2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第2節(jié) 平面向量的基本定理及坐標(biāo)表示教學(xué)案 文(含解析)北師大版

上傳人:彩*** 文檔編號(hào):104808549 上傳時(shí)間:2022-06-11 格式:DOC 頁(yè)數(shù):8 大?。?.69MB
收藏 版權(quán)申訴 舉報(bào) 下載
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第2節(jié) 平面向量的基本定理及坐標(biāo)表示教學(xué)案 文(含解析)北師大版_第1頁(yè)
第1頁(yè) / 共8頁(yè)
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第2節(jié) 平面向量的基本定理及坐標(biāo)表示教學(xué)案 文(含解析)北師大版_第2頁(yè)
第2頁(yè) / 共8頁(yè)
2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第2節(jié) 平面向量的基本定理及坐標(biāo)表示教學(xué)案 文(含解析)北師大版_第3頁(yè)
第3頁(yè) / 共8頁(yè)

下載文檔到電腦,查找使用更方便

18 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第2節(jié) 平面向量的基本定理及坐標(biāo)表示教學(xué)案 文(含解析)北師大版》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高考數(shù)學(xué)一輪復(fù)習(xí) 第4章 平面向量、數(shù)系的擴(kuò)充與復(fù)數(shù)的引入 第2節(jié) 平面向量的基本定理及坐標(biāo)表示教學(xué)案 文(含解析)北師大版(8頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、第二節(jié) 平面向量的基本定理及坐標(biāo)表示 [考綱傳真] 1.了解平面向量的基本定理及其意義.2.掌握平面向量的正交分解及其坐標(biāo)表示.3.會(huì)用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn)算.4.理解用坐標(biāo)表示的平面向量共線的條件. 1.平面向量基本定理 (1)定理:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量a,存在唯一一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2. (2)基底:不共線的向量e1,e2叫做表示這一平面內(nèi)所有向量的一組基底. 2.平面向量的坐標(biāo)表示 在平面直角坐標(biāo)系中,分別取與x軸、y軸方向相同的兩個(gè)單位向量i,j作為基底,該平面內(nèi)的任一向量a可

2、表示成a=xi+yj,把有序數(shù)對(duì)(x,y)叫做向量a的坐標(biāo),記作a=(x,y). 3.平面向量的坐標(biāo)運(yùn)算 (1)向量加法、減法、數(shù)乘及向量的模 設(shè)a=(x1,y1),b=(x2,y2),則 a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2), λa=(λx1,λy1),|a|=. (2)向量坐標(biāo)的求法 ①若向量的起點(diǎn)是坐標(biāo)原點(diǎn),則終點(diǎn)坐標(biāo)即為向量的坐標(biāo). ②設(shè)A(x1,y1),B(x2,y2),則=(x2-x1,y2-y1), ||=. 4.平面向量共線的坐標(biāo)表示 設(shè)a=(x1,y1),b=(x2,y2),其中b≠0.a,b共線?x1y2-x2y1=0

3、. 1.若a與b不共線,且λa+μb=0,則λ=μ=0. 2.已知P為線段AB的中點(diǎn),若A(x1,y1),B(x2,y2),則P點(diǎn)坐標(biāo)為;已知△ABC的頂點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3),則△ABC的重心G的坐標(biāo)為. [基礎(chǔ)自測(cè)] 1.(思考辨析)判斷下列結(jié)論的正誤.(正確的打“√”,錯(cuò)誤的打“×”) (1)平面內(nèi)的任何兩個(gè)向量都可以作為一組基底. (  ) (2)若a,b不共線,且λ1a+μ1b=λ2a+μ2b,則λ1=λ2,μ1=μ2. (  ) (3)相等向量的坐標(biāo)相同. (  ) (4)若a=(x1,y1),b=(x2,y2),則a∥b的充要條

4、件可以表示成=. (  ) [答案] (1)× (2)√ (3)√ (4)× 2.已知平面向量a=(2,-1),b=(1,3),那么|a+b|等于 (  ) A.5   B.   C.   D.13 B [因?yàn)閍+b=(2,-1)+(1,3)=(3,2),所以|a+b|==.] 3.如圖,在△ABC中,BE是邊AC的中線,O是邊BE的中點(diǎn),若=a,=b,則=(  ) A.a(chǎn)+b B.a(chǎn)+b C.a(chǎn)+b D.a(chǎn)+b D [=+=+=+(-) =+=+=a+b,故選D.] 4.(教材改編)已知A(-2,-3),B(2,1),C(1,4),D(-7,t),若與共線,則t

