家用核桃去殼機設計
家用核桃去殼機設計,家用,核桃,去殼,設計
第56 頁
1 引言
1.1 課題提出的背景
核桃中富含脂肪和蛋白質,既是主要的食用植物油來源,而且又可提供豐富的植物蛋白質。利用核桃或脫脂后的核桃餅粕的蛋白粉,可直接用于焙烤食用,也可作為肉制品、乳制口、糖果和煎炸食品的原料或添加劑。以核桃蛋白粉為原料或添加劑制成的食品,既提高了蛋白質含量,又改善了其功能特性。核桃蛋白粉還可以通過高壓膨化制成蛋白肉。核桃是食用植物油工業(yè)的重要原料,利用核桃油可制造人造奶油、起酥油、色拉油、調和油等,也可用作工業(yè)原料。核桃除經簡單加工就可食用外,經深加工還可以制成營養(yǎng)豐富,色、香、味俱佳的各種食品和保健品。核桃加工副產品核桃殼和核桃餅粕等可以綜合利用,加工增值,提高經濟效益。
既然核桃對人類的日常生活有很大的影響,那么我們先研究一下核桃生產的意義。
1.1.1核桃生產的意義
1.核桃是人類重要的植物油脂和優(yōu)質蛋白質來源。
核桃莢果出仁率60%—80%。核桃仁含油率45%—55%,一般50%左右,蛋白質27—30%,碳水化合物6%—23%,纖維素2%,含有豐富的維生素E、B1、B2、B6和維生素C。核桃是人民生活的主要食用油和主要植物蛋白質來源。
核桃是重要的油料作物。核桃油在室溫下為低黏度淡黃色液體,其中油酸(Oleic acid)含量34%—68%、亞油酸(Linoleic acid)19%—43%,二者共占80%。油酸和亞油酸比率,簡稱O/L比率,變幅0.78—3.5。一般認為O/L比率是油質穩(wěn)定性的指示值,國際貿易中把O/L比率作為核桃及其制品耐貯藏性的指標。亞油酸是食品營養(yǎng)品質的重要指標,兼顧營養(yǎng)價值和耐貯藏性,O/L比率一般在1.4—2.5為宜。
2.核桃是營養(yǎng)豐富的食品
核桃仁中蛋白質含量高,可消化率92%—95%,易被人體吸收利用。就人體必需的8種氨基酸而言,核桃蛋白質含亮氨酸、苯丙氨酸較多,而蛋氨酸、賴氨酸、蘇氨酸不足。核桃仁中碳水化合物以蔗糖和淀粉為主。在核桃烘烤過程中,產生出核桃特有的香味。常見的核桃食品有核桃醬、烤及炸核桃、核桃糖果、麻芝、人造奶油,核桃果茶(果奶)飲料、核桃奶粉、酸奶酪等多種糕點甜食和多種膨化食品。
3.核桃是發(fā)展畜牧業(yè)的良好飼料。
核桃油粕中蛋白質含量達50%以上,是優(yōu)質的飼料。核桃葉片內含粗蛋白約20%,莖內約含10%,飼料價值高,并含豐富的鈣和磷。核桃果殼中含70%—80%纖維素、16%戊糖、10%的半纖維素、4%—7%的蛋白質,也是良好的飼用原料。
4.核桃是我國主要出口的產品。
我國年出口核桃約50萬t,居世界第一,約占世界貿易的l/3。大核桃出口品種主要有花17、魯花10號等(以果為主,O/L比率1.4左右);小核桃出口代表品種為白沙l 016(以核桃米為主,O/L比率1.0左右)。在出口品種中尚需進一步提高O/L比率。
5.核桃是適應性強、增產潛力大的作物。
核桃抗旱、耐瘠、適應性強;核桃又有根瘤菌共生固氮作用,可以補充氮肥的不足,在作物輪作制中占有重要位置。同時,核桃又耐肥,增產潛力很大,春、夏核桃均培創(chuàng)出大面積7500kg/hm2的高產田,最高產量達11194.5kg/hm2(山東蓬萊);核桃最高單株產量達0.89kg、結果661個(美國哈蒙斯發(fā)現(xiàn))。因此,核桃屬高產作物,但只有種在肥沃的土壤上,才能發(fā)揮其高產潛力。
6.具有重要的藥用價值。
核桃仁特別是紅皮核桃的種皮(紅衣)含有大量的凝血脂類,能促進骨髓制造血小板,縮短出血、凝血時間,有良好的止血作用,已用于生產止血寧針劑、寧血糖漿、血寧片等。
1.1.2核桃的起源、分布、產區(qū)和生產概況
1.起源和分布
南美洲中部是核桃屬植物和栽培核桃的起源地。一般認為,世界上其他地區(qū)的核桃皆為1492年哥倫布發(fā)現(xiàn)新大陸之后由南美傳出;但在此之前核桃已傳至亞洲或非洲的可能性也不能排除。
核桃主要分布在南緯40°至北緯40°之間的廣大地區(qū)。主要集中:一是南亞和非洲的半干旱熱帶,包括印度、塞內加爾、蘇丹等,面積約占世界總面積的80%,總產約占65%;另一類是東亞和美洲的溫帶半濕潤季風帶,包括中國、美國、阿根廷,面積約占20%,總產約占35%。全世界核桃面積約2400萬hm2,單產1200kg/hm2左右,總產約30000kt。世界約有90個國家種植核桃。印度、中國和美國是世界三大核桃主產國,塞內加爾、尼日利亞、蘇丹等國也盛產核桃。印度核桃面積700萬hm2以上,但產量較低,單產只有1000kg/hm2左右,總產約7000kt;美國核桃面積65萬hm2左右,單產2500kg/hm2左右,總產約l 700kt。
2.中國核桃種植區(qū)劃
Ⅰ.黃河流域核桃區(qū) 是我國七個核桃區(qū)中核桃種植面積最大、 總產最多、提供核桃商品量最多和出口核桃最多的主產區(qū)。
Ⅰ1.山東丘陵核桃亞區(qū) 耕作制度多為二年三熟, 部分一年一熟。重茬核桃有一定面積。近年來,夏播核桃發(fā)展較快。 宜種植普通型叢生中熟、珍珠豆型核桃。可適當恢復核桃種植面積,特別要注意恢復、 增加出口手撿大粒核桃。
