高考第二輪專題復(fù)習(xí)高考數(shù)學(xué)第二輪專題復(fù)習(xí)解析幾何專題

上傳人:沈*** 文檔編號(hào):65581673 上傳時(shí)間:2022-03-24 格式:DOC 頁(yè)數(shù):18 大?。?25KB
收藏 版權(quán)申訴 舉報(bào) 下載
高考第二輪專題復(fù)習(xí)高考數(shù)學(xué)第二輪專題復(fù)習(xí)解析幾何專題_第1頁(yè)
第1頁(yè) / 共18頁(yè)
高考第二輪專題復(fù)習(xí)高考數(shù)學(xué)第二輪專題復(fù)習(xí)解析幾何專題_第2頁(yè)
第2頁(yè) / 共18頁(yè)
高考第二輪專題復(fù)習(xí)高考數(shù)學(xué)第二輪專題復(fù)習(xí)解析幾何專題_第3頁(yè)
第3頁(yè) / 共18頁(yè)

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁(yè)未讀,繼續(xù)閱讀

資源描述:

《高考第二輪專題復(fù)習(xí)高考數(shù)學(xué)第二輪專題復(fù)習(xí)解析幾何專題》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考第二輪專題復(fù)習(xí)高考數(shù)學(xué)第二輪專題復(fù)習(xí)解析幾何專題(18頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。

1、學(xué)習(xí)好資料歡迎下載曲線的方程和性質(zhì)專題江蘇省宿遷中學(xué) 張克平一、考試大綱要求1直線和圓的方程(1) 理解直線的傾斜角和斜率的概念,掌握過(guò)兩點(diǎn)的直線的斜率公式掌握直線方 程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程.(2)掌握兩條直線平行與垂直的條件,兩條直線所成的角和點(diǎn)到直線的距離公式.能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系.(3 )了解二元一次不等式表示平面區(qū)域.(4) 了解線性規(guī)劃的意義,并會(huì)簡(jiǎn)單的應(yīng)用.(5) 了解解析幾何的基本思想,了解坐標(biāo)法.(6 )掌握?qǐng)A的標(biāo)準(zhǔn)方程和一般方程,了解參數(shù)方程的概念,理解圓的參數(shù)方程. 2圓錐曲線方程(1 )掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓

2、的簡(jiǎn)單幾何性質(zhì),理解橢圓的參數(shù)方程.(2) 掌握雙曲線的定義、標(biāo)準(zhǔn)方程和雙曲線的簡(jiǎn)單幾何性質(zhì).(3) 掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡(jiǎn)單幾何性質(zhì).(4) 了解圓錐曲線的初步應(yīng)用.二、高考試題回放1.(福建)已知 Fi、F2是橢圓的兩個(gè)焦點(diǎn),過(guò)Fi且與橢圓長(zhǎng)軸垂直的直線交橢圓于A、B兩點(diǎn),若 ABF2是正三角形,則這個(gè)橢圓的離心率是3、2B. C.332.(福建)直線 x+2y=0 被曲線 x2+y2 6x 2y 15=0 所截得的弦長(zhǎng)等于123.(福建)如圖,P 是拋物線 C: y= x2上一點(diǎn),直線 I 過(guò)點(diǎn) P2且與拋物線 C 交于另一點(diǎn) Q. (I)若直線 I 與過(guò)點(diǎn) P 的切線垂

3、 直,求線段PQ 中點(diǎn) M 的軌跡方程;(H)若直線 I 不過(guò)原點(diǎn)且與 x 軸交于點(diǎn) S,與 y 軸交于點(diǎn) T ,| ST | ST |試求的取值范圍.|SP| |SQ|4.(湖北)已知點(diǎn) M (6, 2)和 M2(1, 7).直線 y=mx 7 與線段 M1M2的交點(diǎn) M 分有向線段 M1M2的比為 3: 2,則 m 的值 為 ()21B .C .D . 4342 2 2 2C1: xy 2x 2y-2=0與C2: x y -4x-2y 1=0的公切( )3A .25.(湖北)兩個(gè)圓線有且僅有學(xué)習(xí)好資料歡迎下載C . 3 條D . 4 條6.(湖北)直線l : y kx 1與雙曲線C : 2

4、x2-y2= 1的右支交于不同的兩點(diǎn) A、B.(I)求實(shí)數(shù) k 的取值范圍;(n)是否存在實(shí)數(shù) k,使得以線段 AB 為直徑的圓經(jīng)過(guò)雙曲線 C 的右焦點(diǎn) F?若存在,求出 k 的值;若不存在,說(shuō)明理由學(xué)習(xí)好資料歡迎下載2 2 -二丄上一點(diǎn) P 到右焦點(diǎn)的距離為.13,那么點(diǎn) P 到右準(zhǔn)線的13_12 -率為()A.2B .2 2C .4D .4 -214、(江蘇)以點(diǎn)(1,2)為圓心,與直線 4x+3y-35=0 相切的圓的方程是 _15 .(江蘇)制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損 投資人打算投資甲、乙兩個(gè)項(xiàng)目根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為和 50

