(新課程)2020高中數(shù)學(xué) 《第三章 三角恒等變換》總結(jié)與習(xí)題 蘇教版必修4

上傳人:艷*** 文檔編號:111934297 上傳時間:2022-06-21 格式:DOC 頁數(shù):12 大小:319KB
收藏 版權(quán)申訴 舉報 下載
(新課程)2020高中數(shù)學(xué) 《第三章 三角恒等變換》總結(jié)與習(xí)題 蘇教版必修4_第1頁
第1頁 / 共12頁
(新課程)2020高中數(shù)學(xué) 《第三章 三角恒等變換》總結(jié)與習(xí)題 蘇教版必修4_第2頁
第2頁 / 共12頁
(新課程)2020高中數(shù)學(xué) 《第三章 三角恒等變換》總結(jié)與習(xí)題 蘇教版必修4_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(新課程)2020高中數(shù)學(xué) 《第三章 三角恒等變換》總結(jié)與習(xí)題 蘇教版必修4》由會員分享,可在線閱讀,更多相關(guān)《(新課程)2020高中數(shù)學(xué) 《第三章 三角恒等變換》總結(jié)與習(xí)題 蘇教版必修4(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、三角恒等變形及應(yīng)用 一.課標(biāo)要求: 1.經(jīng)歷用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式的過程,進(jìn)一步體會向量方法的作用; 2.能從兩角差的余弦公式導(dǎo)出兩角和與差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系; 3.能運用上述公式進(jìn)行簡單的恒等變換(包括引導(dǎo)導(dǎo)出積化和差、和差化積、半角公式,但不要求記憶)。 二.命題走向 從近幾年的高考考察的方向來看,這部分的高考題以選擇、解答題出現(xiàn)的機會較多,有時候也以填空題的形式出現(xiàn),它們經(jīng)常與三角函數(shù)的性質(zhì)、解三角形及向量聯(lián)合考察,主要題型有三角函數(shù)求值,通過三角式的變換研究三角函數(shù)的性質(zhì)。 本講內(nèi)容是高考復(fù)習(xí)的重點之一,

2、三角函數(shù)的化簡、求值及三角恒等式的證明是三角變換的基本問題。歷年高考中,在考察三角公式的掌握和運用的同時,還注重考察思維的靈活性和發(fā)散性,以及觀察能力、運算及觀察能力、運算推理能力和綜合分析能力。 三.要點精講 1.兩角和與差的三角函數(shù) ; ; 。 2.二倍角公式 ; ; 。 3.三角函數(shù)式的化簡 常用方法:①直接應(yīng)用公式進(jìn)行降次、消項;②切割化弦,異名化同名,異角化同角;③ 三角公式的逆用等。(2)化簡要求:①能求出值的應(yīng)求出值;②使三角函數(shù)種數(shù)盡量少;③使項數(shù)盡量少;④盡量使分母不含三角函數(shù);⑤盡量使被開方數(shù)不含三角函數(shù)。 (1)降冪公式 ;;。 (2)輔助角公

3、式 , 。 4.三角函數(shù)的求值類型有三類 (1)給角求值:一般所給出的角都是非特殊角,要觀察所給角與特殊角間的關(guān)系,利用三角變換消去非特殊角,轉(zhuǎn)化為求特殊角的三角函數(shù)值問題; (2)給值求值:給出某些角的三角函數(shù)式的值,求另外一些角的三角函數(shù)值,解題的關(guān)鍵在于“變角”,如等,把所求角用含已知角的式子表示,求解時要注意角的范圍的討論; (3)給值求角:實質(zhì)上轉(zhuǎn)化為“給值求值”問題,由所得的所求角的函數(shù)值結(jié)合所求角的范圍及函數(shù)的單調(diào)性求得角。 5.三角等式的證明 (1)三角恒等式的證題思路是根據(jù)等式兩端的特征,通過三角恒等變換,應(yīng)用化繁為簡、左右同一等方法,使等式兩端化“異”為“同

4、”; (2)三角條件等式的證題思路是通過觀察,發(fā)現(xiàn)已知條件和待證等式間的關(guān)系,采用代入法、消參法或分析法進(jìn)行證明。 四.典例解析 題型1:兩角和與差的三角函數(shù) 例1.已知,求cos。 分析:因為既可看成是看作是的倍角,因而可得到下面的兩種解法。 解法一:由已知sin+sin=1…………①, cos+cos=0…………②, ①2+②2得 2+2cos; ∴ cos。 ①2-②2得 cos2+cos2+2cos()=-1, 即2cos()〔〕=-1。 ∴。 解法二:由①得…………③ 由②得…………④ ④÷③得 點評:此題是給出單角的三角函數(shù)方程,求復(fù)角的余弦值

