《2020年全國高考數(shù)學第二輪復習 專題升級訓練2 平面向量、復數(shù)、框圖及合情推理 理》由會員分享,可在線閱讀,更多相關《2020年全國高考數(shù)學第二輪復習 專題升級訓練2 平面向量、復數(shù)、框圖及合情推理 理(5頁珍藏版)》請在裝配圖網上搜索。
1、專題升級訓練2 平面向量、復數(shù)、框圖及合情推理
(時間:60分鐘 滿分:100分)
一、選擇題(本大題共6小題,每小題6分,共36分)
1.已知i是虛數(shù)單位,則=( ).
A.1-2i B.2-i C.2+i D.1+2i
2.閱讀下面的程序框圖,若輸出s的值為-7,則判斷框內可填寫( ).
A.i<3? B.i<4? C.i<5? D.i<6?
3.閱讀下圖所示的程序框圖,運行相應的程序,輸出的s值等于( ).
A.-3 B.-10 C.0 D.8
4.已知向量a=(1,2),a·b=5,|a
2、-b|=2,則|b|=( ).
A. B.2 C.5 D.25
5.如圖所示的三角形數(shù)陣叫“萊布尼茲調和三角形”,它們是由整數(shù)的倒數(shù)組成的,第n行有n個數(shù)且兩端的數(shù)均為(n≥2),其余每個數(shù)是它下一行左右相鄰兩數(shù)的和,如=+,=+,=+,…,則第7行第4個數(shù)(從左往右數(shù))為( ).
A. B. C. D.
6.已知兩點A(1,0),B(1,),O為坐標原點,點C在第二象限,且∠AOC=,,則λ=( ).
A.- B. C.-1 D.1
二、填空題(本大題共3小題,每小題6分,共18分)
7.兩點等分
3、單位圓時,有關系為sin α+sin(π+α)=0;三點等分單位圓時,有關系為sin α+sin+sin=0.由此可以推知:四點等分單位圓時的相應正確關系為__________.
8.已知向量a,b滿足|b|=2,a=(6,-8),a在b方向上的投影是-5,則a與b的夾角為__________.
9.在四邊形ABCD中,,,則四邊形ABCD的面積為__________.
三、解答題(本大題共3小題,共46分.解答應寫出必要的文字說明、證明過程或演算步驟)
10.(本小題滿分15分)已知函數(shù),.
(1)證明f(x)是奇函數(shù);
(2)分別計算f(4)-5f(2)g(2),f(9)-5f
4、(3)g(3)的值,由此概括出涉及函數(shù)f(x)和g(x)對所有不等于0的實數(shù)x都成立的一個等式,并證明.
11.(本小題滿分15分)已知向量a=(cos θ,sin θ),θ∈[0,π],向量b=(,-1).
(1)若a⊥b,求θ的值;
(2)若|2a-b|<m恒成立,求實數(shù)m的取值范圍.
12.(本小題滿分16分)已知向量a=(cos θ,sin θ)和b=(-sin θ,cos θ),θ∈.
(1)求|a+b|的最大值;
(2)若|a+b|=,求sin 2θ的值.
參考答案
一、選擇題
1.D 解析:∵===1+2i,∴選D.
2.D 解析:i=1,s=2;
s=
5、2-1=1,i=1+2=3;
s=1-3=-2,i=3+2=5;
s=-2-5=-7,i=5+2=7.
因輸出s的值為-7,循環(huán)終止,故判斷框內應填“i<6?”,故選D.
3.D
4.C 解析:∵|a-b|2=(a-b)2=20,
∴|a|2+|b|2-2a·b=20. (*)
又a=(1,2),a·b=5,
∴(*)式可化為5+|b|2-10=20,
∴|b|2=25,∴|b|=5.
5.A 解析:由“第n行有n個數(shù)且兩端的數(shù)均為(n≥2)”可知,第7行第1個數(shù)為,由“
6、其余每個數(shù)是它下一行左右相鄰兩數(shù)的和”可知,第7行第2個數(shù)為-=,同理,第7行第3個數(shù)為-=,第7行第4個數(shù)為-=.
6.B 解析:如圖所示:
∠AOC=,根據三角函數(shù)的定義,可設C.
∵,∴=(-2,0)+(λ,λ),
∴解得λ=.
二、填空題
7.sin α+sin+sin(α+π)+sin=0 解析:由類比推理可知,四點等分單位圓時,α與α+π的終邊互為反向延長線,α+與α+的終邊互為反向延長線,如圖.
8.120° 解析:由題意得,|a|·cos〈a,b〉=-5,即cos〈a,b〉=-,
∴〈a,b〉=120°.
9. 解析:由=(1,1),可得且四邊形ABC
7、D是平行四邊形,再由可知D在∠ABC的角平分線上,且以及上單位邊長為邊的平行四邊形的一條對角線長PB=,因此∠ABC=,所以AB=BC,S?ABCD=AB·BC·sin∠ABC=×sin=.
三、解答題
10.(1)證明:f(x)的定義域為(-∞,0)∪(0,+∞),
又,
故f(x)是奇函數(shù).
(2)解:計算知f(4)-5f(2)g(2)=0,f(9)-5f(3)g(3)=0,于是猜測f(x2)-5f(x)g(x)=0(x∈R且x≠0).
證明:.
11.解:(1)∵a⊥b,∴cos θ-sin θ=0,得tan θ=.
又θ∈[0,π],∴θ=.
(2)∵2a-b=(2cos θ-,2sin θ+1),
∴|2a-b|2=(2cos θ-)2+(2sin θ+1)2
=8+8=8+8sin.
又θ∈[0,π],∴θ-∈.
∴sin∈.
∴|2a-b|2的最大值為16.∴|2a-b|的最大值為4.
又|2a-b|<m恒成立,∴m>4.
12.解:(1)a+b=(cos θ-sin θ+,cos θ+sin θ),
|a+b|=
==
=2.
∵θ∈,∴≤θ+≤,
∴-≤cos≤.
∴|a+b|max=.
(2)由已知|a+b|=,得cos=,
sin 2θ=-cos 2
=1-2cos2=1-2×=.