5、%,可能的最大虧損率分別為30 %和 10% .投資人計(jì)劃投資金額不超過(guò)10 萬(wàn)元,要求確??赡艿馁Y金虧損不超過(guò)1.8 萬(wàn)元問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬(wàn)元,才7.(湖南) 如果雙曲線距離是13A .513C. 55D.13(湖南)Fi, F2是橢圓 C:x22=1的焦點(diǎn),在 C 上滿足 PF1丄 PF2的點(diǎn) P 的個(gè)數(shù)為49.A,B 兩點(diǎn),點(diǎn) Q 是點(diǎn) P 關(guān)于原點(diǎn)的對(duì)稱點(diǎn)。(I)設(shè)點(diǎn) P 分有向線段AB所成的比為,證明:(II)設(shè)直線 AB 的方程是 的切線, 求圓 C 的方程.(湖南)如圖,過(guò)拋物線x2=4y 的對(duì)稱軸上任一點(diǎn) P (0,m) (m0)作直線與拋物線交于QP丄(QA

6、ZQB)x-2y+12=0,過(guò) A,B 兩點(diǎn)的圓 C 與拋物線在點(diǎn) A 處有共同10.(廣東)若雙曲線小222x-y=k( k0)的焦點(diǎn)到它相對(duì)應(yīng)的準(zhǔn)線的距離是2,則 k=,定圓半徑為(b ,c ) ,11.(廣東)如右下圖 與直線 x - y+仁 0的交點(diǎn)在()A .第四象限C.第二象限第三象限D(zhuǎn)、第一象限12.(廣東)設(shè)直線與雙曲線 x2- y2=12 2x y1相交于 A、B 兩點(diǎn),2516D 兩點(diǎn),C、D 三等分線段 AB .相交于 C2 213.(江蘇)若雙曲線 仝-每=1的一條準(zhǔn)線與拋物線y2=8x的準(zhǔn)線重合,則雙曲線的離心8 b2某100%D.4則直線 ax+by+c=0學(xué)習(xí)好資

7、料歡迎下載能使可能的盈利最大?學(xué)習(xí)好資料歡迎下載116. (江蘇)已知橢圓的中心在原點(diǎn),離心率為 2 , 一個(gè)焦點(diǎn)是 F (-m,0) (m 是大于 0 的常數(shù)).(I )求橢圓的方程;(II)設(shè) Q 是橢圓上的一點(diǎn),且過(guò)點(diǎn) F、Q 的直線 I 與 y 軸交于點(diǎn) M.若|MQ|=2QF,求直 線 I 的斜率17、 (遼寧)已知點(diǎn)已(-.2,0)、F2(.2,0),動(dòng)點(diǎn) P 滿足PF?|-|PFi匸2.當(dāng)點(diǎn) P 的縱坐標(biāo)1是一時(shí),點(diǎn) 12P到坐標(biāo)原點(diǎn)的距離是()v6A .23B.2C .3D . 22 218.(遼寧)若經(jīng)過(guò)點(diǎn) P (- 1, 0)的直線與圓x y 4x -2y 3 = 0相切,

8、則此直線 在 y 軸上的截距是219.(遼寧)設(shè)橢圓方程為X21,過(guò)點(diǎn) M(0, 1)的直線 I 交橢圓于點(diǎn) A、B, O4 1一 一1 1是坐標(biāo)原點(diǎn),點(diǎn) P 滿足OP (OA OB),點(diǎn) N 的坐標(biāo)為(一,),當(dāng) I 繞點(diǎn) M 旋轉(zhuǎn)時(shí),2 2 2求:(1)動(dòng)點(diǎn) P 的軌跡方程;(2)| NP |的最小值與最大值20.(上海)設(shè)拋物線的頂點(diǎn)坐標(biāo)為(2,0),準(zhǔn)線方程為 x= 1,則它的焦點(diǎn)坐標(biāo)為.21.(上海)圓心在直線 x=2 上的圓 C 與 y 軸交于兩點(diǎn) A(0, 4),B(0, 2),則圓 C 的方程 為.11222.(上海)如圖,直線 y= x 與拋物線 y= x 428交于 A、B

9、 兩點(diǎn),線段 AB 的垂直平分線與直線 y= 5 交于 Q點(diǎn).(1)求點(diǎn) Q 的坐標(biāo);(2)當(dāng) P 為拋物線上位于 線段AB 下方(含 A、B)的動(dòng)點(diǎn)時(shí),求 OPQ 面積的 最大值.23.(重慶)圓x2y2x 4y 0的圓心到直線x - y =1的距離為()A . 2 B.二 C. 1 D .222 224.(重慶)已知雙曲線 令-葺=1心0, b 0)的左,右焦點(diǎn)分別為FF?,點(diǎn) P 在雙曲a b線的右支上,且| PR| =4 | PF2|,則此雙曲線的離心率 e 的最大值為()457A . B . - C.2D .-333225.(重慶)設(shè)直線ay =x-2與拋物線y =2p交于相異兩點(diǎn)

