2018年云南省昆明市中考數(shù)學(xué)試卷
《2018年云南省昆明市中考數(shù)學(xué)試卷》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018年云南省昆明市中考數(shù)學(xué)試卷(28頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2018年云南省昆明市中考數(shù)學(xué)試卷 一、填空題(每小題3分,滿分18分) 1.(3.00分)(2018?昆明)在實(shí)數(shù)﹣3,0,1中,最大的數(shù)是 . 2.(3.00分)(2018?昆明)共享單車(chē)進(jìn)入昆明市已兩年,為市民的低碳出行帶來(lái)了方便,據(jù)報(bào)道,昆明市共享單車(chē)投放量已達(dá)到240000輛,數(shù)字240000用科學(xué)記數(shù)法表示為 ?。? 3.(3.00分)(2018?昆明)如圖,過(guò)直線AB上一點(diǎn)O作射線OC,∠BOC=2918′,則∠AOC的度數(shù)為 ?。? 4.(3.00分)(2018?昆明)若m+=3,則m2+= . 5.(3.00分)(2018?昆明)如圖,點(diǎn)A的坐標(biāo)為(4,2).將點(diǎn)A繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)90后,再向左平移1個(gè)單位長(zhǎng)度得到點(diǎn)A′,則過(guò)點(diǎn)A′的正比例函數(shù)的解析式為 ?。? 6.(3.00分)(2018?昆明)如圖,正六邊形ABCDEF的邊長(zhǎng)為1,以點(diǎn)A為圓心,AB的長(zhǎng)為半徑,作扇形ABF,則圖中陰影部分的面積為 ?。ńY(jié)果保留根號(hào)和π). 二、選擇題(每小題4分,滿分32分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是正確的) 7.(4.00分)(2018?昆明)下列幾何體的左視圖為長(zhǎng)方形的是( ?。? A. B. C. D. 8.(4.00分)(2018?昆明)關(guān)于x的一元二次方程x2﹣2x+m=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是( ?。? A.m<3 B.m>3 C.m≤3 D.m≥3 9.(4.00分)(2018?昆明)黃金分割數(shù)是一個(gè)很奇妙的數(shù),大量應(yīng)用于藝術(shù)、建筑和統(tǒng)計(jì)決策等方面,請(qǐng)你估算﹣1的值( ?。? A.在1.1和1.2之間 B.在1.2和1.3之間 C.在1.3和1.4之間 D.在1.4和1.5之間 10.(4.00分)(2018?昆明)下列判斷正確的是( ) A.甲乙兩組學(xué)生身高的平均數(shù)均為1.58,方差分別為S甲2=2.3,S乙2=1.8,則甲組學(xué)生的身高較整齊 B.為了了解某縣七年級(jí)4000名學(xué)生的期中數(shù)學(xué)成績(jī),從中抽取100名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行調(diào)查,這個(gè)問(wèn)題中樣本容量為4000 C.在“童心向黨,陽(yáng)光下成長(zhǎng)”合唱比賽中,30個(gè)參賽隊(duì)的決賽成績(jī)?nèi)缦卤恚? 比賽成績(jī)/分 9.5 9.6 9.7 9.8 9.9 參賽隊(duì)個(gè)數(shù) 9 8 6 4 3 則這30個(gè)參賽隊(duì)決賽成績(jī)的中位數(shù)是9.7 D.有13名同學(xué)出生于2003年,那么在這個(gè)問(wèn)題中“至少有兩名同學(xué)出生在同一個(gè)月”屬于必然事件 11.(4.00分)(2018?昆明)在△AOC中,OB交AC于點(diǎn)D,量角器的擺放如圖所示,則∠CDO的度數(shù)為( ) A.90 B.95 C.100 D.120 12.(4.00分)(2018?昆明)下列運(yùn)算正確的是( ?。? A.(﹣)2=9 B.20180﹣=﹣1 C.3a3?2a﹣2=6a(a≠0) D.﹣= 13.(4.00分)(2018?昆明)甲、乙兩船從相距300km的A、B兩地同時(shí)出發(fā)相向而行,甲船從A地順流航行180km時(shí)與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為( ?。? A.= B.= C.= D.= 14.(4.00分)(2018?昆明)如圖,點(diǎn)A在雙曲線y═(x>0)上,過(guò)點(diǎn)A作AB⊥x軸,垂足為點(diǎn)B,分別以點(diǎn)O和點(diǎn)A為圓心,大于OA的長(zhǎng)為半徑作弧,兩弧相交于D,E兩點(diǎn),作直線DE交x軸于點(diǎn)C,交y軸于點(diǎn)F(0,2),連接AC.