Ⅰ2.華北平原核桃亞區(qū) 栽培制度大部分了一年一熟, 少部分二年三熟,重茬連作核桃面積較多,近年來夏播核桃在發(fā)展。 宜種植普通型叢生中熟、珍珠豆型核桃品種, 而在貧瘠的大片砂土地上宜種植普通型短蔓核桃品種。冀東、魯西、豫北可適當恢復核桃種植面積。
Ⅰ3.黃淮平原核桃亞區(qū) 栽培制度以二年三熟為主, 麥套核桃較為普遍,也有部分一年一熟的春核桃。近年來麥茬、油菜后作核桃開始發(fā)展,一年二熟面積逐年擴大。宜種植普通型叢生中熟、珍珠豆型品種, 在黃泛區(qū)等砂土地區(qū),可種植普通型短蔓生品種,在黃河故道及黃泛區(qū)的砂土區(qū),徐淮丘陵、平原地區(qū), 淮北地區(qū)的中部地帶的大面積低產的砂姜土等地區(qū)可適當恢復和發(fā)展核桃。
Ⅰ4.陜豫晉盆地亞區(qū) 主要是麥行套種核桃,亦有部分春核桃。宜種植普通型叢生中熟和珍珠豆型品種。渭河灘地可發(fā)展核桃, 河南南陽地區(qū)亦可發(fā)展。
Ⅱ.長江流域核桃區(qū) 為我國春、夏核桃交作, 以麥套核桃為主的產區(qū)。
Ⅱ1.長江中下游平原丘陵核桃亞區(qū) 栽培制度主要是二年三熟的麥行套種核桃,冬閑地春核桃很少。宜種植普通型叢生中熟和珍珠豆型品種。江蘇的沿江高砂土地區(qū),江淮丘陵的大片較為瘦薄的稻田和旱地,可恢復、發(fā)展核桃。
Ⅱ2.長江中下游丘陵核桃亞區(qū) 栽培制度普遍推行一年二熟制, 部分種植在冬閑地上,湘、贛兩省南部有部分秋核桃。宜種植珍珠豆型品種。
Ⅱ3.四川盆地核桃亞區(qū) 栽培制度以二年三四熟, 麥茬或豌豆茬(或豌豆行間套種)為主,亦有一年一熟的春核桃。為提高產量, 近年來麥行套種核桃有發(fā)展。宜種植普通型叢生中熟和珍珠豆型品種。
Ⅱ4.秦巴山地核桃亞區(qū) 栽培制度為一年二熟和二年三熟, 核桃以在玉米行中套種為主,亦有部分春核桃。 宜種植普通型叢生中熟和珍珠豆型品種。
Ⅲ.東南沿海核桃區(qū) 是我國種核桃歷史最早,又能春、 秋兩作的主產區(qū)。栽培制度以一年二熟、一年三熟和二年五熟的春、秋核桃為主, 海南島等地還可種冬核桃。有水旱輪作、旱地輪作、間種、套種等多種形式。宜種植珍珠豆型品種。在勞力緊張的丘陵旱坡地可種普通型蔓生品種。 由于廣東省低產水田面積較大,若有計劃地與核桃輪作,發(fā)展核桃大有潛力。
Ⅳ.云貴高原核桃區(qū) 為我國“立體核桃”種植區(qū)。 栽培制度以一年一熟為主,部分地區(qū)為二年三熟或一年二熟。宜種植珍珠豆型品種。
Ⅴ.黃土高原核桃區(qū) 主要是解放后發(fā)展的核桃區(qū)。 栽培制度為一年一熟。一般而言,橫山、志丹、 黃陵一線以南宜種植珍珠豆型品種,以北宜種植多粒型品種。Ⅵ.東北核桃區(qū) 為早熟核桃區(qū)。
Ⅵ1.遼吉丘陵平原核桃亞區(qū) 栽培制度一年一熟。宜種植珍珠豆型和多粒型品種,南部地區(qū)可種植普通型品種。
Ⅵ2.吉黑平原核桃亞區(qū) 栽培制度為一年一熟的春核桃,宜種植多粒型品種。嫩江、牡丹江、松花江、綏化和合江等地區(qū), 有近千萬畝砂土地,若能開發(fā)利用5-10%種核桃是完全可行的。
Ⅶ.西北核桃區(qū) 是各區(qū)中核桃種植面積最少的灌溉核桃區(qū)。 栽培制度為一年一熟。根據(jù)積溫情況、核桃不同生態(tài)類型品種適宜氣候區(qū)和需要,安排適宜類型品種。無灌溉不能種核桃。
3.全國生產概況
我國核桃面積常年350—450萬hm2,單產2500—3000kg/hm2,總產10000kt左右,居世界第一位。2001年我國核桃面積和總產分別達到463l khm2和14583kt,創(chuàng)歷史最高記錄。全國劃分為7個核桃區(qū):①北方大核桃區(qū);②南方春秋兩熟核桃區(qū);③長江流域春夏核桃區(qū);④云貴高原核桃區(qū);⑤東北早熟核桃區(qū);⑥黃土高原核桃區(qū);⑦西北內陸核桃區(qū)。其中①②③3個區(qū)合計核桃面積占全國的97%,是我國核桃主產區(qū)。北方大核桃區(qū)包括山東、河北和北京市全部,河南、安徽、江蘇的淮河以北地區(qū),山西省南部,陜西省秦嶺以北的關中渭河流域,遼寧的遼東半島和遼西地區(qū)。全區(qū)核桃面積約占全國核桃的50%—60%。本區(qū)盛產大核桃,與緯度相近的美國弗吉尼亞—北卡羅來納核桃產區(qū),同為世界僅有的兩個大核桃產區(qū)。本區(qū)山區(qū)丘陵多為春核桃地膜覆蓋,黃河沖積平原多為麥套核桃,一年二熟。
南方春秋兩熟核桃區(qū)包括廣東、廣西、海南、福建、臺灣5省(自治區(qū)),以及湘、贛南部,面積約占全國的30%,為全國第二核桃主產區(qū)。本區(qū)核桃品種幾乎全為珍珠豆型早熟中粒品種。一年兩季;春核桃3月播種7月收獲,秋核桃8月播種11月收獲,海南島南部還可再種一季冬核桃。
長江流域春夏核桃區(qū)地處南、北兩大核桃區(qū)之間,包括川、鄂、湘、贛、皖、蘇、浙等7省的全部或大部,以及陜、豫的南部。核桃是本地區(qū)僅次于油菜的油料作物。
就省(自治區(qū))而言,山東省常年核桃播種面積80萬hm2左右,單產3500kg/hm2左右,總產超過2500kt,年出口量300kt左右;河南省近幾年核桃生產發(fā)展迅速,面積也超過70萬hm2,總產2000kt左右。兩省面積和總產占全國的40%以上。河北、廣東核桃面積均超過30萬hm2,核桃種植面積在10萬hm2以上的省(自治區(qū))依次是廣西、四川、安徽、江蘇、江西、湖南。
