《2022年高考數(shù)學(xué)考前指導(dǎo) 解析幾何練習(xí)題2》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022年高考數(shù)學(xué)考前指導(dǎo) 解析幾何練習(xí)題2(3頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2022年高考數(shù)學(xué)考前指導(dǎo) 解析幾何練習(xí)題2
(1)題型穩(wěn)定:近幾年來(lái)高考解析幾何試題一直穩(wěn)定一個(gè)填空題,一個(gè)解答題上,分值為21分左右, 占總分值的8%左右。
(2)整體平衡,重點(diǎn)突出:對(duì)直線、圓、圓錐曲線知識(shí)的考查幾乎沒(méi)有遺漏,通過(guò)對(duì)知識(shí)的重新組合,考查時(shí)既注意全面,更注意突出重點(diǎn), 對(duì)支撐數(shù)學(xué)知識(shí)體系的主干知識(shí), 考查時(shí)保證較高的比例并保持必要深度。近幾年新教材高考對(duì)解析幾何內(nèi)容的考查主要集中在如下幾個(gè)類型:
① 求曲線方程( 類型確定、類型未定);
②直線與圓錐曲線的交點(diǎn)問(wèn)題(含切線問(wèn)題);
③與曲線有關(guān)的最(極)值問(wèn)題;
④與曲線有關(guān)的幾何證明(對(duì)稱性或求對(duì)稱曲線、平行、
2、垂直);
⑤探求曲線方程中幾何量及參數(shù)間的數(shù)量特征;
⑥定點(diǎn)問(wèn)題;
(3)能力立意,滲透數(shù)學(xué)思想:一些雖是常見(jiàn)的基本題型,但如果借助于數(shù)形結(jié)合的思想,就能快速準(zhǔn)確的得到答案。
(4)題型新穎,位置不定:近幾年解析幾何試題的難度有所下降,填空題均屬易中等題,且解答題未必處于壓軸題的位置,計(jì)算量減少,思考量增大。加大與相關(guān)知識(shí)的聯(lián)系(如向量、函數(shù)、方程、不等式等),凸現(xiàn)教材中研究性學(xué)習(xí)的能力要求。加大探索性題型的分量。
1、已知橢圓的離心率為,且過(guò)點(diǎn),其短軸的左右兩個(gè)端點(diǎn)分別為A,B,直線與x軸、y軸分別交于兩點(diǎn)M,N,交橢圓于兩點(diǎn)C,D。
(I)若,求直線的方程:
(II)設(shè)直
3、線AD,CB的斜率分別為,若,求k的值。
解:由題意得:,解得。
所以,橢圓方程為。
(1)設(shè),聯(lián)立方程,得①,
所以,判別式,
因?yàn)闉棰偈降母?,所以?
由已知得,又,所以,
所以,即,解得。
所求方程為。
(2)由題意得:,所以。
因?yàn)椋?,平方②?
又,所以,同理,代入②式,
解得,即,
所以
解得或。
又,,所以異號(hào),所以(舍去),
所以。
2.(直線、圓、橢圓).已知橢圓C;的左右頂點(diǎn)分別為A、B,M為橢圓上的任意一點(diǎn),A關(guān)于M的對(duì)稱點(diǎn)為P,如圖所示,
(1)若M的橫坐標(biāo)為,且點(diǎn)P在橢圓的右準(zhǔn)線上,求b的值;
(2)若以PM為直徑的圓恰好經(jīng)過(guò)坐
4、標(biāo)原點(diǎn)O,求b的取值范圍。
解析:(1)M是AP的中點(diǎn),
,
P在橢圓的右準(zhǔn)線上,,解得
(第2題圖)
M
B
A
y
x
P
O
(2)設(shè)點(diǎn)P的坐標(biāo)為(),點(diǎn)M的坐標(biāo)為(),
又因?yàn)镻關(guān)于M的對(duì)稱點(diǎn)為A,所以
即
PM為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O,,
,即,
所以,即
又因?yàn)辄c(diǎn)M在橢圓上,所以,即,
…………………………………12分
所以,
因?yàn)?,所以?
所以,
所以,即
所以,即
又因?yàn)?,所?
3、已知圓O:,O為坐標(biāo)原點(diǎn).
(1)邊長(zhǎng)為的正方形ABCD的頂點(diǎn)A、B均在圓O上,C、D在圓O外,當(dāng)點(diǎn)A在圓O上運(yùn)動(dòng)時(shí),C點(diǎn)的軌跡為E.
5、(ⅰ)求軌跡E的方程;
(ⅱ)過(guò)軌跡E上一定點(diǎn)作相互垂直的兩條直線,并且使它們分別與圓O、軌跡E 相交,設(shè)被圓O截得的弦長(zhǎng)為,設(shè)被軌跡E截得的弦長(zhǎng)為,求的最大值.
(2)正方形ABCD的一邊AB為圓O的一條弦,求線段OC長(zhǎng)度的最值.
解:(1)(ⅰ)連結(jié)OB,OA,因?yàn)镺A=OB=1,AB=,所以,
所以,所以,在中,,
所以軌跡E是以O(shè)為圓心,為半徑的圓,所以軌跡E的方程為;
(ⅱ)設(shè)點(diǎn)O到直線的距離分別為,因?yàn)椋裕?
x
O
D
B
A
1
1
C
y
則,則
≤4=,
當(dāng)且僅當(dāng),即時(shí)取“=”,
所以的最大值為;
x
O
D
B
A
1
1
C
y
(2)設(shè)正方形邊長(zhǎng)為a,,則,.
當(dāng)A、B、C、D按順時(shí)針?lè)较驎r(shí),如圖所示,在中,
,即
,
由,此時(shí);
當(dāng)A、B、C、D按逆時(shí)針?lè)较驎r(shí),在中,
,即
,
由,此時(shí),
綜上所述,線段OC長(zhǎng)度的最小值為,最大值為.