若AC=1,則k的值為( ?。? A.2 B. C. D. 三、解答題(共9題,滿分70分,必須寫(xiě)出運(yùn)算步驟、推理過(guò)程或文字說(shuō)明) 15.(6.00分)(2018?昆明)如圖,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2. 求證:BC=DE. 16.(7.00分)(2018?昆明)先化簡(jiǎn),再求值:(+1),其中a=tan60﹣|﹣1|. 17.(7.00分)(2018?昆明)近幾年購(gòu)物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對(duì)某超市一天內(nèi)購(gòu)買(mǎi)者的支付方式進(jìn)行調(diào)查統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖. 請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題: (1)本次一共調(diào)查了多少名購(gòu)買(mǎi)者? (2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中A種支付方式所對(duì)應(yīng)的圓心角為 度. (3)若該超市這一周內(nèi)有1600名購(gòu)買(mǎi)者,請(qǐng)你估計(jì)使用A和B兩種支付方式的購(gòu)買(mǎi)者共有多少名? 18.(6.00分)(2018?昆明)為了促進(jìn)“足球進(jìn)校園”活動(dòng)的開(kāi)展,某市舉行了中學(xué)生足球比賽活動(dòng)現(xiàn)從A,B,C三支獲勝足球隊(duì)中,隨機(jī)抽取兩支球隊(duì)分別到兩所邊遠(yuǎn)地區(qū)學(xué)校進(jìn)行交流. (1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法(只選擇其中一種),表示出抽到的兩支球隊(duì)的所有可能結(jié)果; (2)求出抽到B隊(duì)和C隊(duì)參加交流活動(dòng)的概率. 19.(7.00分)(2018?昆明)小婷在放學(xué)路上,看到隧道上方有一塊宣傳“中國(guó)﹣南亞博覽會(huì)”的豎直標(biāo)語(yǔ)牌CD.她在A點(diǎn)測(cè)得標(biāo)語(yǔ)牌頂端D處的仰角為42,測(cè)得隧道底端B處的俯角為30(B,C,D在同一條直線上),AB=10m,隧道高6.5m(即BC=65m),求標(biāo)語(yǔ)牌CD的長(zhǎng)(結(jié)果保留小數(shù)點(diǎn)后一位).(參考數(shù)據(jù):sin42≈0.67,cos42≈0.74,tan42≈0.90,≈1.73) 20.(8.00分)(2018?昆明)(列方程(組)及不等式解應(yīng)用題) 水是人類(lèi)生命之源.為了鼓勵(lì)居民節(jié)約用水,相關(guān)部門(mén)實(shí)行居民生活用水階梯式計(jì)量水價(jià)政策.若居民每戶每月用水量不超過(guò)10立方米,每立方米按現(xiàn)行居民生活用水水價(jià)收費(fèi)(現(xiàn)行居民生活用水水價(jià)=基本水價(jià)+污水處理費(fèi));若每戶每月用水量超過(guò)10立方米,則超過(guò)部分每立方米在基本水價(jià)基礎(chǔ)上加價(jià)100%,每立方米污水處理費(fèi)不變.甲用戶4月份用水8立方米,繳水費(fèi)27.6元;乙用戶4月份用水12立方米,繳水費(fèi)46.3元.(注:污水處理的立方數(shù)=實(shí)際生活用水的立方數(shù)) (1)求每立方米的基本水價(jià)和每立方米的污水處理費(fèi)各是多少元? (2)如果某用戶7月份生活用水水費(fèi)計(jì)劃不超過(guò)64元,該用戶7月份最多可用水多少立方米? 21.(8.00分)(2018?昆明)如圖,AB是⊙O的直徑,ED切⊙O于點(diǎn)C,AD交⊙O于點(diǎn)F,∠AC平分∠BAD,連接BF. (1)求證:AD⊥ED; (2)若CD=4,AF=2,求⊙O的半徑. 22.(9.00分)(2018?昆明)如圖,拋物線y=ax2+bx過(guò)點(diǎn)B(1,﹣3),對(duì)稱(chēng)軸是直線x=2,且拋物線與x軸的正半軸交于點(diǎn)A. (1)求拋物線的解析式,并根據(jù)圖象直接寫(xiě)出當(dāng)y≤0時(shí),自變量x的取值范圖; (2)在第二象限內(nèi)的拋物線上有一點(diǎn)P,當(dāng)PA⊥BA時(shí),求△PAB的面積. 23.(12.00分)(2018?昆明)如圖1,在矩形ABCD中,P為CD邊上一點(diǎn)(DP<CP),∠APB=90.