(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 數(shù)列與不等式 第1講 等差數(shù)列與等比數(shù)列學(xué)案

上傳人:彩*** 文檔編號:106623814 上傳時間:2022-06-13 格式:DOC 頁數(shù):14 大小:211.50KB
收藏 版權(quán)申訴 舉報 下載
(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 數(shù)列與不等式 第1講 等差數(shù)列與等比數(shù)列學(xué)案_第1頁
第1頁 / 共14頁
(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 數(shù)列與不等式 第1講 等差數(shù)列與等比數(shù)列學(xué)案_第2頁
第2頁 / 共14頁
(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 數(shù)列與不等式 第1講 等差數(shù)列與等比數(shù)列學(xué)案_第3頁
第3頁 / 共14頁

下載文檔到電腦,查找使用更方便

22 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 數(shù)列與不等式 第1講 等差數(shù)列與等比數(shù)列學(xué)案》由會員分享,可在線閱讀,更多相關(guān)《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 專題三 數(shù)列與不等式 第1講 等差數(shù)列與等比數(shù)列學(xué)案(14頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 第1講 等差數(shù)列與等比數(shù)列 [考情考向分析] 1.等差、等比數(shù)列基本量和性質(zhì)的考查是高考熱點,經(jīng)常以小題形式出現(xiàn).2.等差、等比數(shù)列的判定及綜合應(yīng)用也是高考考查的重點,注意基本量及定義的使用,考查分析問題、解決問題的綜合能力. 熱點一 等差數(shù)列、等比數(shù)列的運算 1.通項公式 等差數(shù)列:an=a1+(n-1)d; 等比數(shù)列:an=a1·qn-1. 2.求和公式 等差數(shù)列:Sn==na1+d; 等比數(shù)列:Sn= 3.性質(zhì) 若m+n=p+q, 在等差數(shù)列中am+an=ap+aq; 在等比數(shù)列中am·an=ap·aq. 例1 (1)(2018·全國Ⅰ)記Sn為等差數(shù)列

2、{an}的前n項和,若3S3=S2+S4,a1=2,則a5等于(  ) A.-12 B.-10 C.10 D.12 答案 B 解析 設(shè)等差數(shù)列{an}的公差為d,由3S3=S2+S4, 得3=2a1+×d+4a1+×d,將a1=2代入上式,解得d=-3, 故a5=a1+(5-1)d=2+4×(-3)=-10.故選B. (2)(2018·杭州質(zhì)檢)設(shè)各項均為正數(shù)的等比數(shù)列{an}中,若S4=80,S2=8,則公比q=________,a5=________. 答案 3 162 解析 由題意可得,S4-S2=q2S2,代入得q2=9. ∵等比數(shù)列{an}的各項均為正數(shù),

3、∴q=3,解得a1=2,故a5=162. 思維升華 在進行等差(比)數(shù)列項與和的運算時,若條件和結(jié)論間的聯(lián)系不明顯,則均可化成關(guān)于a1和d(q)的方程組求解,但要注意消元法及整體計算,以減少計算量. 跟蹤演練1 (1)(2018·浙江省重點中學(xué)聯(lián)考)設(shè)Sn為等差數(shù)列{an}的前n項和,若a1=-2 017,S6-2S3=18,則S2 019等于(  ) A.2 016 B.2 019 C.-2 017 D.-2 018 答案 B 解析 在等差數(shù)列{an}中,設(shè)公差為d. ∵S6-2S3=18, ∴a4+a5+a6-(a1+a2+a3)=9d=18. ∴d=2, ∴S2

4、019=2 019a1+ =2 019×2 018-2 019×2 017=2 019,故選B. (2)(2018·全國Ⅲ)等比數(shù)列{an}中,a1=1,a5=4a3. ①求{an}的通項公式; ②記Sn為{an}的前n項和,若Sm=63,求m. 解?、僭O(shè){an}的公比為q, 由題設(shè)得an=qn-1. 由已知得q4=4q2,解得q=0(舍去),q=-2或q=2. 故an=(-2)n-1或an=2n-1(n∈N*). ②若an=(-2)n-1,則Sn=. 由Sm=63得(-2)m=-188,此方程沒有正整數(shù)解. 若an=2n-1,則Sn=2n-1. 由Sm=63得2m=6