10、A、B,以線段 AB 為直經(jīng) 作圓 H ( H 為圓心).試證拋物線頂點(diǎn)在圓 H 的圓周上;并求 a 的值,使圓 H 的面積最小2學(xué)習(xí)好資料歡迎下載26.(河南)橢圓y2=1的兩個(gè)焦點(diǎn)為F2,過(guò) F1作垂直于x軸的直線與橢圓相4學(xué)習(xí)好資料歡迎下載交,一個(gè)交點(diǎn)為 P,則I PF2|=珂3fA.B.3227、(河南)設(shè)拋物線y = 8x的準(zhǔn)線與 點(diǎn),則直線I的斜率的取值范圍是1 1A .一一,一B . 2, 2C. 1, 1D . 4, 42 22 228、(河南)由動(dòng)點(diǎn) P 向圓 x +y =1 引兩條切線 PA、PB,切點(diǎn)分別為 A、B, / APB=60 則動(dòng)點(diǎn) P 的軌跡方程為2X229、

11、(河南)設(shè)雙曲線 C: -y -y =1(a - 0)與直線I : X 1相交于兩個(gè)不同的點(diǎn) A、aB. (I)求雙曲線 C 的離心率 e 的取值范圍:5(II)設(shè)直線 l 與 y 軸的交點(diǎn)為 P,且PA PB.求 a 的值.1230 (四川)已知圓 C 與圓(x -1)2y2=1關(guān)于直線y - -x對(duì)稱,則圓 C 的方程為()A.(x 1)2y2=1C .x2(y 1)2=131、(四川)在坐標(biāo)平面內(nèi),與點(diǎn) A (1 , 2)距離為 1,且與點(diǎn) B (3, 1)距離為 2 的直線 ( )A . 1 條B . 2 條C . 3 條D . 4 條2 232、 (四川).設(shè)中心在原點(diǎn)的橢圓與雙曲線

12、2x -2y=1 有公共的焦點(diǎn),且它們的離心率 互為倒數(shù),則該橢圓的方程是 .233、(四川)給定拋物線 C: y =4x, F 是 C 的焦點(diǎn),過(guò)點(diǎn) F 的直線 I 與 C 相交于 A、B 兩 點(diǎn)。(I)設(shè) I的斜率為 1,求OA與OB的夾角的大小;(H)設(shè) FB = AF,若入 4,9,求 I 在 y 軸上截距的變化范圍36 .(寧夏)設(shè)x, y滿足約束條件:x y乞1,y沁,y -0,則z = 2x y的最大值是7C.D . 42x軸交于點(diǎn) Q,若過(guò)點(diǎn) Q 的直線I與拋物線有公共 ( )D .x2(y -1)2=134 .(寧夏)過(guò)點(diǎn)(一1, 3)且垂直于直線x -2y 3 =0的直線方

13、程為A .2x y -1 = 0C .x 2y -5 = 0B .2x y -5 = 0D .x-2y 7=0e =1,且它的一個(gè)焦點(diǎn)與拋物線y2= -4x2的焦點(diǎn)重合,則此橢圓方程為2 22 2x丄yA .=1B.x438 62X 42”C .y =12( )2X +2”D .y = 1435 .(寧夏)已知橢圓的中心在原點(diǎn),離心率學(xué)習(xí)好資料歡迎下載離心率 e 的取值范圍.三、高考試題分析1 1知識(shí)點(diǎn)列表綜述試卷名稱福建湖北湖南廣東江蘇知識(shí)點(diǎn)提 要直線與橢 圓,橢圓的離 心率,直線與 圓,直線與拋 物線,軌跡方 程,變量范圍,導(dǎo)數(shù)與拋 物線結(jié)合。直線方程,線段定比分 點(diǎn)坐標(biāo),兩圓 的位置關(guān)系

14、,直線與雙曲 線,雙曲線與圓。雙曲線幾 何性質(zhì),橢 圓性質(zhì),直 線與拋物 線,線段定比分點(diǎn),拋 物線與圓 和向量、導(dǎo) 數(shù)結(jié)合。雙曲線的幾 何性質(zhì),直線與 圓,直線與橢 圓、雙曲線及線 段定比分點(diǎn)結(jié) 合。雙曲線與拋 物線的準(zhǔn)線,雙曲線的離 心率, 直線與 圓相切, 線性 規(guī)劃, 橢圓方程, 直線直線 與橢圓, 直線 的斜率。試卷名稱遼寧上海重慶河南四川知識(shí)點(diǎn)提 要雙曲線定義,直線與圓相 切,直線截 距,直線與橢 圓,與向量結(jié)合,軌跡方 程,取大值與 最小值。拋物線方程,準(zhǔn)線方程,直 線和圓,圓的 方程,直線與 拋物線,對(duì) 稱,最大值。直線與圓,雙曲線準(zhǔn) 線,離心 率,最大值,直線與圓、拋物線 結(jié)

