6、其中可能的關系式是________.
解析:由已知得log2a=log3b,在同一坐標系中作出y=log2x,y=log3x的圖象,當縱坐標相等時,可以得到相應橫坐標的大小關系,從而得出②④⑤可能.
答案:②④⑤
10.設f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定義域;
(2)求f(x)在區(qū)間上的最大值.
解:(1)∵f(1)=2,∴l(xiāng)oga4=2(a>0,a≠1),∴a=2.[來源:數理化網]
由得x∈(-1,3),∴函數f(x)的定義域為(-1,3).
(2)f(x)=log2(1+x)+log2(3-
7、x)=log2(1+x)(3-x)=log2[-(x-1)2+4],
∴當x∈(-1,1]時,f(x)是增函數;
當x∈(1,3)時,f(x)是減函數,函數f(x)在上的最大值是f(1)=log24=2.
11.(2014·寧波模擬)若函數f(x)=alog2·log2(4x)在區(qū)間上的最大值是25,求實數a的值.
解:f(x)=alog2·log2(4x)=a[(log2x-3)(log2x+2)]=a[(log2x)2-log2x-6],
令t=log2x,則f(x)=a(t2-t-6),且t∈[-3,2].
由于h(t)=t2-t-6=2-,
所以當t=時,h(t)取最小值
8、-;
當t=-3時,h(t)取最大值6.
若a=0,顯然不合題意;
若a>0,則f(x)的最大值為6a,即6a=25,
所以a=;若a<0,則f(x)的最大值為-a,即-a=25,所以a=-4.
綜上,實數a的值為或-4.
12.若不等式(x-1)2<logax在x∈(1,2)內恒成立,求實數a的取值范圍.
解:設f1(x)=(x-1)2,f2(x)=logax,要使當x∈(1,2)時,不等式(x-1)2<logax恒成立,只需f1(x)=(x-1)2在(1,2)上的圖象在f2(x)=logax圖象的下方即可.當0<a<1時,顯然不成立;當a>1時,如圖,要使x∈(1,2)時
9、,f1(x)=(x-1)2的圖象在f2(x)=logax的圖象下方,只需f1(2)≤f2(2),即(2-1)2≤loga2,loga2≥1,∴1<a≤2,即實數a的取值范圍是(1,2].
[沖擊名校]
1.已知函數f(x)=若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是( )
A.(1,10) B.(5,6) C.(10,12) D.(20,24)[來源:]
解析:選C 作出f(x)的大致圖象.不妨設a<b<c,因為a、b、c互不相等,且f(a)=f(b)=f(c),由函數的圖象可知10
10、g b|,因為a≠b,所以lg a=-lg b,可得ab=1,所以abc=c∈(10,12).
2.函數f(x)的定義域為D,若存在閉區(qū)間[a,b]?D,使得函數f(x)滿足:(1)f(x)在[a,b]內是單調函數;(2)f(x)在[a,b]上的值域為[2a,2b],則稱區(qū)間[a,b]為y=f(x)的“和諧區(qū)間”.下列結論錯誤的是( )
A.函數f(x)=x2(x≥0)存在“和諧區(qū)間”
B.函數f(x)=x3 (x∈R)存在“和諧區(qū)間”
C.函數f(x)=(x≥0)存在“和諧區(qū)間”
D.函數f(x)=loga(a>0,a≠1)不存在“和諧區(qū)間”
解析:選D 對于A,在函數的單調遞
11、增區(qū)間上問題等價于方程f(x)=2x至少有兩個不相等的實數根,可得[0,2]為函數f(x)=x2(x≥0)的“和諧區(qū)間”; 同理對于B,在x∈R上問題等價于方程f(x)=2x至少有兩個不相等的實數根,通過畫圖象(圖略)可知,f(x)=x3(x∈R)存在“和諧區(qū)間”;對于C,易知函數f(x)=(x≥0)在[0,1]上單調遞增,且其值域是[0,2],故函數f(x)=(x≥0)也存在“和諧區(qū)間”;對于D,易知函數f(x)=loga(a>0,a≠1)在其定義域內單調遞增,定義域是滿足ax>的自變量的取值范圍,由方程f(x)=2x,得a2x-ax+=0,解得ax=或ax=.由于-=>0,故ax的兩個根都
12、在函數的定義域內,因此函數f(x)=loga(a>0,a≠1)也存在“和諧區(qū)間”.
[高頻滾動]
1.函數f(x)=ax-b的圖象如圖所示,其中a,b為常數,則下列結論正確的是( )
A.a>1,b<0 B.a>1,b>0[來源:]
C.0<a<1,b>0 D.0<a<1,b<0
解析:選D 由函數f(x)的圖象特征知,0<a<1,又f(0)=a-b<1=a0,所以-b>0,即b<0.
2.已知函數f(x)=|2x-1|,af(c) >f(b),則下列結論中,一定成立的是( )
A.a<0,b<0,c<0 B.a<0,b≥0,c>0
C.2-a<2c D.2a+2c<2
解析:選D 作出函數f(x)=|2x-1|的圖象如右圖中實線所示,∵af(c)>f(b),結合圖象知a<0,0<c<1,∴0<2a<1,1<2c<2,∴f(a)=|2a-1|=1-2a,f(c)=|2c-1|=2c-1,又f(a)>f(c),即1-2a>2c-1,∴2a+2c<2,故選D.