5、4,解得m=6. 綜上,m=6. 熱點二 等差數(shù)列、等比數(shù)列的判定與證明 證明數(shù)列{an}是等差數(shù)列或等比數(shù)列的證明方法 (1)證明數(shù)列{an}是等差數(shù)列的兩種基本方法 ①利用定義,證明an+1-an(n∈N*)為一常數(shù); ②利用等差中項,即證明2an=an-1+an+1(n≥2,n∈N*). (2)證明數(shù)列{an}是等比數(shù)列的兩種基本方法 ①利用定義,證明(n∈N*)為一常數(shù); ②利用等比中項,即證明a=an-1an+1(n≥2,n∈N*). 例2 已知數(shù)列{an},{bn},其中a1=3,b1=-1,且滿足an=(3an-1-bn-1),bn=-(an-1-3bn-1)

6、,n∈N*,n≥2. (1)求證:數(shù)列{an-bn}為等比數(shù)列; (2)求數(shù)列的前n項和Tn. (1)證明 an-bn=(3an-1-bn-1)-(an-1-3bn-1)=2(an-1-bn-1), 又a1-b1=3-(-1)=4, 所以{an-bn}是首項為4,公比為2的等比數(shù)列. (2)解 由(1)知,an-bn=2n+1,① 又an+bn=(3an-1-bn-1)+(an-1-3bn-1)=an-1+bn-1, 又a1+b1=3+(-1)=2, 所以{an+bn}為常數(shù)數(shù)列,an+bn=2,② 聯(lián)立①②得,an=2n+1, 所以==-, 所以Tn=++…+ =-

7、=-(n∈N*). 思維升華 (1)判斷一個數(shù)列是等差(比)數(shù)列,也可以利用通項公式及前n項和公式,但不能作為證明方法. (2)a=an-1an+1(n≥2)是數(shù)列{an}為等比數(shù)列的必要不充分條件,判斷時還要看各項是否為零. 跟蹤演練2 已知{an}是各項都為正數(shù)的數(shù)列,其前n項和為Sn,且Sn為an與的等差中項. (1)求證:數(shù)列{S}為等差數(shù)列; (2)求數(shù)列{an}的通項公式; (3)設(shè)bn=,求{bn}的前n項和Tn. (1)證明 由題意知2Sn=an+,即2Snan-a=1,(*) 當(dāng)n≥2時,有an=Sn-Sn-1,代入(*)式得 2Sn(Sn-Sn-1)-(S

8、n-Sn-1)2=1, 整理得S-S=1(n≥2). 又當(dāng)n=1時,由(*)式可得a1=S1=1, ∴數(shù)列{S}是首項為1,公差為1的等差數(shù)列. (2)解 由(1)可得S=1+n-1=n, ∵數(shù)列{an}的各項都為正數(shù),∴Sn=, ∴當(dāng)n≥2時,an=Sn-Sn-1=-, 又a1=S1=1滿足上式, ∴an=-(n∈N*). (3)解 由(2)得bn== =(-1)n(+), 當(dāng)n為奇數(shù)時,Tn=-1+(+1)-(+)+…+(+)-(+)=-, 當(dāng)n為偶數(shù)時,Tn=-1+(+1)-(+)+…-(+)+(+)=, ∴數(shù)列{bn}的前n項和Tn=(-1)n(n∈N*).

9、 熱點三 等差數(shù)列、等比數(shù)列的綜合問題 解決等差數(shù)列、等比數(shù)列的綜合問題,要從兩個數(shù)列的特征入手,理清它們的關(guān)系;數(shù)列與不等式、函數(shù)、方程的交匯問題,可以結(jié)合數(shù)列的單調(diào)性、最值求解. 例3 已知等差數(shù)列{an}的公差為-1,且a2+a7+a12=-6. (1)求數(shù)列{an}的通項公式an與其前n項和Sn; (2)將數(shù)列{an}的前4項抽去其中一項后,剩下三項按原來順序恰為等比數(shù)列{bn}的前3項,記{bn}的前n項和為Tn,若存在m∈N*,使得對任意n∈N*,總有Sn