將△ADP沿AP翻折得到△AD′P,PD′的延長(zhǎng)線交邊AB于點(diǎn)M,過(guò)點(diǎn)B作BN∥MP交DC于點(diǎn)N. (1)求證:AD2=DP?PC; (2)請(qǐng)判斷四邊形PMBN的形狀,并說(shuō)明理由; (3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F(xiàn).若=,求的值. 2018年云南省昆明市中考數(shù)學(xué)試卷 參考答案與試題解析 一、填空題(每小題3分,滿分18分) 1.(3.00分)(2018?昆明)在實(shí)數(shù)﹣3,0,1中,最大的數(shù)是 1?。? 【分析】根據(jù)正實(shí)數(shù)都大于0,負(fù)實(shí)數(shù)都小于0,正實(shí)數(shù)大于一切負(fù)實(shí)數(shù)進(jìn)行分析即可. 【解答】解:在實(shí)數(shù)﹣3,0,1中,最大的數(shù)是1, 故答案為:1. 【點(diǎn)評(píng)】此題主要考查了實(shí)數(shù)的大小,關(guān)鍵是掌握實(shí)數(shù)比較大小的方法. 2.(3.00分)(2018?昆明)共享單車(chē)進(jìn)入昆明市已兩年,為市民的低碳出行帶來(lái)了方便,據(jù)報(bào)道,昆明市共享單車(chē)投放量已達(dá)到240000輛,數(shù)字240000用科學(xué)記數(shù)法表示為 2.4105 . 【分析】科學(xué)記數(shù)法的表示形式為a10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù). 【解答】解:將240000用科學(xué)記數(shù)法表示為:2.4105. 故答案為2.4105. 【點(diǎn)評(píng)】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值. 3.(3.00分)(2018?昆明)如圖,過(guò)直線AB上一點(diǎn)O作射線OC,∠BOC=2918′,則∠AOC的度數(shù)為 15042′ . 【分析】直接利用度分秒計(jì)算方法得出答案. 【解答】解:∵∠BOC=2918′, ∴∠AOC的度數(shù)為:180﹣2918′=15042′. 故答案為:15042′. 【點(diǎn)評(píng)】此題主要考查了角的計(jì)算,正確進(jìn)行角的度分秒轉(zhuǎn)化是解題關(guān)鍵. 4.(3.00分)(2018?昆明)若m+=3,則m2+= 7 . 【分析】把已知等式兩邊平方,利用完全平方公式化簡(jiǎn),即可求出所求. 【解答】解:把m+=3兩邊平方得:(m+)2=m2++2=9, 則m2+=7, 故答案為:7 【點(diǎn)評(píng)】此題考查了分式的混合運(yùn)算,以及完全平方公式,熟練掌握運(yùn)算法則及公式是解本題的關(guān)鍵. 5.(3.00分)(2018?昆明)如圖,點(diǎn)A的坐標(biāo)為(4,2).將點(diǎn)A繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)90后,再向左平移1個(gè)單位長(zhǎng)度得到點(diǎn)A′,則過(guò)點(diǎn)A′的正比例函數(shù)的解析式為 y=﹣x或y=﹣4x . 【分析】直接利用旋轉(zhuǎn)的性質(zhì)結(jié)合平移的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置,再利用待定系數(shù)法求出正比例函數(shù)解析式. 【解答】解:當(dāng)點(diǎn)A繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90后,再向左平移1個(gè)單位長(zhǎng)度得到點(diǎn)A′, 則A′(﹣3,4), 設(shè)過(guò)點(diǎn)A′的正比例函數(shù)的解析式為:y=kx, 則4=﹣3k, 解得:k=﹣, 則過(guò)點(diǎn)A′的正比例函數(shù)的解析式為:y=﹣x, 同理可得:點(diǎn)A繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90后,再向左平移1個(gè)單位長(zhǎng)度得到點(diǎn)A″,則A″(1,﹣4), 設(shè)過(guò)點(diǎn)A″的正比例函數(shù)的解析式為:y=kx, 則﹣4=k, 解得:k=﹣4, 則過(guò)點(diǎn)A″的正比例函數(shù)的解析式為:y=﹣4x, 故則過(guò)點(diǎn)A′的正比例函數(shù)的解析式為:y=﹣x或y=﹣4x. 故答案為:y=﹣x或y=﹣4x. 【點(diǎn)評(píng)】此題主要考查了旋轉(zhuǎn)的性質(zhì)、平移的性質(zhì)、待定系數(shù)法求出正比例函數(shù)解析式,正確得出對(duì)應(yīng)點(diǎn)坐標(biāo)是解題關(guān)鍵. 6.(3.00分)(2018?