15、合、面積 最大值。直線與橢圓、焦點(diǎn)、距離,直線 與拋物線的準(zhǔn) 線、直線斜率的 范圍,直線與 圓、軌跡方程, 直線與雙曲線、 離心率范圍、與 向量結(jié)合。點(diǎn)到直線距 離,直線方 程, 橢圓與雙 曲線方程、離 心率, 直線與拋物線、向 量、直線截距 范圍結(jié)合。2 2、高考試題的特點(diǎn):2.12.1 題型穩(wěn)定:近幾年來(lái)高考解析幾何試題一直穩(wěn)定在12 個(gè)選擇題,1 個(gè)填空題,1個(gè)解答題上,分值約為 30 分,占總分值的 20%左右。2.22.2 整體平衡,重點(diǎn)突出:考試大綱中解析幾何部分有27 個(gè)知識(shí)點(diǎn),一般考查 16至 18 個(gè),其中對(duì)直線、線性歸劃、圓、圓錐曲線等知識(shí)的考查幾乎沒有遺漏,通過(guò)對(duì)知 識(shí)的

16、重新組合,考查時(shí)既注意全面, 更注意突出重點(diǎn),對(duì)支撐數(shù)學(xué)科知識(shí)體系的主干知識(shí), 考查時(shí)保證較高的比例并保持必要深度。2.32.3、 能力立意,滲透數(shù)學(xué)思想:如河南第(21 )題,將雙曲線的方程、性質(zhì)與坐標(biāo)法、 定比分點(diǎn)的坐標(biāo)公式、向量、離心率等知識(shí)融為一體,有很強(qiáng)的綜合性。2.42.4、 與新教材融合,注意知識(shí)的鏈接:與導(dǎo)數(shù)的幾何意義、平面向量相結(jié)合,與導(dǎo) 數(shù)結(jié)合僅僅停留在對(duì)稱軸平行于 y 軸的拋物線上,能與向量結(jié)合的試題幾乎都聯(lián)系上。解 析幾何與函數(shù)、方程、不等式等主干知識(shí)的結(jié)合,幾乎各省的解答題都有聯(lián)系。2.52.5、難度下降,位置不定:近幾年解析幾何試題的難度有所下降,選擇題、填空題均

17、屬易中等37.(寧夏)雙曲線2x2a2y2=1(a1,b0)的焦點(diǎn)距為b22c,直線|過(guò)點(diǎn)(a,0)和(0,b),且點(diǎn)(1,0)到直線l的距離與點(diǎn)(一 1,0)到直線l的距離之和s_彳c.求雙曲線的5學(xué)習(xí)好資料歡迎下載題,且解答題不再處于壓軸題的位置,計(jì)算量減少,思考量增大。3 3、綜合試題的熱點(diǎn)問(wèn)題:學(xué)習(xí)好資料歡迎下載熱點(diǎn)之一:圓錐曲線的定義、圓錐曲線方程 圓錐曲線定義是其一切幾何性質(zhì)的“根”與 “源”,是建立曲線方程的基礎(chǔ),揭示了圓錐曲線上的點(diǎn)與焦點(diǎn)及準(zhǔn)線間的關(guān)系,是解幾綜合題的重要背景。圓錐曲線的方程是研究幾何性質(zhì)的重要載體。熱點(diǎn)之二:函數(shù)與方程的思想函數(shù)與方程的思想是貫穿于解析幾何的一

18、條主線,很多解幾 綜合題往往都是以最值問(wèn)題或圓錐曲線的基本量的求解為依托,通過(guò)轉(zhuǎn)化,運(yùn)用函數(shù)與方 程的思想加以解決。熱點(diǎn)之三:與圓錐曲線有關(guān)的軌跡問(wèn)題解析幾何的核心就是用方程的思想研究曲線,用曲 線的性質(zhì)研究方程。軌跡問(wèn)題正是體現(xiàn)這一思想的重要形式。運(yùn)用定義法、代入法、參數(shù) 法、結(jié)合問(wèn)題的幾何特征,可以較好的求解。熱點(diǎn)之四:曲線組合除了直線和圓錐曲線是傳統(tǒng)的結(jié)合外,04 年的高考題大量出現(xiàn)了圓與雙曲線、圓與拋物線、雙曲線與拋物線等的結(jié)合。熱點(diǎn)之五:與平面向量、導(dǎo)數(shù)等新增內(nèi)容相結(jié)合 利用一切可以利用的機(jī)會(huì)有機(jī)結(jié)合。 熱點(diǎn)之六:最值及離心率范圍問(wèn)題 通過(guò)求最值及離心率的范圍問(wèn)題達(dá)到與函數(shù)、方程、1

