《《指數(shù)函數(shù)的圖像與性質(zhì)》案例分析》由會(huì)員分享,可在線閱讀,更多相關(guān)《《指數(shù)函數(shù)的圖像與性質(zhì)》案例分析(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、《指數(shù)函數(shù)的圖像與性質(zhì)》案例分析
醴陵市二中 張新元
提出問題:
新課程認(rèn)為知識(shí)不是單方面通過教師傳授得到的,而是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過與他人(教師指導(dǎo)和同學(xué)的幫助)協(xié)作,主動(dòng)建構(gòu)而獲得的。它強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。通過多年教學(xué)實(shí)踐和對(duì)新課程的認(rèn)識(shí),我認(rèn)為若遵循這個(gè)原則進(jìn)行數(shù)學(xué)課堂教學(xué),學(xué)生的學(xué)習(xí)將是一種高效的活動(dòng)。
教材中的地位:
本節(jié)內(nèi)容是在指數(shù)范圍擴(kuò)充到實(shí)數(shù)的基礎(chǔ)上引入指數(shù)函數(shù)的,而指數(shù)函數(shù)是高中研究的第一種具體函數(shù)。是在初中已經(jīng)初步探討了
2、正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù)的圖像和性質(zhì)的基礎(chǔ)上,在進(jìn)一步學(xué)習(xí)了函數(shù)的概念及有關(guān)性質(zhì)的前提下,去研究學(xué)習(xí)的。重點(diǎn)是指數(shù)函數(shù)的圖像及性質(zhì),難點(diǎn)在于弄清楚底數(shù)a對(duì)于函數(shù)變化的影響。這節(jié)課主要是學(xué)生利用描點(diǎn)法畫出函數(shù)的圖像,并描述出函數(shù)的圖像特征,從而指出函數(shù)的性質(zhì)。使學(xué)生從形到數(shù)的熟悉,體驗(yàn)研究函數(shù)的過程與思路,實(shí)現(xiàn)意識(shí)的深化。
設(shè)計(jì)背景:
在新教材的教學(xué)中,我慢慢體會(huì)到新教材滲透的、螺旋式上升的基本理念,知識(shí)點(diǎn)的形成過程經(jīng)歷從具體的實(shí)例引入,形成概念,再次運(yùn)用于實(shí)際問題或具體數(shù)學(xué)問題的過程,它的應(yīng)用性,實(shí)用性更明顯的體現(xiàn)出來。學(xué)數(shù)學(xué)重在培養(yǎng)學(xué)生的思維品質(zhì),經(jīng)過多年的數(shù)學(xué)學(xué)習(xí)
3、,學(xué)生還是害怕學(xué)數(shù)學(xué),尤其高中的數(shù)學(xué),它對(duì)于學(xué)生來說顯得很抽象。所以如果再讓讓學(xué)生感到數(shù)學(xué)離我們的生活太遠(yuǎn),那么將很難激發(fā)他們的學(xué)習(xí)愛好。所以在教學(xué)中我盡力抓住知識(shí)的本質(zhì),以實(shí)際問題引入新知識(shí)。另外,就本章來說,指數(shù)函數(shù)是學(xué)習(xí)函數(shù)概念及基本性質(zhì)之后研究的第一個(gè)重要的函數(shù),讓學(xué)生學(xué)會(huì)研究一個(gè)新的具體函數(shù)的方法比學(xué)會(huì)本身的知識(shí)更重要。在這個(gè)過程中,所有的知識(shí)都是生疏的,在大腦中沒有形成基本的框架結(jié)構(gòu),需要老師的引導(dǎo),使他們逐漸建立。數(shù)學(xué)中任何知識(shí)的形成都體現(xiàn)出它的思想與方法,因而授課中注重讓學(xué)生領(lǐng)悟其中的思想,運(yùn)用其中的方法去學(xué)習(xí)新的知識(shí),是非常重要的。
教學(xué)目標(biāo):
一、知識(shí):
理解指數(shù)函數(shù)
4、的定義,能初步把握指數(shù)函數(shù)的圖像,性質(zhì)及其簡(jiǎn)單應(yīng)用。
二、過程與方法:
由實(shí)例引入指數(shù)函數(shù)的概念,利用描點(diǎn)作圖的方法做出指數(shù)函數(shù)的圖像,(有條件的話借助計(jì)算機(jī)演示驗(yàn)證指數(shù)函數(shù)圖像)由圖像研究指數(shù)函數(shù)的性質(zhì)。利用性質(zhì)解決實(shí)際問題。
三、能力:
1.通過指數(shù)函數(shù)的圖像和性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析和歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。
2.通過對(duì)指數(shù)函數(shù)的研究,使學(xué)生能把握函數(shù)研究的基本方法。
教學(xué)過程:
由實(shí)際問題引入:
問題1:某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),…1個(gè)這樣的細(xì)胞分裂次后,得到的細(xì)胞的個(gè)數(shù)與之間的關(guān)系是什么?