昆明)如圖,正六邊形ABCDEF的邊長(zhǎng)為1,以點(diǎn)A為圓心,AB的長(zhǎng)為半徑,作扇形ABF,則圖中陰影部分的面積為 ﹣?。ńY(jié)果保留根號(hào)和π). 【分析】正六邊形的中心為點(diǎn)O,連接OD、OE,作OH⊥DE于H,根據(jù)正多邊形的中心角公式求出∠DOE,求出OH,得到正六邊形ABCDEF的面積,求出∠A,利用扇形面積公式求出扇形ABF的面積,結(jié)合圖形計(jì)算即可. 【解答】解:正六邊形的中心為點(diǎn)O,連接OD、OE,作OH⊥DE于H, ∠DOE==60, ∴OD=OE=DE=1, ∴OH=, ∴正六邊形ABCDEF的面積=16=, ∠A==120, ∴扇形ABF的面積==, ∴圖中陰影部分的面積=﹣, 故答案為:﹣. 【點(diǎn)評(píng)】本題考查的是正多邊形和圓、扇形面積計(jì)算,掌握正多邊形的中心角、內(nèi)角的計(jì)算公式、扇形面積公式是解題的關(guān)鍵. 二、選擇題(每小題4分,滿分32分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是正確的) 7.(4.00分)(2018?昆明)下列幾何體的左視圖為長(zhǎng)方形的是( ?。? A. B. C. D. 【分析】找到個(gè)圖形從左邊看所得到的圖形即可得出結(jié)論. 【解答】解:A.球的左視圖是圓; B.圓臺(tái)的左視圖是梯形; C.圓柱的左視圖是長(zhǎng)方形; D.圓錐的左視圖是三角形. 故選:C. 【點(diǎn)評(píng)】此題主要考查了簡(jiǎn)單幾何體的三視圖,關(guān)鍵是掌握左視圖所看的位置. 8.(4.00分)(2018?昆明)關(guān)于x的一元二次方程x2﹣2x+m=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是( ?。? A.m<3 B.m>3 C.m≤3 D.m≥3 【分析】根據(jù)關(guān)于x的一元二次方程x2﹣2x+m=0有兩個(gè)不相等的實(shí)數(shù)根可得△=(﹣2)2﹣4m>0,求出m的取值范圍即可. 【解答】解:∵關(guān)于x的一元二次方程x2﹣2x+m=0有兩個(gè)不相等的實(shí)數(shù)根, ∴△=(﹣2)2﹣4m>0, ∴m<3, 故選:A. 【點(diǎn)評(píng)】本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2﹣4ac.當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0時(shí),方程沒(méi)有實(shí)數(shù)根. 9.(4.00分)(2018?昆明)黃金分割數(shù)是一個(gè)很奇妙的數(shù),大量應(yīng)用于藝術(shù)、建筑和統(tǒng)計(jì)決策等方面,請(qǐng)你估算﹣1的值( ) A.在1.1和1.2之間 B.在1.2和1.3之間 C.在1.3和1.4之間 D.在1.4和1.5之間 【分析】根據(jù)≈2.236,可得答案. 【解答】解:∵≈2.236, ∴﹣1≈1.236, 故選:B. 【點(diǎn)評(píng)】本題考查了估算無(wú)理數(shù)的大小,利用≈2.236是解題關(guān)鍵. 10.(4.00分)(2018?昆明)下列判斷正確的是( ?。? A.甲乙兩組學(xué)生身高的平均數(shù)均為1.58,方差分別為S甲2=2.3,S乙2=1.8,則甲組學(xué)生的身高較整齊 B.為了了解某縣七年級(jí)4000名學(xué)生的期中數(shù)學(xué)成績(jī),從中抽取100名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行調(diào)查,這個(gè)問(wèn)題中樣本容量為4000 C.在“童心向黨,陽(yáng)光下成長(zhǎng)”合唱比賽中,30個(gè)參賽隊(duì)的決賽成績(jī)?nèi)缦卤恚? 比賽成績(jī)/分 9.5 9.6 9.7 9.8 9.9 參賽隊(duì)個(gè)數(shù) 9 8 6 4 3 則這30個(gè)參賽隊(duì)決賽成績(jī)的中位數(shù)是9.7 D.有13名同學(xué)出生于2003年,那么在這個(gè)問(wèn)題中“至少有兩名同學(xué)出生在同一個(gè)月”屬于必然事件 【分析】直接利用樣本容量以及方差的定義以及中位數(shù)的定義和必然事件的定義分別分析得出答案. 【解答】解:A、甲乙兩組學(xué)生身高的平均數(shù)均為1.58,方差分別為S甲2=2.3,S乙2=1.8,則乙組學(xué)生的身高較整齊,故此選項(xiàng)錯(cuò)誤; B、為了了解某縣七年級(jí)4000名學(xué)生的期中數(shù)學(xué)成績(jī),從中抽取100名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行調(diào)查,這個(gè)問(wèn)題中樣本容量為100,故此選項(xiàng)錯(cuò)誤; C、在“童心向黨,陽(yáng)光下成長(zhǎng)”合唱比賽中,30個(gè)參賽隊(duì)的決賽成績(jī)?nèi)缦卤恚? 