10、-n,從而Sn=(n∈N*). (2)由題意知b1=4,b2=2,b3=1, 設(shè)等比數(shù)列{bn}的公比為q,則q==, ∴Tm==8, ∵m隨m的增加而減少, ∴{Tm}為遞增數(shù)列,得4≤Tm<8. 又Sn==-(n2-9n)=-, 故(Sn)max=S4=S5=10, 若存在m∈N*,使得對任意n∈N*,總有Sn2.即實數(shù)λ的取值范圍為(2,+∞). 思維升華 (1)等差數(shù)列與等比數(shù)列交匯的問題,常用“基本量法”求解,但有時靈活地運用性質(zhì),可使運算簡便. (2)數(shù)列的項或前n項和可以看作關(guān)于n的函數(shù),然后利用函數(shù)的性質(zhì)求解數(shù)列問題.

11、 (3)數(shù)列中的恒成立問題可以通過分離參數(shù),通過求數(shù)列的值域求解. 跟蹤演練3 已知數(shù)列{an}的前n項和為Sn,且Sn-1=3(an-1),n∈N*. (1)求數(shù)列{an}的通項公式; (2)設(shè)數(shù)列{bn}滿足an+1=若bn≤t對于任意正整數(shù)n都成立,求實數(shù)t的取值范圍. 解 (1)由已知得Sn=3an-2,令n=1,得a1=1, 又an+1=Sn+1-Sn=3an+1-3an,得an+1=an, 所以數(shù)列{an}是以1為首項,為公比的等比數(shù)列, 所以an=n-1(n∈N*). (2)由an+1= 得bn==n-1=n·n-1, 所以bn+1-bn=(n+1)·n-n

12、·n-1 =(2-n), 所以(bn)max=b2=b3=,所以t≥. 即t的取值范圍為. 真題體驗 1.(2017·全國Ⅰ改編)記Sn為等差數(shù)列{an}的前n項和.若a4+a5=24,S6=48,則{an}的公差為________. 答案 4 解析 設(shè){an}的公差為d, 由得 解得d=4. 2.(2017·浙江改編)已知等差數(shù)列{an}的公差為d,前n項和為Sn,則“d>0”是“S4+S6>2S5”的________條件. 答案 充要 解析 方法一 ∵數(shù)列{an}是公差為d的等差數(shù)列, ∴S4=4a1+6d,S5=5a1+10d,S6=6a1+15d, ∴S

13、4+S6=10a1+21d,2S5=10a1+20d. 若d>0,則21d>20d,10a1+21d>10a1+20d, 即S4+S6>2S5. 若S4+S6>2S5,則10a1+21d>10a1+20d, 即21d>20d, ∴d>0.∴“d>0”是“S4+S6>2S5”的充要條件. 方法二 ∵S4+S6>2S5?S4+S4+a5+a6>2(S4+a5)?a6>a5?a5+d>a5?d>0. ∴“d>0”是“S4+S6>2S5”的充要條件. 3.(2017·北京)若等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=b1=-1,a4=b4=8,則=________. 答案 1 解

14、析 設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q, 則由a4=a1+3d, 得d===3, 由b4=b1q3,得q3===-8, ∴q=-2. ∴===1. 4.(2017·江蘇)等比數(shù)列{an}的各項均為實數(shù),其前n項和為Sn,已知S3=,S6=,則a8=________. 答案 32 解析 設(shè){an}的首項為a1,公比為q, 則解得 所以a8=×27=25=32. 押題預(yù)測 1.設(shè)等差數(shù)列{an}的前n項和為Sn,且a1>0,a3+a10>0,a6a7<0,則滿足Sn>0的最大自然數(shù)n的值為(  ) A.6 B.7 C.12 D.13 押題