4.山西核桃生產概況
山西省屬北方大核桃區(qū),有成片適于種植核桃的沙土地,氣候條件也基本適合核桃生育的要求。山西省各地、市較早就有核桃的種植,其中尤以南部及中部地區(qū)較多。
近幾年來,山西省核桃生產隨著生產條件的改善、新品種的更新及育苗移栽、地膜覆蓋和配方施肥等技術的提高,出現(xiàn)了大面積的高產田和小面積的超高產田。核桃的總播種面積及總產量都呈逐步上升趨勢。常年播種面積28千hm2,總產5萬t,單產2000kg/ hm2左右。
核桃在制取油脂、制取核桃蛋白、生產核桃儀器以及在核桃貿易出口時,都需要對核桃進行預處理加工。核桃的預處理主要包括核桃的剝殼和分級、破碎、軋胚和蒸炒等。
核桃在加工或作為出口商品時,需要進行剝殼加工。核桃在制取油脂時,剝殼的目的是為了提高出油率, 提高毛油和餅粕的質量,利于軋胚等后續(xù)工序的進行和皮殼的綜合利用。傳統(tǒng)的剝殼為人力手工剝殼,手工剝殼不僅手指易疲勞、受傷,而且工效很低,所以核桃產區(qū)廣大農民迫切要求用機器來代替手工剝殼。核桃剝殼機的誕生在很大程度上改變了這種局面,使核桃產區(qū)的農民不必再采用最原始的剝殼方法進行剝殼,從而大大地減輕了農民的體力勞動,同時還提高了核桃剝殼的效率。
核桃脫殼機是將核桃莢果去掉外殼而得到核桃仁的場上作業(yè)機械。由于核桃本身的生理特點決定了核桃脫殼不能與核桃的田間收獲一起進行聯(lián)合作業(yè),而只能在核桃莢果的含水率降到一定程度后才能進行脫殼。隨著核桃種植業(yè)的不斷發(fā)展,核桃手工脫殼已無法滿足高效生產的要求,實行脫殼機械化迫在眉睫。
1.2 核桃脫殼機械的發(fā)展
我國核桃脫殼機的研制自1965年原八機部下達核桃脫殼機的研制課題以來,已有幾十種核桃脫殼機問世。只進行單一脫殼功能的核桃脫殼機結構簡單,價格便宜,以小型家用為主的核桃脫殼機在我國一些地區(qū)廣泛應用,能夠完成脫殼、分離、清選和分級功能的較大型核桃脫殼機在一些大批量核桃加工的企業(yè)中應用較為普遍。國內現(xiàn)有的核桃脫殼機種類很多,如6BH一60型核桃剝殼機、6BH一20B型核桃剝殼機、6BH一20型核桃脫殼機等,其作業(yè)效率為人工作業(yè)效率的2O~60倍以上。錦州俏牌集團生產的TFHS1500型核桃除雜脫殼分選機組一次能實現(xiàn)核桃原料的脫殼、除皮、分選,是一種比較先進的核桃后期生產機械。偉民牌6BH一720型核桃脫殼機帶有復脫、分級裝置,采用搓板式脫殼、風力初選、比重分離清選等裝置,具有結構緊湊、操作靈活方便、脫凈率高、消耗動力小等特點。6BK一22型核桃脫殼機是一種一次喂料就可完成核桃脫殼工作的機械,經風力初選、風扇振動、分層分離、復脫清選分級后的核桃仁可直接裝袋入庫。6BH一1800型核桃脫殼機械采用了三軋輥混合脫殼結構,能夠進行二次脫殼。而隨著我國核桃產業(yè)的進一步調整,核桃產量逐年增加,核桃的機械化脫殼程度將大幅提高,核桃脫殼機械將擁有廣闊的發(fā)展前景。
核桃剝殼的原理很多,因此產生了很多種不同的核桃剝殼機械。核桃剝殼部件是核桃剝殼機的關鍵工作部件,剝殼部件的技術水平決定了機具作業(yè)剛核桃仁破碎率、核桃果一次剝凈率及生產效率等重要的經濟指標。在目前的生產銷售中,核桃仁破碎率是社會最為關心的主要指標。
八十年代以前的核桃剝殼機械,破碎率一般都大于8%,有時高達l5%以上。加工出的核桃仁,只能用來榨油,不能作種用,也達不到出口標準。為了降低破碎率而探討新的剝殼原理,研制新式剝殼部件,便成為核桃剝殼機械的重要研究課題。從六十年代初,開始在我國出現(xiàn)了封閉式紋桿滾筒,柵條凹板式核桃剝殼機。自1983年以來,在已有的核桃剝殼部件的研制基礎上,我國又相繼研制了多種不同結構型式的新式剝殼部件,其主要經濟技術指標,特別是破殼率指標大有改善。
以下介紹一下我國上個世紀幾種主要的核桃剝殼部件
1.封閉式紋桿滾筒,柵條凹板式核桃剝殼部件
圖 1-1
六十年代初, 我國在吸收國外技術的基礎上,研制了TH-340型核桃剝殼機,其剝殼部件是在一個圓筒上鑲上若干根紋桿組成的封閉式紋桿滾筒,下面裝有若干根圓鋼條組成的柵條式凹板,如圖1-1所示。
在該機構中核桃進口大(3O-50毫米),出口小(1O-25毫米),工作時,核桃果在滾筒的推動下由進口向出口端運動,在滾筒和凹板的沖擊、擠壓、揉搓作用下直接脫殼,核桃受列剝殼機的直接搓擦作用,系強制脫殼,故破碎率高。剝殼時, 直徑同凹板柵縫一樣大小的單粒果及雙粒果便從柵縫中分離出來,所以一次剝凈率低,最高80%。為了將混在一起的核桃仁和未脫果分離開來,采用柵條式凹板的剝殼機一般要配置分離機構。后來研制并生產的TH-47O型,6 BH-570型等型式的剝殼機,結構與其大同小異,剝殼質量均不理想。
2. 封閉橡膠板滾筒,直立橡膠板式剝殼部件
該機的剝殼部件是由封閉膠輥和直立膠板組成,剝殼原理系擠壓式,如圖1-2所示
圖1-2
作業(yè)時,核桃果在膠輥的推動下,通過剝殼間隙(5—20毫米),由膠輥和膠板的擠壓作用脫殼,避開了剝殼部件的揉搓作用,破碎率有所降低,但仍在5%以上。另外,因直徑小于剝殼間隙的小果未經剝殼便被分離出來,故一次剝凈率很低,只有30%左右。所以不得不增設循環(huán)機構,以使核桃經多次擠壓脫殼,致使機器結構復雜、龐大,造價較高。