5、,易犯錯誤是利用方程組解sin、cos 、 sin 、 cos,但未知數(shù)有四個,顯然前景并不樂觀,其錯誤的原因在于沒有注意到所求式與已知式的關(guān)系本題關(guān)鍵在于化和為積促轉(zhuǎn)化,“整體對應(yīng)”巧應(yīng)用。 例2.已知 求。 分析:由韋達(dá)定理可得到進(jìn)而可以求出的值,再將所求值的三角函數(shù)式用tan表示便可知其值。 解法一:由韋達(dá)定理得tan, 所以tan 解法二:由韋達(dá)定理得tan, 所以tan , 。 點評:(1)本例解法二比解法一要簡捷,好的解法來源于熟練地掌握知識的系統(tǒng)結(jié)構(gòu),從而尋找解答本題的知識“最近發(fā)展區(qū)”。(2)運用兩角和與差角三角函數(shù)公式的關(guān)鍵是熟記公式,我們不僅要記

6、住公式,更重要的是抓住公式的特征,如角的關(guān)系,次數(shù)關(guān)系,三角函數(shù)名等抓住公式的結(jié)構(gòu)特征對提高記憶公式的效率起到至關(guān)重要的作用,而且抓住了公式的結(jié)構(gòu)特征,有利于在解題時觀察分析題設(shè)和結(jié)論等三角函數(shù)式中所具有的相似性的結(jié)構(gòu)特征,聯(lián)想到相應(yīng)的公式,從而找到解題的切入點。(3)對公式的逆用公式,變形式也要熟悉,如 題型2:二倍角公式 例3.化簡下列各式: (1), (2)。 分析:(1)若注意到化簡式是開平方根和2以及其范圍不難找到解題的突破口;(2)由于分子是一個平方差,分母中的角,若注意到這兩大特征,,不難得到解題的切入點。 解析:(1)因為, 又因, 所以,原式=。

7、(2)原式= =。 點評:(1)在二倍角公式中,兩個角的倍數(shù)關(guān)系,不僅限于2是的二倍,要熟悉多種形式的兩個角的倍數(shù)關(guān)系,同時還要注意三個角的內(nèi)在聯(lián)系的作用,是常用的三角變換。(2)化簡題一定要找準(zhǔn)解題的突破口或切入點,其中的降次,消元,切割化弦,異名化同名,異角化同角是常用的化簡技巧。(3)公式變形,。 例4.若。 分析:注意的兩變換,就有以下的兩種解法。 解法一:由, 解法二:, 點評:此題若將的左邊展開成再求cosx,sinx的值,就很繁瑣,把,并注意角的變換2·運用二倍角公式,問題就公難為易,化繁為簡所以在解答有條件限制的求值問題時,要

8、善于發(fā)現(xiàn)所求的三角函數(shù)的角與已知條件的角的聯(lián)系,一般方法是拼角與拆角, 如, , 等。 題型3:輔助角公式 例5.已知正實數(shù)a,b滿足。 分析:從方程 的觀點考慮,如果給等式左邊的分子、分母同時除以a,則已知等式可化為關(guān)于程,從而可求出由,若注意到等式左邊的分子、分母都具有的結(jié)構(gòu),可考慮引入輔助角求解。 解法一:由題設(shè)得 解法二: 解法三: 點評:以上解法中,方法一用了集中變量的思想,是一種基本解法;解法二通過模式聯(lián)想,引入輔助角,技巧性較強,但輔助角公式,,或 在歷年高考中使用頻率是相當(dāng)高的,應(yīng)加以關(guān)注;解法三利用了換元法,但實質(zhì)上是綜合了解法一和解法

9、二的解法優(yōu)點,所以解法三最佳。 例6.已知函數(shù)y=cos2x+sinxcosx+1,x∈R. (1)當(dāng)函數(shù)y取得最大值時,求自變量x的集合; (2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到? (理)(1)解析:y=cos2x+sinxcosx+1 =(2cos2x-1)++(2sinxcosx)+1 =cos2x+sin2x+ =(cos2x·sin+sin2x·cos)+ =sin(2x+)+ y取得最大值必須且只需2x+=+2kπ,k∈Z, 即x=+kπ,k∈Z。 所以當(dāng)函數(shù)y取得最大值時,自變量x的集合為{x|x=+kπ,k∈Z}。

10、 (2)將函數(shù)y=sinx依次進(jìn)行如下變換: ①把函數(shù)y=sinx的圖象向左平移,得到函數(shù)y=sin(x+)的圖象; ②把得到的圖象上各點橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變),得到函數(shù) y=sin(2x+)的圖象; ③把得到的圖象上各點縱坐標(biāo)縮短到原來的倍(橫坐標(biāo)不變),得到函數(shù) y=sin(2x+)的圖象; ④把得到的圖象向上平移個單位長度,得到函數(shù)y=sin(2x+)+的圖象; 綜上得到函數(shù)y=cos2x+sinxcosx+1的圖象。 點評:本題主要考查三角函數(shù)的圖象和性質(zhì),考查利用三角公式進(jìn)行恒等變形的技能以及運算能力。 已知函數(shù)y=sinx+cosx,x∈R. (1)