15、依據(jù) 等差數(shù)列的性質(zhì)和前n項和是數(shù)列最基本的知識點,也是高考的熱點,可以考查學(xué)生靈活變換的能力. 答案 C 解析 ∵a1>0,a6a7<0, ∴a6>0,a7<0,等差數(shù)列的公差小于零, 又a3+a10=a1+a12>0,a1+a13=2a7<0, ∴S12>0,S13<0, ∴滿足Sn>0的最大自然數(shù)n的值為12. 2.在等比數(shù)列{an}中,a3-3a2=2,且5a4為12a3和2a5的等差中項,則{an}的公比等于(  ) A.3 B.2或3 C.2 D.6 押題依據(jù) 等差數(shù)列、等比數(shù)列的綜合問題可反映知識運用的綜合性和靈活性,是高考出題的重點. 答案 C

16、解析 設(shè)公比為q,5a4為12a3和2a5的等差中項,可得10a4=12a3+2a5,10a3q=12a3+2a3q2,得10q=12+2q2,解得q=2或3.又a3-3a2=2,所以a2q-3a2=2,即a2(q-3)=2,所以q=2. 3.已知各項都為正數(shù)的等比數(shù)列{an}滿足a7=a6+2a5,存在兩項am,an使得=4a1,則+的最小值為(  ) A. B. C. D. 押題依據(jù) 本題在數(shù)列、方程、不等式的交匯處命題,綜合考查學(xué)生應(yīng)用數(shù)學(xué)的能力,是高考命題的方向. 答案 A 解析 由a7=a6+2a5,得a1q6=a1q5+2a1q4, 整理得q2-q-2=0,

17、 解得q=2或q=-1(不合題意,舍去). 又由=4a1,得aman=16a, 即a2m+n-2=16a,即有m+n-2=4, 亦即m+n=6,那么+=(m+n) =≥=, 當(dāng)且僅當(dāng)=,即n=2m=4時取等號. 4.定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(-∞,0)∪(0,+∞)上的如下函數(shù): ①f(x)=x2;②f(x)=2x;③f(x)=; ④f(x)=ln|x|. 則其中是“保等比數(shù)列函數(shù)”的f(x)的序號為(  ) A.①② B.③④ C.①

18、③ D.②④ 押題依據(jù) 先定義一個新數(shù)列,然后要求根據(jù)定義的條件推斷這個新數(shù)列的一些性質(zhì)或者判斷一個數(shù)列是否屬于這類數(shù)列的問題是近年來高考中逐漸興起的一類問題,這類問題一般形式新穎,難度不大,常給人耳目一新的感覺. 答案 C 解析 由等比數(shù)列的性質(zhì)得,anan+2=a. ①f(an)f(an+2)=aa=(a)2=[f(an+1)]2; ②f(an)f(an+2)==[f(an+1)]2; ③f(an)f(an+2)===[f(an+1)]2; ④f(an)f(an+2)=ln|an|ln|an+2|≠(ln|an+1|)2=[f(an+1)]2. A組 專題通關(guān) 1

19、.在正項等比數(shù)列{an}中,已知a3a5=64,則a1+a7的最小值為(  ) A.64 B.32 C.16 D.8 答案 C 解析 在正項等比數(shù)列{an}中, ∵a3a5=64,∴a3a5=a1a7=64, ∴a1+a7≥2=2=2×8=16, 當(dāng)且僅當(dāng)a1=a7=8時取等號,∴a1+a7的最小值為16,故選C. 2.(2018·嘉興市、麗水市模擬)已知數(shù)列{an}為等差數(shù)列,且a8=1,則2|a9|+|a10|的最小值為(  ) A.3 B.2 C.1 D.0 答案 C 解析 因為數(shù)列{an}為等差數(shù)列,所以2a9=a8+a10,則2|a9|=|a8

20、+a10|≥|a8|-|a10|,所以2|a9|+|a10|≥|a8|=1,當(dāng)且僅當(dāng)a10<0且|a10|≤|a8|=1時,等號成立,故選C. 3.(2018·諸暨市高考適應(yīng)性考試)等差數(shù)列{an}的前n項和為Sn,公差d不等于零,若a2,a3,a6成等比數(shù)列,則(  ) A.a(chǎn)1d>0,dS3>0 B.a(chǎn)1d>0,dS3<0 C.a(chǎn)1d<0,dS3>0 D.a(chǎn)1d<0,dS3<0 答案 C 解析 因為數(shù)列{an}為等差數(shù)列,且a2,a3,a6構(gòu)成等比數(shù)列,所以a=a2a6,即(a1+2d)2=(a1+d)(a1+5d),結(jié)合d≠0化簡得d=-2a1≠0,則a1d=-2a<0,d