比賽成績(jī)/分 9.5 9.6 9.7 9.8 9.9 參賽隊(duì)個(gè)數(shù) 9 8 6 4 3 則這30個(gè)參賽隊(duì)決賽成績(jī)的中位數(shù)是9.6,故此選項(xiàng)錯(cuò)誤; D、有13名同學(xué)出生于2003年,那么在這個(gè)問(wèn)題中“至少有兩名同學(xué)出生在同一個(gè)月”屬于必然事件,正確. 故選:D. 【點(diǎn)評(píng)】此題主要考查了樣本容量以及方差、中位數(shù)和必然事件的定義,正確把握相關(guān)定義是解題關(guān)鍵. 11.(4.00分)(2018?昆明)在△AOC中,OB交AC于點(diǎn)D,量角器的擺放如圖所示,則∠CDO的度數(shù)為( ?。? A.90 B.95 C.100 D.120 【分析】依據(jù)CO=AO,∠AOC=130,即可得到∠CAO=25,再根據(jù)∠AOB=70,即可得出∠CDO=∠CAO+∠AOB=25+70=95. 【解答】解:∵CO=AO,∠AOC=130, ∴∠CAO=25, 又∵∠AOB=70, ∴∠CDO=∠CAO+∠AOB=25+70=95, 故選:B. 【點(diǎn)評(píng)】本題主要考查了三角形內(nèi)角和定理以及三角形外角性質(zhì)的運(yùn)用,解題時(shí)注意:三角形內(nèi)角和等于180. 12.(4.00分)(2018?昆明)下列運(yùn)算正確的是( ) A.(﹣)2=9 B.20180﹣=﹣1 C.3a3?2a﹣2=6a(a≠0) D.﹣= 【分析】直接利用二次根式以及單項(xiàng)式乘以單項(xiàng)式運(yùn)算法則和實(shí)數(shù)的計(jì)算化簡(jiǎn)求出即可. 【解答】解:A、,錯(cuò)誤; B、,錯(cuò)誤; C、3a3?2a﹣2=6a(a≠0),正確; D、,錯(cuò)誤; 故選:C. 【點(diǎn)評(píng)】此題主要考查了二次根式以及單項(xiàng)式乘以單項(xiàng)式運(yùn)算法則和實(shí)數(shù)的計(jì)算等知識(shí),正確掌握運(yùn)算法則是解題關(guān)鍵. 13.(4.00分)(2018?昆明)甲、乙兩船從相距300km的A、B兩地同時(shí)出發(fā)相向而行,甲船從A地順流航行180km時(shí)與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為( ?。? A.= B.= C.= D.= 【分析】直接利用兩船的行駛距離除以速度=時(shí)間,得出等式求出答案. 【解答】解:設(shè)甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為: =. 故選:A. 【點(diǎn)評(píng)】此題主要考查了由實(shí)際問(wèn)題抽象出分式方程,正確表示出行駛的時(shí)間和速度是解題關(guān)鍵. 14.(4.00分)(2018?昆明)如圖,點(diǎn)A在雙曲線y═(x>0)上,過(guò)點(diǎn)A作AB⊥x軸,垂足為點(diǎn)B,分別以點(diǎn)O和點(diǎn)A為圓心,大于OA的長(zhǎng)為半徑作弧,兩弧相交于D,E兩點(diǎn),作直線DE交x軸于點(diǎn)C,交y軸于點(diǎn)F(0,2),連接AC.若AC=1,則k的值為( ?。? A.2 B. C. D. 【分析】如圖,設(shè)OA交CF于K.利用面積法求出OA的長(zhǎng),再利用相似三角形的性質(zhì)求出AB、OB即可解決問(wèn)題; 【解答】解:如圖,設(shè)OA交CF于K. 由作圖可知,CF垂直平分線段OA, ∴OC=CA=1,OK=AK, 在Rt△OFC中,CF==, ∴AK=OK==, ∴OA=, 由△FOC∽△OBA,可得==, ∴==, ∴OB=,AB=, ∴A(,), ∴k=. 故選:B. 【點(diǎn)評(píng)】本題考查作圖﹣復(fù)雜作圖,反比例函數(shù)圖象上的點(diǎn)的坐標(biāo)特征,線段的垂直平分線的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考??碱}型. 三、解答題(共9題,滿分70分,必須寫(xiě)出運(yùn)算步驟、推理過(guò)程或文字說(shuō)明) 15.(6.00分)(2018?昆明)如圖,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2. 求證:BC=DE. 【分析】根據(jù)ASA證明△ADE≌△ABC; 【解答】證明:(1)∵∠1=∠2, ∵∠DAC+∠1=∠2+∠DAC ∴∠BAC=∠DAE, 在△ABC和△ADE中, , ∴△ADE≌△ABC(ASA) ∴BC=DE, 【點(diǎn)評(píng)】本題考查了全等三角形的判定與性質(zhì):判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對(duì)應(yīng)邊相等 16.