3. 開式紋桿滾筒,編織凹板式核桃剝殼部件
剝殼部件采用了由兩根金屬紋桿組成的開式紋桿滾筒和用編織絲網(wǎng)制成的編織凹板,其結構如圖1-3所示
圖1-3
作業(yè)時,核桃果在滾筒的推動下,受擠壓揉搓脫殼,該結構與封閉滾筒式不同,核桃果受到開式滾筒的攪拌作用,剝殼力帶有柔性,故其破碎率較低,可控制在3%-5% 。另外,與柵條式凹板不同,因系編織網(wǎng)孔凹板,剝殼時,只有直徑小于網(wǎng)孔尺寸的單粒癟果末脫殼而被網(wǎng)孔分離,雙粒長果則漏不出來,仍被剝殼,故剝凈率較高。
4. 立式剝殼機構
剝殼部件采用了由兩根扁鋼條焊接而成的立式轉子,下面裝著用編織絲網(wǎng)制成的編織平底篩,該剝殼部件如圖1-4所示。
圖1-4
在剝殼室內,核桃果受立式轉子的推動而相互磨擦,從而達到剝殼的目的,此方法系柔性揉搓剝殼。實踐證明,該機破碎率較低,可控制在3%以下。其缺點是由于采用立式傳動, 故傳動機構較為復雜。
5. 開式扁條滾筒,編織凹板式核桃剝殼部件
采用了由三根扁鋼條制成的開式扁條滾筒,和用編織絲網(wǎng)制成的凹板結構,如圖1-5所示。作業(yè)時,核桃果在扁條的推動下隨滾筒轉動,在滾筒和凹板之間形
圖1-5
成一個活動層,核桃果在該活動層內互相揉搓而脫殼。由于在該機構中,避開了剝殼部件的直接擠壓, 沖擊的作用,而是核桃搓核桃,系柔性剝殼,故破碎率較低, 該機鑒定時實測破傷率(破碎率+損傷率)為0.91。另外脫凈率及生產效率等指標亦較理想。
1.3 核桃脫殼機械的研究應用現(xiàn)狀
目前國內核桃脫殼機從其脫殼原理、結構和材料上基本可分為以打擊、揉搓為主的鋼紋桿——鋼柵條凹板 以擠壓、揉搓為主的橡膠滾筒一一橡膠浮動凹板兩大類,但脫殼質量均不高,破損率都大于8 %,剝出的核桃米只能用于榨油和食用,滿足不了外貿出口和作種子的要求。探索先進的脫殼原理是解決脫殼機現(xiàn)存問題的重要途徑。
1.3.1 目前核桃脫殼機采用的脫殼原理
目前應用比較廣泛的核桃機械脫殼原理有以下幾種。
撞擊法脫殼 撞擊法脫殼是物料高速運動時突然受阻而受到沖擊力,使外殼破碎而實現(xiàn)脫殼的目的。其典型設備為由高速回轉甩料盤及固定在甩料盤周圍的粗糙壁板組成的離心脫殼機。甩料盤使核桃莢果產生一個較大的離心力撞擊壁面,只要撞擊力足夠大,莢果外殼就會產生較大的變形,進而形成裂縫。當莢果離開壁面時,由于外殼具有不同的彈性變形而產生不同的運動速度,莢果所受到的彈性力較小,運動速度也不如外殼,阻止了外殼迅速向外移動而使其在裂縫處裂開,從而實現(xiàn)籽粒的脫殼。撞擊脫殼法適合于仁殼間結合力小,仁殼間隙較大且外殼較脆的莢果。影響離心式脫殼機脫殼質量的因素有,籽粒的水分含量、甩料盤的轉速、甩料盤的結構特點等。
碾搓法脫殼 核桃莢果在固定磨片和運動著的磨片間受到強烈的碾搓作用,使莢果的外殼被撕裂而實現(xiàn)脫殼。其典型的設備為由一個固定圓盤和一個轉動圓盤組成的圓盤剝殼機。莢果經進料口進入定磨片和動磨片的間隙中,動磨片轉動的離心力使籽粒沿徑向向外運動,也使莢果與定磨片問產生方向相反的摩擦力;同時,磨片上的牙齒不斷對外殼進行切裂,在摩擦力與剪切力的共同作用下使外殼產生裂紋直至破裂,并與殼仁脫離,達到脫殼的目的。該種方法影響因素有,莢果的水分含量、圓盤的直經、轉速高低、磨片之間工作間隙的大小、磨片上槽紋的形狀和莢果的均勻度等。
剪切法脫殼 核桃莢果在固定刀架和轉鼓間受到相對運動著的刀板的剪切力的作用,外殼被切裂并打開,實現(xiàn)外殼與果仁的分離。其典型設備為由刀板轉鼓和刀板座為主要工作部件的刀板剝殼機。在刀板轉鼓和刀板座上均裝有刀板,刀板座呈凹形,帶有調節(jié)機構,可根據(jù)核桃莢果的大小調節(jié)刀板座與刀板轉鼓之間的間隙。當?shù)栋遛D鼓旋轉時,與刀板之間產生剪切作用,使物料外殼破裂和脫落。主要適用于棉籽,特別是帶絨棉籽的剝殼,剝殼效果較好。由于其工作面較小,故易發(fā)生漏籽現(xiàn)象,重剝率較高。該種方法影響因素有,原料水分含量、轉鼓轉速的高低、刀板之間的間隙大小等。
擠壓法脫殼 擠壓法脫殼是靠一對直徑相同轉動方向相反,轉速相等的圓柱輥,調整到適當間隙,使核桃莢果通過間隙時受到輥的擠壓而破殼。莢果能否順利地進入兩擠壓輥的間隙,取決于擠壓輥及與莢果接觸的情況。要使莢果在兩擠壓輥間被擠壓破殼,莢果首先必須被夾住,然后被卷入兩輥間隙。兩擠壓輥間的間隙大小是影響籽粒破損率和脫殼率高低的重要因素。
搓撕法脫殼 搓撕法脫殼是利用相對轉動的橡膠輥筒對籽粒進行搓撕作用而進行脫殼的。兩只膠輥水平放置,分別以不同轉速相對轉動,輥面之間存在一定的線速差,橡膠輥具有一定的彈性.其摩擦系數(shù)較大。核桃莢果進入膠輥工作區(qū)時,與兩輥面相接觸,如果此時莢果符合被輥子嚙人的條件,即嚙人角小于摩擦角,就能順利進入兩輥問.此時莢果在被拉人輥間的同時,受到兩個不同方向的摩擦力的撕搓作用;另外,莢果又受到兩輥面的法向擠壓力的作用,當莢果到達輥子中心連線附近時法向擠壓力最大,莢果受壓產生彈性—— 塑性變形,此時莢果的外殼也將在擠壓作用下破裂,在上述相反方向撕搓力的作用下完成脫殼過程。影響脫殼性能的因素有,線速差、膠壓輥的硬度、軋入角、軋輥半徑、軋輥間間隙等。