21、S3=d(a1+a1+d+a1+2d)=-2a1(a1+a1-2a1+a1-4a1)=6a>0,故選C. 4.(2018·浙江省溫州六校協(xié)作體聯(lián)考)設(shè){an}是公比為實數(shù)q的等比數(shù)列,首項a1=64,對于n∈N*,an=2bn,當(dāng)且僅當(dāng)n=4時,數(shù)列{bn}的前n項和取得最大值,則q的取值范圍是(  ) A. B. C. D. 答案 C 解析 由題意得==2bn+1-bn=q>0,所以bn+1-bn=log2q為常數(shù),又因為a1= =64,所以b1=6,所以數(shù)列{bn}為首項為6,公差為log2q的等差數(shù)列,又因為當(dāng)且僅當(dāng)n=4時,數(shù)列{bn}的前n項和取得最大值,所以解得

22、<,故選C. 5.(2018·浙江省金麗衢十二校聯(lián)考)已知正項數(shù)列{an}中,a1=1,a2=2,an=(n≥2),則a6等于(  ) A.2 B.4 C.16 D.45 答案 B 解析 由an=得a=,即a-a=a-a(n≥2),所以數(shù)列{a}為等差數(shù)列,且首項為a=1,公差為d=a-a=3,則a=a+5d=16,又因為數(shù)列{an}為正項數(shù)列,所以a6=4,故選B. 6.已知等差數(shù)列{an}的公差不為0,a1=1,且a2,a4,a8成等比數(shù)列,設(shè){an}的前n項和為Sn,則Sn=________. 答案 (n∈N*) 解析 設(shè)等差數(shù)列{an}的公差為d. ∵a2,a4,

23、a8成等比數(shù)列, ∴a=a2·a8,即(a1+3d)2=(a1+d)·(a1+7d), ∴(1+3d)2=(1+d)·(1+7d), 解得d=1或d=0(舍). ∴Sn=na1+d=(n∈N*). 7.等差數(shù)列{an}的前n項和為Sn,若a2=8,且Sn≤S7,則公差d的取值范圍是________. 答案  解析 ∵a2=8=a1+d, ∴a1=8-d, Sn=na1+d=(8-d)n+d =dn2+n, 對稱軸為n=-, ∵Sn≤S7,∴S7為Sn的最大值, 由二次函數(shù)的性質(zhì)可得, 得-≤d≤-, 即d的取值范圍是. 8.(2018·浙江省金華十校模擬)已知等

24、差數(shù)列{an}滿足:a4>0,a5<0,數(shù)列的前n項和為Sn,則的取值范圍是________. 答案  解析 因為在等差數(shù)列{an}中,a4>0,a5<0,所以等差數(shù)列{an}的公差d<0,且解得-3d

25、10成等比數(shù)列,且已知an>0,所以S15-S10===S5++2≥2+2=4,當(dāng)且僅當(dāng)S5=,即S5=1時等號成立,所以S15-S10的最小值為4. 10.(2018·天津)設(shè){an}是等比數(shù)列,公比大于0,其前n項和為Sn(n∈N*),{bn}是等差數(shù)列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6. (1)求{an}和{bn}的通項公式; (2)設(shè)數(shù)列{Sn}的前n項和為Tn(n∈N*), ①求Tn; ②證明:=-2(n∈N*). (1)解 設(shè)等比數(shù)列{an}的公比為q.由a1=1,a3=a2+2, 可得q2-q-2=0.由q>0,可得q=2,故an=

26、2n-1. 設(shè)等差數(shù)列{bn}的公差為d. 由a4=b3+b5,可得b1+3d=4. 由a5=b4+2b6,可得3b1+13d=16,從而b1=1,d=1, 故bn=n. 所以數(shù)列{an}的通項公式為an=2n-1(n∈N*),數(shù)列{bn}的通項公式為bn=n(n∈N*). (2)①解 由(1)得Sn==2n-1, 故Tn=(2k-1)=k-n=-n =2n+1-n-2(n∈N*). ②證明 因為= ==-, 所以=++…+=-2(n∈N*). B組 能力提高 11.(2018·浙江省名校新高考研究聯(lián)盟聯(lián)考)已有正項數(shù)列{an}是單調(diào)遞增的等差數(shù)列,{bn}是等比數(shù)列