19、 -t2k- 1 t2kQT _2tt1 +12由直線 PT 的斜率和直線 QT 的斜率互為相反數(shù)知,由點(diǎn)P 發(fā)出的光線經(jīng)點(diǎn) T 反射,反射不等式等主干知識(shí)鏈接。四、高考試題展望高考解析幾何的命題一般緊扣課本,突出重點(diǎn),全面考查選擇題和填空題考查直線圓,圓錐曲線中的基礎(chǔ)知識(shí)解答題重點(diǎn)考查圓錐曲線中的重要知識(shí)點(diǎn),通過(guò)知識(shí)的重組與鏈接,使知識(shí)形成網(wǎng)絡(luò),著重考查直線與圓錐曲線的位置關(guān)系,求解有時(shí)還要用到平幾的基本知識(shí)。解析幾何解答題在歷年的高考中常考常新,體現(xiàn)在重視能力立意,強(qiáng)調(diào)思維空間,是用活題考死知識(shí)的典范 考題求解時(shí)考查了等價(jià)轉(zhuǎn)化,數(shù)形結(jié)合,分類討論,函數(shù)與 方程等數(shù)學(xué)思想,以及定義法,配方法

20、,待定系數(shù)法,參數(shù)法,判別式法等數(shù)學(xué)通法例 1 1 已知點(diǎn) T 是半圓 O 的直徑 AB 上一點(diǎn),AB=2、OT=t (0t1),以 AB 為直腰作直 角梯形AA BB,使AA垂直且等于 AT,使BB垂直且等于 BT,A B交半圓于 Q 兩點(diǎn),建立如圖所示的直角坐標(biāo)系 (1)寫出直線A B的方程;2)計(jì)算出點(diǎn) P、Q 的坐標(biāo);(3)證明:由點(diǎn) P 發(fā)出的光線,經(jīng) AB 反射后,反射光線通過(guò)點(diǎn)Q.解:通過(guò)讀圖,看出A,B點(diǎn)的坐標(biāo).(1 )顯然A1,1 -t, B-1,1t,于是直線A B的方程為 y tx 1 ;2xP、(2)由方程組丿y2-tx解出 P(0,1)、(3) kPTQ (1 t1

21、_ 0 =0 - t2t 12二1,1,丄).1 t25tb* /廠AB/A(-1.0)oT(LO);1 _ t2t(1 -t2)學(xué)習(xí)好資料歡迎下載光線通過(guò)點(diǎn) Q.需要注意的是,Q 點(diǎn)的坐標(biāo)本質(zhì)上是三角中的萬(wàn)能公式,有趣嗎?2 2例 2 2 已知直線 I 與橢圓 篤爲(wèi)=1(a . b - 0)有且僅有一個(gè)交點(diǎn) Q,且與 x 軸、y 軸a b分別交于 R、S,求以線段 SR 為對(duì)角線的矩形 解:從直線|所處的位置,設(shè)出直線|的方程,由已知,直線I 不過(guò)橢圓的四個(gè)頂點(diǎn),所以設(shè)直線 代入橢圓方程 b2x2a2y2二 a2b2,得 b2x2a2(k2x22kmx m2) a2b2.化簡(jiǎn)后,得關(guān)于x的一

22、元二次方程(a2k2b2)x22ka2mx a2m2a2b20.于是其判別式.:-(2ka2m)2-4(a2k2b2)(a2m2由已知,得=0即 a2k2b2m2.JK2方程 丄上形似橢圓的標(biāo)準(zhǔn)方程2 21x yQ j Q2=1的離心率e=亠,過(guò)A(a,0), B(0-b)的直線到原點(diǎn)的距b23ORPS 的一個(gè)頂點(diǎn) P 的軌跡方程.I 的方程為 y=kx:;,m(k =O).-a2b2) =4a2b2(a2k2b2-m2).在直線方程y = kx m中,分別令 y=0, x=0,令頂點(diǎn) P 的坐標(biāo)為(x, y), 由已知,得求得R(一m,0),S(0,m).kk,X解得*y =m.m = y.

23、代入式并整理,得2 212 2x y即為所求頂點(diǎn) P 的軌跡方程.,你能畫出它的圖形嗎?2 2例 3 3 已知雙曲線務(wù)-篤a J3離是 .(1)求雙曲線的方程;(2)已知直線y =kx 5(k =0)交雙曲線于不同的點(diǎn) C,2D 且 C,D 都在以 B 為圓心的圓上,求 k 的值.2灰,原點(diǎn)到直線 AB := 1的距離a babxa2亠 b2=1, a = x 3 .3ab cb故所求雙曲線方程為x232-3y2(2)把 y = kx 5 代入 x設(shè)C(X1,y1),D(X2,y2),CD的中點(diǎn)是 Eg。),則X!+ X22y。1=3中消去 y,整理得(1 -3k2)x2-30kx-78=0.