1.3.2 新型脫殼技術
壓力膨脹法 原理是先使一定壓力的氣體進入核桃殼內,維持一段時間,以使核桃莢果內外達到氣壓平衡,然后瞬間卸壓,內外壓力平衡打破,殼體內氣體在高壓作用下產生巨大的爆破力而沖破殼體,從而達到脫殼的目的。主要影響因素有,充氣壓力、穩(wěn)定壓力維持時間、籽粒的含水率等。
真空法 將核桃莢果放在真空爆殼機中,在真空條件下,將具有相當水分的莢果加熱到一定溫度,在真空泵的抽吸下,莢果吸熱使其外殼的水分不斷蒸發(fā)而被移除,其韌性與強度降低,脆性大大增加;真空作用又使殼外壓力降低,殼內部相對處于較高壓力狀態(tài)。殼內的壓力達到一定數(shù)值時,就會使外殼爆裂。
激光法 用激光逐個切割堅果外殼。試驗顯示,用這種方法幾乎能夠達到100%的整仁率,但因其費用昂貴、效率低下等原因,很難得到推廣。
1.3.3 核桃脫殼機械的工藝研究
在脫殼技術方面,除了在原理和設備上進行研究外,人們還在工藝上進行了研究以提高籽粒的脫殼率及脫殼質量。
分級處理 物料的粒度范圍大,必須先按大小分級,再進行脫殼,才能提高脫殼率,減少破損率。
水分含量 核桃莢果的含水率對脫殼效果有很大的影響,含水率大,則外殼的韌性增加;含水率小,則果仁的粉末度大。因此應使核桃莢果盡量保持最適當?shù)暮?,以保證外殼和果仁具有最大彈性變形和塑性變形的差異,即外殼含水率低到使其具有最大的脆性,脫殼時能被充分破裂,同時又要保持仁的可塑性,不能因水分太少而使果仁在外力作用下粉末度太大,可減少果仁破損率。
1.3.4 核桃脫殼機械存在的問題
目前我國在核桃脫殼技術研究方面一直沒有大的突破,資金投入也不足,脫殼部件的研制仍在2O世紀90年代初的技術水平上徘徊,所以在脫殼性能上并沒有很大的提高。由于機械脫殼時對核桃仁的損傷率偏高,用于種子和較長期貯存的核桃仁至今仍是手工剝殼。脫殼機械在技術性能和作業(yè)環(huán)節(jié)上存在以下問題:① 脫殼率低,脫殼后的果仁破損率高,損失大。② 機具性能不穩(wěn)定,適應性差。③ 通用性差,利用率低。④ 作業(yè)成本偏高,多數(shù)是單機制造,制造的工藝水平較低,同時能耗較高。⑤ 有些產品僅進行了樣機試制或少量試生產,未進行大量生產性考核和示范應用,作業(yè)性能及商品性等方面還存在不少問題。
1.4 核桃脫殼機械研究重點
我國加入WTO以來,國內外關于核桃脫殼機械的開發(fā)與推廣應用日益增多,針對現(xiàn)有核桃脫殼機械存在的優(yōu)點與不足,在未來的發(fā)展過程中,對核桃脫殼機械在生產應用中的經驗進行總結,不斷完善其功能,使其呈現(xiàn)良好的發(fā)展勢頭。
1.4.1 提高核桃脫殼機械的通用性和適應性
提高核桃脫殼機械的通用性和適應性仍是當前的主要研究方向之一目前,許多核桃脫殼機械只是針對某一核桃品種和所在地區(qū)的生長環(huán)境來設計,其通用性、兼容性和適應性較差。提高核桃脫殼機械的通用性和兼容性,使研制的核桃脫殼機械通過更換主要部件能夠同時對其他帶殼物料進行脫殼加工。研制通過變換主要工作部件即能滿足不同堅果脫殼作業(yè)需要的脫殼機具,并提高制造工藝水平,降低制造成本,以適應不同加工企業(yè)的需要。核桃脫殼機械能否適應這種發(fā)展趨勢,將直接影響到核桃脫殼機械能否更好的推廣應用與健康發(fā)展。
1.4.2 提高機械脫殼率,降低破損率
對核桃脫殼機械的關鍵技術與工作部件進行重點攻關,改革傳統(tǒng)結構,研究新的脫殼機理,優(yōu)化結構設計;同時在整體配置上進一步改進和完善,提高脫殼率,降低籽仁破損率。目前國內外的核桃脫殼機械均存在脫殼率和破損率之間的矛盾,處理好這一關鍵技術將關系到核桃脫殼機械的發(fā)展前景。
1.4.3 提高機械脫殼自動化程度
向自動控制和自動化方向發(fā)展大多數(shù)機具目前仍依賴人工喂料或定位,影響了作業(yè)速度和作業(yè)質量。因此應通過機電一體化手段,開發(fā)設計自動喂料、自動定位脫殼裝置,保證均勻喂料與有效定位,實現(xiàn)機組自動化操作,進一步提高作業(yè)精確性和作業(yè)速度,提高產品質量與生產率,滿足部分大、中型加工企業(yè)的需要,以開拓國內和國外市場。
新技術原理、新結構材料、新工藝將不斷應用于核桃機械的研制開發(fā)中,隨著液壓技術、電子技術、控制技術以及化工、冶金工業(yè)的發(fā)展,許多復雜的機械機構、動力傳遞、笨重的材料和落后的工藝將逐漸被取代。減輕重量,減少阻力,簡化操作,減少輔助工作時間,延長使用壽命,降低勞動使用費用等將作為主要設計目標應用于脫殼機械的設計制造。隨著國內外高新技術的進一步發(fā)展,如何將這些高新技術更好的應用到實際生產中,也是目前核桃脫殼機械需要盡快解決的問題。
1.5 核桃脫殼機械應用前景展望
