初中數(shù)學(xué)競賽輔導(dǎo) 第二十三講《生活中的數(shù)學(xué)(二)——地板磚上的數(shù)學(xué)》教案1 北師大版

上傳人:xt****7 文檔編號:105518310 上傳時間:2022-06-12 格式:DOC 頁數(shù):5 大小:148.02KB
收藏 版權(quán)申訴 舉報 下載
初中數(shù)學(xué)競賽輔導(dǎo) 第二十三講《生活中的數(shù)學(xué)(二)——地板磚上的數(shù)學(xué)》教案1 北師大版_第1頁
第1頁 / 共5頁
初中數(shù)學(xué)競賽輔導(dǎo) 第二十三講《生活中的數(shù)學(xué)(二)——地板磚上的數(shù)學(xué)》教案1 北師大版_第2頁
第2頁 / 共5頁
初中數(shù)學(xué)競賽輔導(dǎo) 第二十三講《生活中的數(shù)學(xué)(二)——地板磚上的數(shù)學(xué)》教案1 北師大版_第3頁
第3頁 / 共5頁

下載文檔到電腦,查找使用更方便

9.9 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《初中數(shù)學(xué)競賽輔導(dǎo) 第二十三講《生活中的數(shù)學(xué)(二)——地板磚上的數(shù)學(xué)》教案1 北師大版》由會員分享,可在線閱讀,更多相關(guān)《初中數(shù)學(xué)競賽輔導(dǎo) 第二十三講《生活中的數(shù)學(xué)(二)——地板磚上的數(shù)學(xué)》教案1 北師大版(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、初中數(shù)學(xué)競賽輔導(dǎo) 第二十三講《生活中的數(shù)學(xué)(二)——地板磚上的數(shù)學(xué)》教案1 北師大版   隨著人們生活水平的提高,很多家庭都裝修房子,其中鋪地板磚就是一項重要的美化工作.當(dāng)你看到地板磚展鋪成美麗的圖案時,你是否想到展鋪這美麗圖案的數(shù)學(xué)原理呢?如果你注意到的話,可能會對下面的簡單分析發(fā)生興趣.   地板磚展鋪的圖形,一般都是用幾種全等的平面圖形展鋪開來的,有時用由直線構(gòu)成的多邊形組成的圖案,有時用由曲線組成的圖案,千變?nèi)f化.但是作為基礎(chǔ)還是用平面多邊形展鋪平面.有時雖然有曲線,卻常常是由多邊形和圓作適當(dāng)變化而得到的.例如,一個由正方形展鋪的平面圖案(圖1-77(a)),如果對正方形用圓弧做一

2、些變化(圖1-77(b)),那么把以上兩個圖形結(jié)合起來設(shè)計,就可由比較單調(diào)的正方形圖案,變化曲線形成花紋圖案了(圖1-77(c)).   由于多邊形是構(gòu)成地板磚展鋪復(fù)雜圖形的基礎(chǔ),因此,下面我們對利用多邊形展鋪平面圖形做些簡要分析.   例1 怎樣以三角形為基礎(chǔ)展鋪平面圖案.   分析與解 三角形是多邊形中最簡單的圖形,如果用三角形為基本圖形來展鋪平面圖案, 那么就要考慮三角形的特點(diǎn).由于三角形的三個內(nèi)角和為180°,所以要把三角形的三個角集中到一起,就組成了一個平角.如果要在平面上一個點(diǎn)的周圍集中三角形的角,那么必須使這些角的和為兩個平角.因此,若把圖1-78中的三角形的三個內(nèi)角集

3、中在一起,并進(jìn)行軸對稱變換或中心對稱變換,就可以得到集中于一點(diǎn)的六個角,它們的和為360°,剛好覆蓋上這一點(diǎn)周圍的平面.變換的方法見圖1-79.        在中心對稱的情況下,三角形不翻折,在軸對稱的情況下,三角形要翻折.如果把三角形正、反兩面涂上顏色,那么通過對稱變換,正、反兩面就會明顯地反映出來了.   由上面的分析可知,用三角形為基本圖形展鋪平面圖案,共有以下四種情況,如圖1-80.   例2 怎樣以四邊形為基礎(chǔ)展鋪平面圖案?   分析與解 由于四邊形內(nèi)角和為360°,所以,任何四邊形都可以作為基本圖形來展鋪平面圖案.圖1-81中的(a),(b),(C),(d)分別

4、是以矩形、菱形、梯形、一般四邊形為基本圖形的平面展鋪圖案.   例3 怎樣以正多邊形為基本圖形展鋪平面圖案?   分析與解 用正多邊形為基本圖形展鋪平面圖案,集中于一點(diǎn)的周圍的正多邊形的各個角的和應(yīng)是360°.例如,正五邊形一個內(nèi)角為 正十邊形一個內(nèi)角為      如果把兩個正五邊形的內(nèi)角與一個正十邊形的內(nèi)角加起來,則其和為2×108°+144°=360°.但是它們并不能用來展鋪平面.   如果用同種的正n邊形來展鋪平面圖案,在一個頂點(diǎn)周圍集中了m個正n邊形的角.由于這些角的和應(yīng)為360°,所以以下等式成立   因?yàn)閙,n都是正整數(shù),并且m>2,n>2.所以m-2,n-

5、2也都必定是正整數(shù).所以當(dāng)n-2=1,m-2=4時,則n=3,m=6;當(dāng)n-2=2,m-2=2時,則n=4,m=4;當(dāng)n-2=4,m-2=1時,則n=6,m=3.這就證明了只用一種正多邊形展鋪平面圖案,只存在三種情況:   (1)由6個正三角形拼展,我們用符號(3,3,3,3,3,3)來表示(見圖1-82).   (2)由4個正方形拼展,我們用符號(4,4,4,4)來表示   (見圖1-83).   (3)由3個正六邊形來拼展,我們用符號(6,6,6)來表示   (見圖1-84).   如果用兩種正多邊形來拼展平面圖案,那么就有以下五種情況:(3,3,3,4,4),(3,3,3

6、,3,6),(3,3,6,6),(3,12,12)以及(4,8,8).這五種情況中,(3,3,3,4,4)又可有兩種不同的拼展方法,參看下面六種拼展圖形(圖1-85).       用三種正多邊形展拼平面圖形就比較難設(shè)計了.下面舉出兩例供同學(xué)們思考(圖1-86).   有興趣的同學(xué)請自己構(gòu)想出一兩個例子. 練習(xí)二十三   1.試用三角形和梯形這兩種多邊形拼展平面圖案.   2.試用形如圖1-87的圖形拼展平面圖案.   3.試用邊長為1的正三角形、邊長為1的正方形和兩腰為1、夾角為120°的等腰三角形拼展平面圖案.   4.試用圓弧和多邊形(多邊形可以用圓弧割補(bǔ))設(shè)計一種平面圖案.   5.試用一個正方形,仿照圖1-76(a),(b),(c)的變化方式,設(shè)計一種平面圖案.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!