分裂次數(shù)與細(xì)胞
5、個(gè)數(shù)
1,2;2,2×2=22;3,2×2×2=23;…………;x,2×2×……×2=2x
歸納:
問題2:某種放射性物質(zhì)不斷變化為其它物質(zhì),每經(jīng)過1年剩留的這種物質(zhì)是原來的84%,那么經(jīng)過年后剩留量與的關(guān)系是什么?
經(jīng)過1年,剩留量y=1×84%=0.841;經(jīng)過2年,剩留量y=0.84×0.84=0.842…………
經(jīng)過年,剩留量。
尋找異同:
你能從以上的兩個(gè)例子中得到的關(guān)系式里找到什么異同點(diǎn)嗎?
共同點(diǎn):變量與構(gòu)成函數(shù)關(guān)系式,是指數(shù)的形式,自變量在指數(shù)位置,底數(shù)是常數(shù);不同點(diǎn):底數(shù)的取值不同。
那么,今天我們來學(xué)習(xí)新的一個(gè)基本函數(shù):指數(shù)函數(shù)
得到指數(shù)函數(shù)的
6、定義:定義:形如的函數(shù)叫做指數(shù)函數(shù)。
在以前我們學(xué)過的函數(shù)中,一次函數(shù)用形如的形式表示,反比例函數(shù)用形如表示,二次函數(shù)表示。對(duì)于其一般形式上的系數(shù)都有相應(yīng)的限制。 ?
問:為什么指數(shù)函數(shù)對(duì)底數(shù)有這樣的要求呢?
若時(shí),恒等于0,沒有研究?jī)r(jià)值;當(dāng)時(shí),無意義。
若,當(dāng)是無意義的,沒有研究?jī)r(jià)值。
若則=1,是一個(gè)常量,也沒有研究的必要。
所以有規(guī)定且。
由定義,我們可以對(duì)指數(shù)函數(shù)有一初步熟悉。
進(jìn)一步理解函數(shù)的定義:
指數(shù)函數(shù)的定義域:在我們學(xué)過的指數(shù)運(yùn)算中,指數(shù)可以是有理數(shù),當(dāng)指數(shù)是無理數(shù)時(shí),也是一個(gè)確定的實(shí)數(shù),對(duì)于無理數(shù),學(xué)過的有理指數(shù)冪的性質(zhì)和運(yùn)算法則都適用,
7、所以指數(shù)函數(shù)的定義域?yàn)镽.