(7.00分)(2018?昆明)先化簡(jiǎn),再求值:(+1),其中a=tan60﹣|﹣1|. 【分析】根據(jù)分式的運(yùn)算法則即可求出答案. 【解答】解:當(dāng)a=tan60﹣|﹣1|時(shí), ∴a=﹣1 ∴原式=? = = 【點(diǎn)評(píng)】本題考查分式的運(yùn)算法則,解題的關(guān)鍵是熟練運(yùn)用分式運(yùn)算法則,本題屬于基礎(chǔ)題型. 17.(7.00分)(2018?昆明)近幾年購(gòu)物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對(duì)某超市一天內(nèi)購(gòu)買(mǎi)者的支付方式進(jìn)行調(diào)查統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖. 請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題: (1)本次一共調(diào)查了多少名購(gòu)買(mǎi)者? (2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中A種支付方式所對(duì)應(yīng)的圓心角為 108 度. (3)若該超市這一周內(nèi)有1600名購(gòu)買(mǎi)者,請(qǐng)你估計(jì)使用A和B兩種支付方式的購(gòu)買(mǎi)者共有多少名? 【分析】(1)根據(jù)B的數(shù)量和所占的百分比可以求得本次調(diào)查的購(gòu)買(mǎi)者的人數(shù); (2)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以求得選擇A和D的人數(shù),從而可以將條形統(tǒng)計(jì)圖補(bǔ)充完整,求得在扇形統(tǒng)計(jì)圖中A種支付方式所對(duì)應(yīng)的圓心角的度數(shù); (3)根據(jù)統(tǒng)計(jì)圖中的數(shù)據(jù)可以計(jì)算出使用A和B兩種支付方式的購(gòu)買(mǎi)者共有多少名. 【解答】解:(1)5628%=200, 即本次一共調(diào)查了200名購(gòu)買(mǎi)者; (2)D方式支付的有:20020%=40(人), A方式支付的有:200﹣56﹣44﹣40=60(人), 補(bǔ)全的條形統(tǒng)計(jì)圖如右圖所示, 在扇形統(tǒng)計(jì)圖中A種支付方式所對(duì)應(yīng)的圓心角為:360=108, 故答案為:108; (3)1600=928(名), 答:使用A和B兩種支付方式的購(gòu)買(mǎi)者共有928名. 【點(diǎn)評(píng)】本題考查扇形統(tǒng)計(jì)圖、條形統(tǒng)計(jì)圖、用樣本估計(jì)總體,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答. 18.(6.00分)(2018?昆明)為了促進(jìn)“足球進(jìn)校園”活動(dòng)的開(kāi)展,某市舉行了中學(xué)生足球比賽活動(dòng)現(xiàn)從A,B,C三支獲勝足球隊(duì)中,隨機(jī)抽取兩支球隊(duì)分別到兩所邊遠(yuǎn)地區(qū)學(xué)校進(jìn)行交流. (1)請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法(只選擇其中一種),表示出抽到的兩支球隊(duì)的所有可能結(jié)果; (2)求出抽到B隊(duì)和C隊(duì)參加交流活動(dòng)的概率. 【分析】(1)列表得出所有等可能結(jié)果; (2)從表格中得出抽到B隊(duì)和C隊(duì)參加交流活動(dòng)的結(jié)果數(shù),利用概率公式求解可得. 【解答】解:(1)列表如下: A B C A (B,A) (C,A) B (A,B) (C,B) C (A,C) (B,C) 由表可知共有6種等可能的結(jié)果; (2)由表知共有6種等可能結(jié)果,其中抽到B隊(duì)和C隊(duì)參加交流活動(dòng)的有2種結(jié)果, 所以抽到B隊(duì)和C隊(duì)參加交流活動(dòng)的概率為=. 【點(diǎn)評(píng)】本題考查了列表法與樹(shù)狀圖法:利用列表法或樹(shù)狀圖法展示所有等可能的結(jié)果n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率. 19.(7.00分)(2018?昆明)小婷在放學(xué)路上,看到隧道上方有一塊宣傳“中國(guó)﹣南亞博覽會(huì)”的豎直標(biāo)語(yǔ)牌CD.