5、=________. -4 [=(4,4),=(-8,t-4),由∥得4(t-4)=-32,解得t=-4.] 5.(教材改編)已知?ABCD的頂點(diǎn)A(-1,-2),B(3,-1),C(5,6),則頂點(diǎn)D的坐標(biāo)為_(kāi)_______. (1,5) [設(shè)D(x,y),則由=,得(4,1)=(5-x,6-y), 即解得] 平面向量基本定理及其應(yīng)用 1.在下列向量組中,可以把向量a=(3,2)表示出來(lái)的是(  ) A.e1=(0,0),e2=(1,2) B.e1=(-1,2),e2=(5,-2) C.e1=(3,5),e2=(6,10) D.e1=(2,-3),e2

6、=(-2,3) B [當(dāng)e1與e2不共線時(shí),可表示a. 當(dāng)e1=(-1,2),e2=(5,-2)時(shí),(-1)×(-2)≠5×2, 因此e1與e2不共線,故選B.] 2.在△ABC中,P,Q分別是AB,BC的三等分點(diǎn),且AP=AB,BQ=BC,若=a,=b,則=(  ) A.a(chǎn)+b    B.-a+b C.a(chǎn)-b D.-a-b A [由題意知=+=+=+(-)=+=a+b.故選A.] 3.如圖,向量a-b等于(  ) A.-4e1-2e2 B.-2e1-4e2 C.e1-3e2 D.3e1-e2 C [根據(jù)向量的減法和加法的三角形法則知a-b=e1-3e2,故選C.]

7、 [規(guī)律方法] 平面向量基本定理應(yīng)用的實(shí)質(zhì)和一般思路 (1)應(yīng)用平面向量基本定理表示向量的實(shí)質(zhì)是利用平行四邊形法則或三角形法則進(jìn)行向量的加、減或數(shù)乘運(yùn)算. (2)用向量基本定理解決問(wèn)題的一般思路是先選擇一組基底,并運(yùn)用該基底將條件和結(jié)論表示成向量的形式,再通過(guò)向量的運(yùn)算來(lái)解決. 易錯(cuò)警示:在基底未給出的情況下,合理地選取基底會(huì)給解題帶來(lái)方便.另外,要熟練運(yùn)用平面幾何的一些性質(zhì)定理. 平面向量的坐標(biāo)運(yùn)算 【例1】 (1)已知a=(5,-2),b=(-4,-3),若a-2b+3c=0,則c等于(  ) A. B. C. D. (2)已知向量a=(2,1),b=(1,

8、-2).若ma+nb=(9,-8)(m,n∈R),則m-n的值為_(kāi)_______. (3)平面直角坐標(biāo)系xOy中,已知A(1,0),B(0,1),C(-1,c),(c>0),且||=2,若=λ+μ,則實(shí)數(shù)λ+μ的值為_(kāi)_______. (1)D (2)-3 (3)-1 [(1)由已知3c=-a+2b =(-5,2)+(-8,-6)=(-13,-4). 所以c=. (2)由向量a=(2,1),b=(1,-2),得ma+nb=(2m+n,m-2n)=(9,-8),則 解得故m-n=-3. (3)因?yàn)閨|=2,所以||2=1+c2=4,因?yàn)閏>0,所以c=.因?yàn)椋溅耍?,所?-1,)

9、=λ(1,0)+μ(0,1),所以λ=-1,μ=,所以λ+μ=-1.] [規(guī)律方法] 平面向量坐標(biāo)運(yùn)算的技巧 (1)利用向量加、減、數(shù)乘運(yùn)算的法則來(lái)進(jìn)行求解,若已知有向線段兩端點(diǎn)的坐標(biāo),則應(yīng)先求向量的坐標(biāo). (2)解題過(guò)程中,常利用“向量相等,則坐標(biāo)相同”這一結(jié)論,由此可列方程(組)進(jìn)行求解. 已知A(-2,4),B(3,-1),C(-3,-4).設(shè)=a,=b,=c,且=3c,=-2b, (1)求3a+b-3c; (2)求滿足a=mb+nc的實(shí)數(shù)m,n; (3)求M,N的坐標(biāo)及向量的坐標(biāo). [解] 由已知得a=(5,-5),b=(-6,-3),c=(1,8). (1)3a+