24、XokBEX015 k5y0= kx05 =1 -3k1 - 3k21k .學(xué)習(xí)好資料歡迎下載71: 2c2.4+14k4+k2ii)當(dāng) k 不存在時(shí),把直線xc代入橢圓方程得-xokyok = 0,15 k即21 - 3k25 k小e2亍k=0,又k = 0,. k1 - 3k2故所求 k= 為了求出k的值,需要通過(guò)消元,想法設(shè)法建構(gòu)k的方程.P 為橢圓上的一個(gè)動(dòng)點(diǎn),且/ B兩點(diǎn), ABF?的面積最大值例4已知橢圓 C 的中心在原點(diǎn),焦點(diǎn) F F2在 x 軸上,點(diǎn) F1PF2的最大值為 90,直線 I 過(guò)左焦點(diǎn) F1與橢圓交于 A、 為 12.(1) 求橢圓 C 的離心率;(2) 求橢圓 C

25、 的方程.解: (1)設(shè)| PFJ = |PF21 =r2,|F1F22c,對(duì)PF1F2,r,卄2-4c2(A)2-2汀24c2cos. F1PF2-一212r2由余弦定理,得4a2-4c24a2-4c2-11A +r222()21 a=1 2e2=0,解出e二-22(2)考慮直線I的斜率的存在性,可分兩種情況:i)當(dāng) k 存在時(shí),設(shè) I 的方程為y = k(x + c)2 2橢圓方程為 篤 與=1,A(X1,y1), B(X2,y2)a b由e=丄得a2=2c2,b22于是橢圓方程可轉(zhuǎn)化為將代入,消去y得222小x 2 y-2 c=0整理為x的一兀二次方程,得(1 -.-2k2)x2:-4c

26、k2x:-2c2(k則 X1、X2是上述方程的兩根且2 71 +k2| X2- x1| =2_1) =0.2?1 2k2|AB|.1k2|xx1|.22c(12k2),1+2k2AB 邊上的高 h 4F1F2|sin ZBF1F2cX|k |, 、;1+k21也可這樣求解:S=-?c(kT)|k|2c2(1 2k2)1k2=2.2c2 1k2 |k|V2K2-2c2.1ik4k41S=?|F1F2w -y2|L丿c | k | | x1-x2|=2 .2c2學(xué)習(xí)好資料歡迎下載y = ,|AB| =/2h,S =丄逍22 2由知 S 的最大值為,2c2由題意得2c2=12 所以 故當(dāng) ABF2面

27、積最大時(shí)橢圓的方程為:x2y12/2 6、2下面給出本題的另一解法,請(qǐng)讀者比較二者的優(yōu)劣:設(shè)過(guò)左焦點(diǎn)的直線方程為:x =my - c.(這樣設(shè)直線方程的好處是什么?還請(qǐng)讀者進(jìn)一步反思反思橢圓的方程為:的對(duì)稱點(diǎn)的在圓x2y2=4上,求此橢圓的方程.y = -x+1,“丄得2 21-ab2 2 2 2 2 2 2(a b )x -2a x a - a b 0, 根據(jù)韋達(dá)定理,得2 22a丄,丄、丄 c2bX1X2二二2, y1-(x1x2) 2 = 2,a十ba+b=62=b2a2=12 22 2xy22=1, A(xi,yi), B(x2,y2)ab由 e2.得:2把代入并整理得:工曰a2=2c

28、2,b2=c2,于是橢圓方程可化為:x22y2_2c2=0 2 2 2(m2)y 2mcy -c 0是y2是上述方程的兩根.IAB| 二。1-X2)2卜1-丫2)211m2|y2-yj;, 222 2-24m c - 4c (m - 2)=1 m -2m +22 . 2c(1亠m2)=- 5m2+2AB 邊上的高h(yuǎn):2c,+m2從而s J|AB|h J2 2c(1 m)2 2-11- 2c2. m2+1- 七m2+1當(dāng)且僅當(dāng) m=0 取等號(hào),即Smax由題意知2c2=12,于是X2c=2*2C21亠m21 - m2(m 2)2=2 2c2二2c2.b2=c2故當(dāng) ABF2面積最大時(shí)橢圓的方程為

29、:例 5 5 已知直線 y = -X 1 與橢圓2X2a-6 2,a2=12 2.2 2亠1.12 2 6 22y2=1(a b 0)相交于 A、B 兩點(diǎn),且線段 AB的中點(diǎn)在直線丨:x -2y =0上.(1)求此橢圓的離心率;(2)若橢圓的右焦點(diǎn)關(guān)于直線 丨解:(1 )設(shè) A、B 兩點(diǎn)的坐標(biāo)分別為A(x1, y1), B(X2, y2).則由學(xué)習(xí)好資料歡迎下載2b2線段 AB 的中點(diǎn)坐標(biāo)為(:八2b2).a +ba+b2b?0, a 2b 2(a -c ). a2b22 e2b = c,從而橢圓的右焦點(diǎn)坐標(biāo)為F (b,0),x0b1且 一02故橢圓的離心率為(2 )由(1)知l : x -2

