=323=3.拓展拓展1(2016煙臺煙臺)已知已知|xy2| =0,則,則x2y2的值為的值為_2xy- -4【解析解析】由題意可得由題意可得xy2=0,xy2=0,即,即xy=2,xy=2.x2y2=(xy)(xy)=4.例例2下列計算正確的有下列計算正確的有_a2a3=a5;a

12、2a3=a5;(a3)3=a6;a6a2=a3;(2a2)3=6a6;(ab2)3=a3b6;(ab)2=a2b2;(ab)(ab)=b2a2.16整式的運算整式的運算類型類型 二二 【解析解析】amn=aman=28=16.拓展拓展2(2016大慶大慶)若若am=2,an=8,則,則amn=_例例3(2016揚州揚州)先化簡,再求值:先化簡,再求值:(ab)(a- -b)- -(a- -2b)2,其中其中a=2,b=- -1.整式的化簡求值整式的化簡求值類型類型 三三 解:解:原式原式=a2- -b2- -(a2- -4ab4b2) =a2- -b2- -a24ab- -4b2 =4ab-

13、-5b2, 當當a=2,b=- -1時時, 原式原式=42(- -1)- -5(- -1)2=- -13.拓展拓展3(2016三明三明)先化簡,再求值:先化簡,再求值:(ab)2b(3ab)a2,其中,其中a= ,b= .2626=2612 2 3 解:解:原式原式=a22abb23abb2a2 =ab, 當當a= ,b= 時時,原式原式= . 例例4分解下列因式:分解下列因式:3x25x=_;x22x1=_;3x23=_;3x36x23x=_;x24y22xy=_;(ab)(ab)(ab)=_x(3x5)(x1)23(x1)(x1)3x(x1)2(xy2)(xy2)(ab)(ab1)因式分解因式分解類型類型 四四

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!