10、b-3c=3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵mb+nc=(-6m+n,-3m+8n), ∴解得 (3)設(shè)O為坐標(biāo)原點(diǎn).∵=-=3c, ∴=3c+=(3,24)+(-3,-4)=(0,20). ∴M(0,20). 又∵=-=-2b,∴=-2b+=(12,6)+(-3,-4)=(9,2),∴N(9,2),∴=(9,-18). 平面向量共線的坐標(biāo)表示 【例2】 已知a=(1,0),b=(2,1). (1)當(dāng)k為何值時(shí),ka-b與a+2b共線? (2)若=2a+3b,=a+mb且A,B,C三點(diǎn)

11、共線,求m的值. [解] (1)ka-b=k(1,0)-(2,1)=(k-2,-1), a+2b=(1,0)+2(2,1)=(5,2). ∵ka-b與a+2b共線,∴2(k-2)-(-1)×5=0,即2k-4+5=0,得k=-. (2)法一:∵A,B,C三點(diǎn)共線,∴=λ, 即2a+3b=λ(a+mb),∴, 解得m=. 法二:=2a+3b=2(1,0)+3(2,1)=(8,3), =a+mb=(1,0)+m(2,1)=(2m+1,m). ∵A,B,C三點(diǎn)共線,∴∥. ∴8m-3(2m+1)=0,即2m-3=0, ∴m=. [規(guī)律方法] 平面向量共線的坐標(biāo)表示問(wèn)題的常見(jiàn)類

12、型及解題策略 (1)利用兩向量共線求參數(shù),如果已知兩向量共線,求某些參數(shù)的取值時(shí),利用“若a=(x1,y1),b=(x2,y2),則a∥b的充要條件是x1y2=x2y1”解題比較方便. (2)利用兩向量共線的條件求向量坐標(biāo).一般地,在求與一個(gè)已知向量a共線的向量時(shí),可設(shè)所求向量為λa(λ∈R),然后結(jié)合其他條件列出關(guān)于λ的方程,求出λ的值后代入λa即可得到所求的向量. (1)(2019·沈陽(yáng)模擬)已知平面向量a=(1,m),b=(-3,1)且(2a+b)∥b,則實(shí)數(shù)m的值為(  ) A.  B.-   C.   D.- (2)已知向量=(1,-3),=(2,-1),=(k+1,

13、k-2),若A,B,C三點(diǎn)能構(gòu)成三角形,則實(shí)數(shù)k應(yīng)滿足的條件是________. (1)B (2)k≠1 [(1)2a+b=(-1,2m+1),由題意知 -3(2m+1)=-1,解得m=-, 故選B. (2)若點(diǎn)A,B,C能構(gòu)成三角形, 則向量,不共線. 因?yàn)椋剑?2,-1)-(1,-3)=(1,2), =-=(k+1,k-2)-(1,-3)=(k,k+1), 所以1×(k+1)-2k≠0, 解得k≠1.] 1.(2015·全國(guó)卷Ⅰ)已知點(diǎn)A(0,1),B(3,2),向量=(-4,-3),則向量=(  ) A.(-7,-4)  B.(7,4) C.(-1,4) D

14、.(1,4) A [法一:設(shè)C(x,y),則=(x,y-1)=(-4,-3), 所以從而=(-4,-2)-(3,2)=(-7,-4).故選A. 法二:=(3,2)-(0,1)=(3,1), =-=(-4,-3)-(3,1)=(-7,-4). 故選A.] 2.(2016·全國(guó)卷Ⅱ)已知向量a=(m,4),b=(3,-2),且a∥b,則m=________. -6 [∵a=(m,4),b=(3,-2),a∥b, ∴-2m-4×3=0. ∴m=-6.] 3.(2018·全國(guó)卷Ⅲ)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c∥(2a+b),則λ=________.  [由題意得2a+b=(4,2),因?yàn)閏∥(2a+b),c=(1,λ),所以4λ=2,得λ=.] - 8 -

展開(kāi)閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!