11、當(dāng)函數(shù)y取得最大值時,求自變量x的集合; (2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換得到? 解析:(1)y=sinx+cosx=2(sinxcos+cosxsin)=2sin(x+),x∈R y取得最大值必須且只需x+=+2kπ,k∈Z, 即x=+2kπ,k∈Z。 所以,當(dāng)函數(shù)y取得最大值時,自變量x的集合為{x|x=+2kπ,k∈Z} (2)變換的步驟是: ①把函數(shù)y=sinx的圖象向左平移,得到函數(shù)y=sin(x+)的圖象; ②令所得到的圖象上各點橫坐標(biāo)不變,把縱坐標(biāo)伸長到原來的2倍,得到函數(shù) y=2sin(x+)的圖象; 經(jīng)過這樣的變換

12、就得到函數(shù)y=sinx+cosx的圖象。 點評:本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角公式進(jìn)行恒等變形的技能及運算能力。 題型4:三角函數(shù)式化簡 例7.求sin220°+cos250°+sin20°cos50°的值。 解析:原式=(1-cos40°)+(1+cos100°)+(sin70°-sin30°) =1+(cos100°-cos40°)+sin70°- =-sin70°sin30°+sin70° =-sin70°+sin70°=。 點評:本題考查三角恒等式和運算能力。 例8.已知函數(shù). (Ⅰ)求的定義域; (Ⅱ)設(shè)的第四象限的角,且,求的值。 解析:(Ⅰ

13、)由 得, 故在定義域為 (Ⅱ)因為,且是第四象限的角, 所以 a 故 。 題型5:三角函數(shù)求值 例9.設(shè)函數(shù)f(x)=cos2cos+sinrcosx+a(其中>0,aR),且f(x)的圖象在y軸右側(cè)的第一個高點的橫坐標(biāo)為。 (Ⅰ)求ω的值; (Ⅱ)如果f(x)在區(qū)間上的最小值為,求a的值。 解析:(I) 依題意得 . (II)由(I)知,。 又當(dāng)時,,故,從而在區(qū)間上的最小值為,故 例10.求函數(shù)=2+的值域和最小正周期。 解析:y=cos(x+

14、) cos(x-)+sin2x=cos2x+sin2x=2sin(2x+), ∴函數(shù)y=cos(x+) cos(x-)+sin2x的值域是[-2,2],最小正周期是π。 題型6:三角函數(shù)綜合問題 例11.已知向量 (I)若求 (II)求的最大值。 解析:(1); 當(dāng)=1時有最大值,此時,最大值為。 點評:本題主要考察以下知識點:1、向量垂直轉(zhuǎn)化為數(shù)量積為0;2,特殊角的三角函數(shù)值;3、三角函數(shù)的基本關(guān)系以及三角函數(shù)的有界性;4.已知向量的坐標(biāo)表示求模,難度中等,計算量不大。 例12.設(shè)0<θ<,曲線x2sinθ+y2cosθ=1和x2cosθ-y2sinθ=1有4個不同的

15、交點。 (1)求θ的取值范圍; (2)證明這4個交點共圓,并求圓半徑的取值范圍。 解析:(1)解方程組,得; 故兩條已知曲線有四個不同的交點的充要條件為,(0<θ<)0<θ<。 (2)設(shè)四個交點的坐標(biāo)為(xi,yi)(i=1,2,3,4),則:xi2+yi2=2cosθ∈(,2)(i=1,2,3,4)。 故四個交點共圓,并且這個圓的半徑r=cosθ∈(). 點評:本題注重考查應(yīng)用解方程組法處理曲線交點問題,這也是曲線與方程的基本方法,同時本題也突出了對三角不等關(guān)系的考查。 題型7:三角函數(shù)的應(yīng)用 例13.有一塊扇形鐵板,半徑為R,圓心角為60°,從這個扇形中切割下一個內(nèi)接矩形

16、,即矩形的各個頂點都在扇形的半徑或弧上,求這個內(nèi)接矩形的最大面積. 分析:本題入手要解決好兩個問題, (1)內(nèi)接矩形的放置有兩種情況,如圖2-19所示,應(yīng)該分別予以處理; (2)求最大值問題這里應(yīng)構(gòu)造函數(shù),怎么選擇便于以此表達(dá)矩形面積的自變量。 解析:如圖2-19(1)設(shè)∠FOA=θ,則FG=Rsinθ, , 。 又設(shè)矩形EFGH的面積為S,那么 又∵0°<θ<60°,故當(dāng)cos(2θ-60°)=1,即θ=30′時, 如圖2-19 (2),設(shè)∠FOA=θ,則EF=2Rsin(30°-θ),在△OFG中,∠OGF=150° 設(shè)矩形的面積為S. 那么S=EFFG=4R2sinθsin(30°-θ) =2R2[cos(2θ-30°)-cos30°] 又∵0<θ<30°,故當(dāng)cos(2θ-30°)=1 。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!