30、y = 0的對(duì)稱點(diǎn)為(xo, yo),則y0 _01Xo- b22 2a 2c設(shè)F(b,0)關(guān)于直線yo3解得X。= b且y5由已知得x22324 .-2/y二4,. ( b) - ( b)二4,. b二4一52452故所求的橢圓方程為 例 6 6兩點(diǎn),+82 2已知 O M :x(y-2)=1,Q是x軸上的動(dòng)點(diǎn),QA ,QB 分別切 O M 于 A, B4心2、如果| AB |,求直線 MQ 的方程;3求動(dòng)弦 AB 的中點(diǎn) P 的軌跡方程.解: :(1)由| AB |=4 2,可得| MP卜.| MA |2ABI、23V射影定理,得| MB |2=| MP | | MQ |,得| MQ |=

31、 3,|OQ |MQ |2-|MO | hf32- 22= .5,(1)(2)2- | MO |2二 32-22ff故a - :5或a = - 5,所以直線 AB 方程是2x 5y -2、5 =0或2x -、5y 25=0;(2)連接 MB , MQ,設(shè)P(x,y),Q(a,0),由點(diǎn) M , P, Q 在一直線上,得-匕2, (*)由射影定理得| MB |2=|MP | | MQ |,xV2)在 Rt MOQ 中,a即x2 (y -2)2a2- 4 =1,(*)把(*)及(* )消去 a,并注意到y(tǒng):2,可得2721x (y ) (y=2).416例 7 7 如圖,在 Rt ABC 中,厶B

32、A=90 ,AB=2 ,AC=doDO丄 AB 于 O 點(diǎn),OA=OB ,2適時(shí)應(yīng)用平面幾何知識(shí),這是快速解答本題的要害所在,還請(qǐng)讀者反思其中的奧妙學(xué)習(xí)好資料歡迎下載學(xué)習(xí)好資料歡迎下載D0=2,曲線 E 過(guò) C 點(diǎn),動(dòng)點(diǎn) P 在 E 上運(yùn)動(dòng),且保持| PA |+| PB 的值不變 (1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線 E 的方程;(2)過(guò) D 點(diǎn)的直線 L 與曲線 E 相交于不同的兩點(diǎn)試確定實(shí)數(shù)扎的取值范圍.解:(1)建立平面直角坐標(biāo)系,如圖所示./ | PA |+| PB |=| CA |+| CB | =璧+:22+(渥)2=2庖2、2動(dòng)點(diǎn) P 的軌跡是橢圓a二、2, b = 1, c = 1.

33、2曲線 E 的方程是xy2=1.2(2)設(shè)直線 L 的方程為y二kx 2,代入曲線2 2(2 k 1)x 8kx 6 =0設(shè) M1(X1,yj,N(X2, y2),則:=(8k)2-4(2k 1) 6 08k2k21Tx2: x1: 0,或x2x10,0v v1,(X1X2)2亠生2丄2X-!X2X2X12,(x F =64k2_32X1X2一6(2k21)3(2.丄)k2231而k ?2”8x1x262k21i)ii)L 與 y 軸重合時(shí),一皿 J J| DN |3L 與 y 軸不重合時(shí),23由得k、DM又/ zDNXD_XM捲XD_XNX2M、N 且 M 在 D、N 之間,設(shè).,DN學(xué)習(xí)好

34、資料歡迎下載321641亍,3(2洛)3k0:1,值得讀者注意的是,直線 L 與 y 軸重合的情況易于遺漏,應(yīng)當(dāng)引起警惕例 8 8 直線l過(guò)拋物線寸=2px(p=0)的焦點(diǎn),且與拋物線相交于 A(X1,yJ和Bgy)兩點(diǎn)2(1)求證:4X1X2二p;2)求證:對(duì)于拋物線的任意給定的一條弦CD,直線 I 不是 CD 的垂直平分線本是高考試題的生長(zhǎng)點(diǎn),復(fù)習(xí)忌忘掉課本!1631031 10T訂1.的取值范圍是I,.解:(1)易求得拋物線的焦點(diǎn)F,0)21的方程為X=P,顯然X1X2=P2直于 X 軸,可設(shè)若 I 丄 x 軸,則y =k(x-P),代入拋2物線方程整理得X2P2P20,則XtX2444

35、x2= p2.2 . 22P P(1-)xk綜上可知(2)設(shè)C(C,c), (- ,d)且c =d2p2pc d c dc2 d2(x)22p4p假設(shè)過(guò) F,則0-22p 2(c亠d)(2p2亠c2亠d2) =0 p = 0.2p2c2d2=0,c d=0這時(shí)的方程為 y=0,從而I與拋物線y2=2px只相交于原點(diǎn) 的交點(diǎn),因此與 I 不重合,I 不是 CD 的垂直平分線 此題是課本題的深化,你能夠找到它的原形嗎?知識(shí)在記憶中積累,,則 CD 的垂直平分線的方程為2 2C d)整理得4p而 I 與拋物線有兩個(gè)不同能力在聯(lián)想中提升課學(xué)習(xí)好資料歡迎下載五、高考復(fù)習(xí)建議1、重視教材的基礎(chǔ)作用和示范作