27、,且滿足a1=b1,a5=b5,則以下結(jié)論:①a3b3;③a6b6,正確的個數(shù)是(  ) A.0 B.1 C.2 D.3 答案 B 解析 設(shè)數(shù)列{an}的公差為d,數(shù)列{bn}的公比為q,則由a5=b5得a1+4d=b1q4,又a1=b1,所以d=.因為數(shù)列{an}為正項單調(diào)遞增數(shù)列,所以a1>0,d>0,則q4-1>0,解得q>1或q<-1.當(dāng)q>1時,an可以看作是直線上的點的縱坐標(biāo),bn可以看作是指數(shù)函數(shù)圖象上的點的縱坐標(biāo),則易得此時a6b6,③④錯誤.由等差數(shù)列和等比數(shù)列的性質(zhì)易得a3=,b=b1b5

28、=a1a5,則a-b=2-a1a5=2>0,所以a3>b3,①錯誤,②正確.綜上所述,正確結(jié)論的個數(shù)為1.故選B. 12.已知數(shù)列{an}的前n項和為Sn,a1=15,且滿足an+1=an+4n2-16n+15,已知n,m∈N*,n>m,則Sn-Sm的最小值為(  ) A.- B.- C.-14 D.-28 答案 C 解析 根據(jù)題意可知 (2n-5)an+1=(2n-3)an+(2n-5)(2n-3), 式子左、右兩端同除以(2n-5)(2n-3), 可得=+1,即-=1, 所以數(shù)列是以=-5為首項,以1為公差的等差數(shù)列, 所以=-5+(n-1)·1=n-6, 即an

29、=(n-6)(2n-5), 由此可以判斷出a3,a4,a5這三項是負(fù)數(shù), 從而得到當(dāng)n=5,m=2時,Sn-Sm取得最小值, 且Sn-Sm=S5-S2=a3+a4+a5=-3-6-5=-14. 13.已知數(shù)列{an}滿足a1=3,an+1=2an-n+1,數(shù)列{bn}滿足b1=2,bn+1=bn+an-n. (1)證明:{an-n}為等比數(shù)列; (2)數(shù)列{cn}滿足cn=,求數(shù)列{cn}的前n項和Tn. (1)證明 ∵an+1=2an-n+1, ∴an+1-(n+1)=2(an-n), 又a1-1=2, ∴{an-n}是以2為首項,2為公比的等比數(shù)列. (2)解 由(1

30、)知an-n=(a1-1)·2n-1=2n, ∵bn+1=bn+an-n,∴bn+1-bn=2n, 累加得到bn=2+=2n (n≥2). 當(dāng)n=1時,b1=2,∴bn=2n, ∴cn= = =-. ∴Tn=-. 14.設(shè)等差數(shù)列{an}的前n項和為Sn,a=(a1,1),b=(1,a10),若a·b=24,且S11=143,數(shù)列{bn}的前n項和為Tn,且滿足=λTn-(a1-1)(n∈N*). (1)求數(shù)列{an}的通項公式及數(shù)列的前n項和Mn; (2)是否存在非零實數(shù)λ,使得數(shù)列{bn}為等比數(shù)列?并說明理由. 解 (1)設(shè)數(shù)列{an}的公差為d, 由a=(a1,1),b=(1,a10),a·b=24, 得a1+a10=24,又S11=143,解得a1=3,d=2, 因此數(shù)列{an}的通項公式是an=2n+1(n∈N*), 所以==, 所以Mn= =(n∈N*). (2)因為=λTn-(a1-1)(n∈N*),且a1=3, 所以Tn=+, 當(dāng)n=1時,b1=; 當(dāng)n≥2時,bn=Tn-Tn-1=, 此時有=4,若{bn}是等比數(shù)列, 則有=4,而b1=,b2=,彼此相矛盾, 故不存在非零實數(shù)λ使數(shù)列{bn}為等比數(shù)列. 14

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!