她在A點(diǎn)測(cè)得標(biāo)語(yǔ)牌頂端D處的仰角為42,測(cè)得隧道底端B處的俯角為30(B,C,D在同一條直線上),AB=10m,隧道高6.5m(即BC=65m),求標(biāo)語(yǔ)牌CD的長(zhǎng)(結(jié)果保留小數(shù)點(diǎn)后一位).(參考數(shù)據(jù):sin42≈0.67,cos42≈0.74,tan42≈0.90,≈1.73) 【分析】如圖作AE⊥BD于E.分別求出BE、DE,可得BD的長(zhǎng),再根據(jù)CD=BD﹣BC計(jì)算即可; 【解答】解:如圖作AE⊥BD于E. 在Rt△AEB中,∵∠EAB=30,AB=10m, ∴BE=AB=5(m),AE=5(m), 在Rt△ADE中,DE=AE?tan42=7.79(m), ∴BD=DE+BE=12.79(m), ∴CD=BD﹣BC=12.79﹣6.5≈6.3(m), 答:標(biāo)語(yǔ)牌CD的長(zhǎng)為6.3m. 【點(diǎn)評(píng)】本題考查解直角三角形的應(yīng)用﹣仰角俯角問(wèn)題,解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線面構(gòu)造直角三角形解決問(wèn)題. 20.(8.00分)(2018?昆明)(列方程(組)及不等式解應(yīng)用題) 水是人類(lèi)生命之源.為了鼓勵(lì)居民節(jié)約用水,相關(guān)部門(mén)實(shí)行居民生活用水階梯式計(jì)量水價(jià)政策.若居民每戶每月用水量不超過(guò)10立方米,每立方米按現(xiàn)行居民生活用水水價(jià)收費(fèi)(現(xiàn)行居民生活用水水價(jià)=基本水價(jià)+污水處理費(fèi));若每戶每月用水量超過(guò)10立方米,則超過(guò)部分每立方米在基本水價(jià)基礎(chǔ)上加價(jià)100%,每立方米污水處理費(fèi)不變.甲用戶4月份用水8立方米,繳水費(fèi)27.6元;乙用戶4月份用水12立方米,繳水費(fèi)46.3元.(注:污水處理的立方數(shù)=實(shí)際生活用水的立方數(shù)) (1)求每立方米的基本水價(jià)和每立方米的污水處理費(fèi)各是多少元? (2)如果某用戶7月份生活用水水費(fèi)計(jì)劃不超過(guò)64元,該用戶7月份最多可用水多少立方米? 【分析】(1)設(shè)每立方米的基本水價(jià)是x元,每立方米的污水處理費(fèi)是y元,然后根據(jù)等量關(guān)系即可列出方程求出答案. (2)設(shè)該用戶7月份可用水t立方米(t>10),根據(jù)題意列出不等式即可求出答案. 【解答】解:(1)設(shè)每立方米的基本水價(jià)是x元,每立方米的污水處理費(fèi)是y元 解得: 答:每立方米的基本水價(jià)是2.45元,每立方米的污水處理費(fèi)是1元. (2)設(shè)該用戶7月份可用水t立方米(t>10) 102.45+(t﹣10)4.9+t≤64 解得:t≤15 答:如果某用戶7月份生活用水水費(fèi)計(jì)劃不超過(guò)64元,該用戶7月份最多可用水15立方米 【點(diǎn)評(píng)】本題考查學(xué)生的應(yīng)用能力,解題的關(guān)鍵是根據(jù)題意列出方程和不等式,本題屬于中等題型. 21.(8.00分)(2018?昆明)如圖,AB是⊙O的直徑,ED切⊙O于點(diǎn)C,AD交⊙O于點(diǎn)F,∠AC平分∠BAD,連接BF. (1)求證:AD⊥ED; (2)若CD=4,AF=2,求⊙O的半徑. 【分析】(1)連接OC,如圖,先證明OC∥AD,然后利用切線的性質(zhì)得OC⊥DE,從而得到AD⊥ED; (2)OC交BF于H,如圖,利用圓周角定理得到∠AFB=90,再證明四邊形CDFH為矩形得到FH=CD=4,∠CHF=90,利用垂徑定理得到BH=FH=4,然后利用勾股定理計(jì)算出AB,從而得到⊙O的半徑. 【解答】(1)證明:連接OC,如圖, ∵AC平分∠BAD, ∴∠1=∠2, ∵OA=OC, ∴∠1=∠3, ∴∠2=∠3, ∴OC∥AD, ∵ED切⊙O于點(diǎn)C, ∴OC⊥DE, ∴AD⊥ED; (2)解:OC交BF于H,如圖, ∵AB為直徑, ∴∠AFB=90, 易得四邊形CDFH為矩形, ∴FH=CD=4,∠CHF=90, ∴OH⊥BF, ∴BH=FH=4, ∴BF=8, 在Rt△ABF中,AB===2, ∴⊙O的半徑為. 【點(diǎn)評(píng)】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.若出現(xiàn)圓的切線,必連過(guò)切點(diǎn)的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了垂徑定理和圓周角定理. 22.(9.00分)(2018?昆明)如圖,拋物線y=ax2+bx過(guò)點(diǎn)B(1,﹣3),對(duì)稱(chēng)軸是直線x=2,且拋物線與x軸的正半軸交于點(diǎn)A. (1)求拋物線的解析式,并根據(jù)圖象直接寫(xiě)出當(dāng)y≤0時(shí),自變量x的取值范圖; (2)在第二象限內(nèi)的拋物線上有一點(diǎn)P,當(dāng)PA⊥BA時(shí),求△PAB的面積. 