研究函數(shù)的途徑:由函數(shù)的圖像的性質(zhì),從形與數(shù)兩方面研究。
學(xué)習(xí)函數(shù)的一個(gè)很重要的目標(biāo)就是應(yīng)用,那么首先要對(duì)函數(shù)作一研究,研究函數(shù)的圖像及性質(zhì),然后利用其圖像性質(zhì)去解決數(shù)學(xué)問題和實(shí)際問題。根據(jù)以往的經(jīng)驗(yàn),你會(huì)從那幾個(gè)角度考慮?(圖像的分布范圍,圖像的變化趨勢(shì),…)圖像的分布情況與函數(shù)的定義域,值域有關(guān),函數(shù)的變化趨勢(shì)體現(xiàn)函數(shù)的單調(diào)性。引導(dǎo)學(xué)生從定義域,值域,單調(diào)性,奇偶性,與坐標(biāo)軸的交點(diǎn)情況著手開始。
首先我們做出指數(shù)函數(shù)的圖像,我們研究一般性的事物,常用的方法是:由特殊到一般。
我們以具體函數(shù)入手,讓學(xué)生以小組形式取不同底數(shù)的指數(shù)函數(shù)畫它們的圖像,將學(xué)生
8、畫的函數(shù)圖像展示,(畫函數(shù)的圖像的步驟是:列表,描點(diǎn),連線。)。
最后,老師在黑板(電腦)上演示列表,描點(diǎn),連線的過程,并且,畫出取不同的值時(shí),函數(shù)的圖像。
要求學(xué)生描述出指數(shù)函數(shù)圖像的特征,并試著描述出性質(zhì)。
數(shù)學(xué)發(fā)展的歷史表明,每一個(gè)重要的數(shù)學(xué)概念的形成和發(fā)展,其中都有豐富的經(jīng)歷,新課程較好的體現(xiàn)了這點(diǎn)。對(duì)新課程背景下的學(xué)生而言,數(shù)學(xué)的知識(shí)應(yīng)該是一個(gè)數(shù)學(xué)化的過程,即通過對(duì)常識(shí)材料進(jìn)行細(xì)致的觀察、思考,借助于分析、比較、綜合、抽象、概括等思維活動(dòng),對(duì)常識(shí)材料進(jìn)行去粗取精、去偽存真的精加工。該案例正是從數(shù)學(xué)研究和數(shù)學(xué)實(shí)驗(yàn)的過程中進(jìn)行設(shè)計(jì)。雖然學(xué)生的思維不一定真實(shí)的重演了人類對(duì)數(shù)學(xué)知
9、識(shí)探索的全過程,但確確實(shí)實(shí)通過實(shí)驗(yàn)、觀察、比較、分析、歸納、抽象、概括等思維活動(dòng),在探索中將數(shù)學(xué)數(shù)學(xué)化,從而才使學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)產(chǎn)生了樂趣,對(duì)數(shù)學(xué)的研究方法有了一定的了解。
雖然學(xué)生要學(xué)的數(shù)學(xué)是歷史上前人已建構(gòu)好了的,但對(duì)他們而言,仍是全新的、未知的,需要用他們自己的學(xué)習(xí)活動(dòng)來再現(xiàn)類似的過程。該案例正是從創(chuàng)設(shè)問題情景作為教學(xué)設(shè)計(jì)的重要的內(nèi)容之一。教師應(yīng)該把教學(xué)設(shè)計(jì)成學(xué)生動(dòng)手操作、觀察猜想、揭示規(guī)律等一系列過程,側(cè)重于學(xué)生的探索、分析與思考,側(cè)重于過程的探究及在此過程中所形成的一般數(shù)學(xué)能力。
教師的地位應(yīng)由主導(dǎo)者轉(zhuǎn)變?yōu)橐龑?dǎo)者,使教學(xué)活動(dòng)真正成為學(xué)生的活動(dòng)。在教學(xué)過程中,把學(xué)習(xí)的主動(dòng)權(quán)交給學(xué)生,在時(shí)間和空間上保證學(xué)生在教師的指導(dǎo)下,學(xué)生能自己獨(dú)立自主的探究學(xué)習(xí)。使教學(xué)活動(dòng)始終處于學(xué)生的“最近發(fā)展區(qū)”,使每一個(gè)學(xué)生通過自己的努力,在自己原有的基礎(chǔ)上都有所獲,都有提高。
總之,通過案例研究,不斷研究新教材、新理念,不斷調(diào)整教學(xué)策略優(yōu)化課堂教學(xué),培養(yǎng)學(xué)生探究學(xué)習(xí)與創(chuàng)新學(xué)習(xí)能力將是我們?cè)跀?shù)學(xué)教學(xué)中要繼續(xù)探究的課題。
4