36、用高考試題年年變,但命題的依據(jù)是 考試大綱,要以此為根本,弄清高考的知識(shí)點(diǎn)及對(duì)基礎(chǔ)知識(shí)與能力的要求,這中間實(shí)質(zhì)性的工作就是精通課本,客觀題一般直接來(lái)源于課本, 往往是課本的原題或變式題,解析幾何的主觀試題的生長(zhǎng)點(diǎn)也是課本,所以在復(fù)習(xí)中要精通課本,貫徹“源于課本,高于課本”的原則在二輪復(fù)習(xí)選題時(shí),客觀題可以根據(jù)課本題 改變,加強(qiáng)知識(shí)點(diǎn)的覆蓋,同時(shí)還要注意知識(shí)的綜合。2、突出“曲線與方程”這一重點(diǎn)內(nèi)容 .解析幾何有兩個(gè)主要問(wèn)題,一是由曲線求方程;二是由方程研究曲線,復(fù)習(xí)時(shí)選題要突 出這兩個(gè)問(wèn)題2.1 要掌握求曲線方程的思路和方法 求曲線方程的方法有多種,但其思路的實(shí)質(zhì)都是根據(jù)曲線上點(diǎn)適合的共同條件

37、找出動(dòng) 點(diǎn)的流動(dòng)坐標(biāo)x和y之間的關(guān)系式。常見的求曲線方程的類型有兩種,一種是曲線形狀明確且便于用標(biāo)準(zhǔn)形式表示,這時(shí)可用特定系數(shù)法求其方程;一種是曲線形狀不明確或不便于用 標(biāo)準(zhǔn)形式表示,這時(shí)一般地可用直接法,間接代點(diǎn)法,參數(shù)法等求方程。2.22.2 要強(qiáng)化解析幾何的基本思想和方法解析幾何的基本思想是在平面直角坐標(biāo)系中,把點(diǎn)與實(shí)數(shù)對(duì),曲線與方程,區(qū)域與不等式 統(tǒng)一起來(lái),用代數(shù)方法研究平面上的幾何問(wèn)題 其中最重點(diǎn)的內(nèi)容是用方程研究曲線,其次是 用不等式研究區(qū)域問(wèn)題研究這一基本思想的實(shí)質(zhì)是等價(jià)轉(zhuǎn)化的思想。2.32.3 復(fù)習(xí)中要掌握常用的解題策略 平面解析幾何是綜合性較強(qiáng)的學(xué)科,因而解題時(shí)就需要運(yùn)用多種

38、知識(shí)、采用多種數(shù)學(xué) 手段。熟記各種定義、基本公式、法則,做到迅速、準(zhǔn)確解題。3、注意解析幾何與相關(guān)學(xué)科的交叉問(wèn)題由于解析幾何內(nèi)容在直線與圓錐曲線的幾何性質(zhì)和綜合應(yīng)用方面,涉及的內(nèi)容豐富,易于縱橫聯(lián)系,對(duì)培養(yǎng)學(xué)生的數(shù)學(xué)素質(zhì),提高能力和繼續(xù)學(xué)習(xí)有重要作用。這就啟示我們?cè)趥?考復(fù)習(xí)中,應(yīng)高度重視解析幾何與相關(guān)學(xué)科交叉知識(shí)問(wèn)題的綜合應(yīng)用。04 年高考題也給我們揭示了重視這一問(wèn)題的重要性。應(yīng)該說(shuō),解析幾何中的圓錐曲線都是與方程理論相聯(lián)系 的,但在復(fù)習(xí)過(guò)程中,我們不應(yīng)只停留在這一聯(lián)系,而應(yīng)盡可能加強(qiáng)解析幾何和函數(shù),解 析幾何與導(dǎo)數(shù)、平面向量的聯(lián)系。在此,我們特別強(qiáng)調(diào)的是應(yīng)有機(jī)加大解幾和函數(shù)有關(guān)性 質(zhì)的聯(lián)系。4 4、專題復(fù)習(xí)要立足課堂、講究實(shí)效在實(shí)施專題復(fù)習(xí)的過(guò)程中,要對(duì)考試大綱所涉及的解析幾何近30 個(gè)知識(shí)點(diǎn)逐一排查,以題型為線索有針對(duì)性精心選題。小題選題要以課本為生長(zhǎng)點(diǎn),一方面要注意知識(shí)的覆蓋 面,同時(shí)也要注意知識(shí)的內(nèi)部聯(lián)系。解答題在選題時(shí)要以某圓錐曲線為背景,加強(qiáng)知識(shí)的 縱橫聯(lián)系,如與函數(shù)、不等式、平面向量、導(dǎo)數(shù)的聯(lián)系。用23 個(gè)專題復(fù)習(xí)解析幾何。小題 12 個(gè)課時(shí),解答題 12 個(gè)課時(shí)。

展開閱讀全文
溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號(hào):ICP2024067431號(hào)-1 川公網(wǎng)安備51140202000466號(hào)


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺(tái),本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請(qǐng)立即通知裝配圖網(wǎng),我們立即給予刪除!