核桃生產機械化是農業(yè)現(xiàn)代化的重要組成部分,是農業(yè)和農村經濟持續(xù)快速發(fā)展的重要保證,近年來,核桃機械裝備總量不斷穩(wěn)步增長,作業(yè)水平進一步提高,社會化服務規(guī)模不斷擴大,雖然目前核桃脫殼機械化水平較高,但是多應用于經濟發(fā)達地區(qū)與示范推廣區(qū),并且小型機械多、大型機械少,低檔機械多、高性能機械少。在一些地區(qū),用作種子和特殊用途的核桃仁仍采用傳統(tǒng)的手工剝殼,勞動生產率低,區(qū)域性發(fā)展不平衡。進入21世紀,我國核桃生產機械化開始了新的發(fā)展階段,農業(yè)結構調整發(fā)生了新的變化,也對核桃機械的發(fā)展產生了積極而深遠的影響,不僅拉動了新的有效需求,而且構筑了適合核桃生產機械化發(fā)展的新舞臺,為核桃生產機械化真正成為農村經濟發(fā)展的推動器提供了廣闊的市場發(fā)展條件。在一些地區(qū)推進核桃生產機械化的過程中,相繼出臺了鼓勵和扶持農民購買核桃機械、開展核桃機械作業(yè)服務的優(yōu)惠政策和措施,調動了農民購買核桃機械的積極性,形成了新的市場需求。隨著核桃種植業(yè)的不斷發(fā)展,國內外對核桃深加工產品的需求不斷增大,提高核桃脫殼機械化作業(yè)水平成為必然。核桃脫殼機在提高勞動生產率,減輕勞動強度方面起到了積極的作用,促進了核桃加工業(yè)的科技進步,為核桃脫殼機械的發(fā)展提供了空間。
2 刮板式核桃去殼機的結構及工作原理
2.1 刮板式核桃去殼機的結構
根據(jù)刮板式核桃去殼機的剝殼原理可知道,核桃是從上至下依次經過集料斗、剝殼箱、柵格、下箱出口、比重分選篩、分選口,核桃仁收集斗這些部件的,因此設計剝殼機的整體結構的依據(jù)就出來了。
設計過程是從上往下,從核桃的裝集開始,最上面是集料斗,集料斗下方是剝殼箱,集料斗可與剝殼箱設計為一個整體。在剝殼箱內,核桃必須經過刮板的撞擊和擠壓作用才能進行剝殼,因此,將刮板設計置在剝殼箱內。核桃經過刮板的撞擊和擠壓進行剝殼后,要經過位于剝殼箱底部的柵格,于是可以把柵格設計成一個半圓柵籠,將其固定在剝殼箱的下半箱內。核桃穿過柵格后經過剝殼箱底部的出口往下落,在下落過程中,設計一個風機的吹入口,其作用是將經過剝殼的核桃殼與核桃仁進行分離,重量稍重的不被風吹走,而重量較輕的核桃殼將被風機吹來的氣流帶入到核桃殼收集通道,通道的底部設計成一定角度,經過分離的核桃仁往下落,落入比重分選篩上,然后比重分選篩運行,從而使核桃仁上行,而未脫殼的核桃則下行流入二次脫殼通道,經風機作用這些核桃再次進入脫殼機進行二次脫殼,最后核桃仁在比重分選篩的上行口得到收集。
為保證整機的各部分的安裝,需設計一個機架,機架起到其它幾個部分的支承、定位、連接作用,并將電機安裝在機架里面,剝殼機安裝在機架的上方。其結構簡圖如圖2-1所示。
圖2-1
2.2 工作原理
刮板式核桃去殼機以前也稱為刀籠剝殼機,是借助轉動軸上的刮板與籠柵的擠壓和打擊作用,將核桃果外殼破碎的一種機械設備,其特點是結構簡單、操作方便。其結構如圖2-2所示。它主要由進料機構、剝殼機構、分選機構和支承機構等部分組成。
圖2-2
核桃果進入存料斗后,經下部的入料窄口形成薄層流落下來進入剝殼箱內,與高速旋轉的刮板相互碰撞,在刮板的錘擊下,核桃殼發(fā)生破裂,從而進行第一次剝殼。部分核桃果在下落過程中沒有與刮板發(fā)生碰撞,有些發(fā)生碰撞了而核桃殼卻未撞裂,這部分核桃落入到由圓鋼棒排列成的柵格上,由于柵格頂部與刮板的旋轉外徑間的間距不足以容納一個核桃果,因此核桃果將在落入柵格的同時被刮板再次錘擊和擠壓,從而使這些核桃果的果殼也被壓碎。剝殼后的仁與殼通過柵格間的間隙落下,在下落的同時,受到風機吹來的經調節(jié)好的氣流作用,果殼因重量輕而被氣流送入集殼通道,而核桃仁因重量大,繼續(xù)往下落到比重分選篩上,經比重分選篩后核桃仁上行,未脫殼的核桃落入通道中,經風機作用再次進入脫殼機中進行二次脫殼,從而達到了殼仁分離且剝殼率較高的目的。
3刮板式核桃去殼機主要部件的結構設計
刮板式核桃去殼機能否正常運轉,看的是其主要部件的設計,如果設計不合理,機器就不能正常運轉或者說不能運轉,那么生產出來的這臺機器就是一堆費品。設計合理,機器就能正常的運轉對并對核桃果進行剝殼。因此,刮板式核桃去殼機的主要部件的設計在整個設計過程中顯得尤為重要,合理的設計將提供給使用者更多的方便和實惠。
3.1設計前各項參數(shù)的確定
3.1.1 刮板的半徑及轉速初定
刮板的旋轉必須確保能將部分核桃殼撞碎,當核桃果與鋼質物體相對速度達到5時,可使核桃殼破碎而不會破壞到核桃仁,可根據(jù)此依據(jù)設計刮板的轉速與半徑。
如圖3-1所示,核桃下落位置在之間,設計時采用最小碰撞半徑為計算半徑
式(3.1)
取半徑R=250mm,則由式(3.1)
結論:R=250mm,n=382.2r/min
3.1.2 刮板所需功率計算
根據(jù)公式可計算出刮板所需的功率
刮板對核桃做功
式(3.2) 圖3-1
:刮板改變核桃的動能
:刮板改變核桃的勢能
式(3.3)
式中 ——核桃果的初動能(J)
——核桃果的末動能(J)
——核桃果的初速度(m/s)
——核桃果地末速度(m/s)
根據(jù)所給產量要求 20-30kg/min,即平均0.417kg/s,此為核桃仁的產量,折合核桃果產量為0.417/純仁率,根據(jù)國家標準,江蘇所處地理位置可取核桃的純仁率為69%,折合核桃果產量為0.604kg/s,此即每秒進入剝殼箱內被破碎的核桃果的重量。核桃接觸刮板時初速度設為1m/s,方向向下,脫離刮板時速度為15m/s,方向向左,脫離刮板時相對初位置高度為500mm