【分析】(1)將函數(shù)圖象經(jīng)過(guò)的點(diǎn)B坐標(biāo)代入的函數(shù)的解析式中,再和對(duì)稱(chēng)軸方程聯(lián)立求出待定系數(shù)a和b; (2)將AB所在直線的解析式求出,利用直線AP與AB垂直的關(guān)系求出直線AP的斜率k,再求直線AP的解析式,求直線AP與x軸交點(diǎn),求點(diǎn)P的坐標(biāo),將△PAB的面積構(gòu)造成長(zhǎng)方形去掉三個(gè)三角形的面積. 【解答】解:(1)由題意得,解得, ∴拋物線的解析式為y=x2﹣4x, 令y=0,得x2﹣4x=0,解得x=0或4, 結(jié)合圖象知,A的坐標(biāo)為(4,0), 根據(jù)圖象開(kāi)口向上,則y≤0時(shí),自變量x的取值范圖是0≤x≤4; (2)設(shè)直線AB的解析式為y=mx+n, 則,解得, ∴y=x﹣4, 設(shè)直線AP的解析式為y=kx+c, ∵PA⊥BA, ∴k=﹣1, 則有﹣4+c=0,解得c=4, ∴,解得或 ∴點(diǎn)P的坐標(biāo)為(﹣1,5), ∴△PAB的面積=85﹣822﹣332﹣552=15. 【點(diǎn)評(píng)】本題是二次函數(shù)綜合題,求出函數(shù)解析式是解題的關(guān)鍵,特別是利用待定系數(shù)法將兩條直線表達(dá)式解出,利用點(diǎn)的坐標(biāo)求三角形的面積是關(guān)鍵. 23.(12.00分)(2018?昆明)如圖1,在矩形ABCD中,P為CD邊上一點(diǎn)(DP<CP),∠APB=90.將△ADP沿AP翻折得到△AD′P,PD′的延長(zhǎng)線交邊AB于點(diǎn)M,過(guò)點(diǎn)B作BN∥MP交DC于點(diǎn)N. (1)求證:AD2=DP?PC; (2)請(qǐng)判斷四邊形PMBN的形狀,并說(shuō)明理由; (3)如圖2,連接AC,分別交PM,PB于點(diǎn)E,F(xiàn).若=,求的值. 【分析】(1)過(guò)點(diǎn)P作PG⊥AB于點(diǎn)G,易知四邊形DPGA,四邊形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易證△APG∽△PBG,所以PG2=AG?GB,即AD2=DP?PC; (2)DP∥AB,所以∠DPA=∠PAM,由題意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,從而可知PM=MB=AM,又易證四邊形PMBN是平行四邊形,所以四邊形PMBN是菱形; (3)由于=,可設(shè)DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,從而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,從而可證△PCF∽△BAF,△PCE∽△MAE,從而可得∴,,從而可求出EF=AF﹣AE=AC﹣=AC,從而可得==. 【解答】解:(1)過(guò)點(diǎn)P作PG⊥AB于點(diǎn)G, ∴易知四邊形DPGA,四邊形PCBG是矩形, ∴AD=PG,DP=AG,GB=PC ∵∠APB=90, ∴∠APG+∠GPB=∠GPB+∠PBG=90, ∴∠APG=∠PBG, ∴△APG∽△PBG, ∴, ∴PG2=AG?GB, 即AD2=DP?PC; (2)∵DP∥AB, ∴∠DPA=∠PAM, 由題意可知:∠DPA=∠APM, ∴∠PAM=∠APM, ∵∠APB﹣∠PAM=∠APB﹣∠APM, 即∠ABP=∠MPB ∴AM=PM,PM=MB, ∴PM=MB, 又易證四邊形PMBN是平行四邊形, ∴四邊形PMBN是菱形; (3)由于=, 可設(shè)DP=1,AD=2, 由(1)可知:AG=DP=1,PG=AD=2, ∵PG2=AG?GB, ∴4=1?GB, ∴GB=PC=4, AB=AG+GB=5, ∵CP∥AB, ∴△PCF∽△BAF, ∴==, ∴, 又易證:△PCE∽△MAE,AM=AB= ∴=== ∴, ∴EF=AF﹣AE=AC﹣=AC, ∴== 【點(diǎn)評(píng)】本題考查相似三角形的綜合問(wèn)題,涉及相似三角形的性質(zhì)與判定,菱形的判定,直角三角形斜邊上的中線的性質(zhì)等知識(shí),綜合程度較高,需要學(xué)生靈活運(yùn)用所學(xué)知識(shí). 第28頁(yè)(共28頁(yè))- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
15 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018 云南省 昆明市 中考 數(shù)學(xué)試卷
鏈接地址:http://zhongcaozhi.com.cn/p-10249508.html