t=1s
m=0.604kg/s
R=0.5m
式(3.4)
加上刮板與核桃在柵格中擠壓所需要的能量,P也不會超過500W。為計算電動機的所需工率Pd,先要確定從電動機到工作機之間的總效率。設、分別為滾動軸承和V帶傳動的效率,于是有
式(3.5)
電動機所需功率不會超過700W,由于給定電動機的功率為1.5kW,遠大于此計算值,故所給電動機的功率完全符合要求。
3.1.3 傳動方案擬定
由于刮板式核桃去殼機的工作軸旋轉速度較高,達到可有兩種選擇,第一種是采用一級V帶傳動,第二種是采用兩級混合傳動,而很明顯的,若采用兩級傳動方案,將會致使機器的結構復雜,而且成本升高,所以選用一級V帶傳動。
3.1.4 電動機的選擇
根據(jù)所給的功率及同步轉速,可選用的電機型號有兩種
Y90L-4型 和 Y100L-6型
根據(jù)電動機的滿載轉速和刮板轉速可算出總傳動比,現(xiàn)將此兩種電動機的數(shù)據(jù)和傳動比列于下表
表3-1
方案號
電機型號
額定功率kw
同步轉速r/min
滿載轉速r/min
總傳動比 i
1
Y100L-6
1.5
1000
940
2.459
2
Y90L-4
1.5
1500
1400
3.663
由上表可知:方案1總傳動比雖小,轉速低,但價格高,作為家用機械的電機不是太合算,故選擇方案2,即電機型號為Y90L-4。
查表得此種電動機的中心高H=90mm,外伸軸徑為24mm,軸的外伸長度為50mm。
3.1.5 傳動裝置的運動和參數(shù)計算
軸的轉速
軸的輸入功率
軸的轉矩
式(3.6)
式中 ——軸的轉矩(N.m)
——軸的輸入功率(kw)
3.2 電機與刮板轉子軸之間的V帶傳動設計
首先列出設計的基本條件
電機型號:Y90L-4
額定功率:1.5kw
轉速:=1400r/min
傳動比:=3.663
假設每天運轉時間t<10h
1.確定計算功率
式(3.7)
式中 ——計算功率(kw)
——傳遞的額定功率(例如電機的額定功率kw)
——工作情況系數(shù)
由文獻[13]表14.1-12查得
2.選擇V帶帶型
根據(jù)、查文獻[13],由表14.1-3確定帶型為A型
3.確定帶輪基準直徑
查文獻[13],由表14.1-18和表14.1-19在主動輪基準直徑系中選取,
從動輪基準直徑為
式(3.8)
按表圓整得
驗算帶的速度
式(3.9)
因此所選帶的速度合適
4.確定中心距a和帶的基準長度
初取中心距
式(3.10)
查文獻[13]由表14.1-7選擇帶的基準長度
計算實際中心距a
式(3.11)
5.驗算主動輪上的包角
式(3.12)
主動輪包角合適
式(3.13)
式中 ——包角系數(shù)
——長度系數(shù)
——單根V帶的基本額定功率
——單根V帶的額定功率的增量
由,,=2.333查文獻[13]表14.1-17d和表14.1-13得 ,,,
代入數(shù)值,計算
取z=3
7.計算預緊力
查文獻[13]表14.1-14得::
式(3.14)
8.計算作用在軸上的壓軸力
式(3.15)
式中 ——帶的根數(shù)
——單根帶的預緊力 N
——主動輪的包角 ( °)
代入數(shù)值計算得
9.V帶輪的結構尺寸計算及選用
帶輪材料選用HT200
根據(jù)基準直徑的大小選用不同的帶輪類型,小徑帶輪采用實心式,大徑帶輪采用輪輻式,主要結構尺寸如表3-2
3-2電機與比重分選篩間傳動帶輪參數(shù)表 單位:mm
尺寸類型
小帶輪
大帶輪
75
175
基準寬度
11.0
11.0
基準線上槽深
2.75
2.75
基準線下槽深
8.7
8.7
槽間距e
15±0.3
15±0.3
第一槽對稱面至端面距離f
輪緣厚d
12
12
帶輪寬B
40
40
外徑
85.5
185.5
輪槽角
極限偏差
孔徑
24
26
輪轂長
50
35
32
輪輻厚
8
20
16
200.5
具體結構設計見零件圖
3.3比重分選篩動力系統(tǒng)設計
3.3.1比重分選篩原理分析
在精選分級機械上,除氣流清選裝置外,應用最普遍的工作部件是平面型振動篩、窩眼滾筒和窩眼盤式分離裝置以及圓筒篩。我國研制生產的精選機和清糧機上大都采用了平面型振動篩。它與圓筒篩的主要區(qū)別在于篩面是平面型,而圓筒篩的篩面是圓柱面;在相同寬度條件下工作時有效篩理面積比圓筒篩要大;在傳動結構上,圓筒篩只有單純的轉動,而平面篩需要作往復運動或復雜的振動,因而對機體將產生一定程度的振動影響。平面型振動篩一般是以電機作為振動源,由電機的轉動,通過一定的傳動機構和動力傳遞裝置將電機的轉動轉換成篩體的振動。而在此核桃脫殼機中所采用的是曲柄連桿機構以作為比重分選篩的執(zhí)行機構。
當設計和安裝平面篩時,往往使它和水平面保持一定的角度。為了使被篩物沿篩子工作表面不斷地運動,就必須使篩子以一定的頻率振動。曲柄連桿機構或偏心輪連桿機構是作往復運動篩體的最常用的振動傳遞機構,如圖3-2動力由電動機輸入到皮帶輪上,隨著曲柄或偏心軸的轉動,曲柄或偏心套通過連桿的鉸接將回轉運動轉變成篩體的往復振動。這時篩體的振動頻率就是曲柄軸或偏心軸的轉速,篩箱水平全振幅等于曲柄半徑或偏心距的2倍。
圖3-2比重分選篩原理圖
一般曲柄半徑(或偏心距)與連桿一長度和吊桿長度之比不超過1/10,這樣就可以認為,利用均勻旋轉的曲柄(或偏心),可使篩子上任何一點都按簡諧運動規(guī)律沿自己的軌跡運動來分析研究被篩物沿振動篩面的運動規(guī)律。
這種偏心輪連桿傳動機構結構簡單,并且具有一定的超載能力,即喂入量超過額定值時,篩體的振動頻率和振幅均不受影響,缺點是慣性力不能得到完全平衡。
3.3.2曲柄軸設計
軸的轉速
式(3.16)
軸的輸入功率
式(3.17)
軸的輸入轉矩
式(3.18)
1.初步確定軸的最小直徑
先按經驗公式算出軸的最小直徑,選取軸的材料為45鋼,調質處理。查簡明機械零件手冊表15-3選取,于是得
式(3.19)
2.擬定軸上零件的裝配方案
通過對各種方案的比較,現(xiàn)選用圖3-3所示裝配方案
圖3-3曲柄軸
3.根據(jù)軸向定位的要求確定軸的各段直徑和長度
(1)由于定位要求,應在12,34段制一軸肩,故取1-2段直徑=16mm,
3-4段直徑,2-3段直徑為,
為達到從帶輪到凸輪軸的過渡中間加一軸肩4-5其直徑為,
軸5-6為軸承安裝處,取直徑,
因5-6段與11-12段為對稱的兩段故直徑,而取6-7,8-9,10-11段三段的直徑相等為
而為了滿足工作要求,設計曲柄時采取凸輪軸結構,所以7-8,9-10段可以采用最小直徑,。
因凸輪軸是應用于振動篩的動力裝置,所以其位置應在篩體的下方,而其動力則由帶輪傳入,則4-12段長度取為。
(2)選擇滾動軸承 根據(jù)軸的結構設計,由于該軸沒有受軸向載荷的作用,考慮到軸承的性價比較高,選用深溝球軸承。參照工作要求并根據(jù),初步選取深溝球軸承6004具體參數(shù)如表3-3
表3-3深溝球軸承6004參數(shù)
6004
基本尺寸
安裝尺寸
極限轉速
D
B
脂潤滑
油潤滑
20
42
12
0.6
25
38
0.6
15000
19000
在凸輪軸兩邊的兩軸承也只受徑向力,且受載不大,并考慮到兩軸承間的距離不大,考慮到箱體上加工兩軸承孔的同軸度,故選用深溝球軸承。參照工作要求并根據(jù),初步選取深溝球軸承6006具體參數(shù)如表3-4
表3-4深溝球軸承6006參數(shù)
6006
基本尺寸
安裝尺寸
極限轉速
D
B
脂潤滑
油潤滑
35
62
14
1
41
57
1.0
9000
12000
( 3 ) 階梯軸各段長度的確定
V帶輪3與軸配合的轂孔長為35mm為在外伸軸上裝旋轉零件的軸段長度由軸上旋轉零件的轂孔寬度及固定方式而定,因采用鍵連接故應滿足鍵的強度要求,取=50mm。
而2-3段為使兩帶輪工作時不相互影響且能安裝一個軸承,而選擇的軸承寬度為12mm,故選取2-3段的長度為20mm.。
V帶輪2與軸配合的轂孔長為35mm,為使帶輪能夠穩(wěn)定工作,為保證輪緣與機架間無接觸,因采用鍵連接故應滿足鍵的強度要求,故選取3-4段的長度為40mm。 4-5段為帶輪到箱體內部的過渡段,由箱體的壁厚和外伸長度決定,故取4-5段的長度為40mm。
軸5-6段的長度由軸承和擋油環(huán)相加所得,故取。
曲軸7-8及9-10段由于工藝加工的限制,故選取其長度為75mm。為滿足比重分選篩的工作要求,應使兩曲軸7-8與9-10保持一段距離,故取兩曲軸間的距離為220mm。則可由箱體尺寸及已定尺寸計算得到6-7段及10-11段的尺寸為100mm。
至此,已初步確定了軸的各段直徑和長度。
(4)軸上零件的周向固定
V帶輪3與軸的周向定位采用平鍵聯(lián)接,按其直徑查手冊得平鍵截面如表3-5
表3-5平鍵參數(shù)
長度取35mm
V帶輪3與軸的配合為,滾動軸承與軸的周向定位是借過渡配合來保證的,此處選軸的直徑尺寸公差為。
V帶輪2與軸的周向定位采用平鍵聯(lián)接,按其直徑查手冊得平鍵截面如表3-6
表3-6平鍵參數(shù)
長度取30mm
V帶輪2與軸的配合為,滾動軸承與軸的周向定位是借過渡配合來保證的,此處選軸的直徑尺寸公差為。
(5)確定軸上圓角和倒角尺寸
取軸端倒角,各軸肩處圓角半徑見零件圖。
3.3.3連桿設計
為了保證連桿在結構輕巧的條件下有足夠的剛度和強度,連桿材料采用精選含碳量的優(yōu)質中碳結構鋼45模鍛,表面噴丸強化處理,提高強度。
1.連桿質量的換算
連桿是做復雜平面運動的零件。為了方便計算,將整個連桿(包括有關附屬零件)的質量用兩個換算質量和來代換,并假設是集中作用在連桿小頭中心處,并只做往復運動的質量;是集中作用在連桿大頭中心處,并只沿著圓周做旋轉運動的質量,如圖3-4所示:
圖3-4 連桿質量的換算簡圖
為了保證代換后的質量系統(tǒng)與原來的質量系統(tǒng)在力學上等效,必須滿足下列三個條件:
(1)連桿總質量不變,即。 式(3.20)
(2)連桿重心的位置不變,即。 式(3.21)
(3)連桿相對重心G的轉動慣量不變,即。 式(3.22)
其中,連桿長度,為連桿重心至小頭中心的距離。由條件可得下列換算公式:
式(3.23)
用平衡力系求合力的索多邊形法求出重心位置。將連桿分成若干簡單的幾何圖形,分別計算出各段連桿重量和它的重心位置,再按照索多邊形作圖法,求出整個連桿的重心位置以及折算到連桿大小頭中心的重量和 ,如圖3-5所示:
圖3-5 索多邊形法
2.往復直線運動部分的質量
連桿零件做往運動的。它們的質量可以看作是集中在桿端中心上,并以表示。質量與換算到連桿小頭中心的質量之和,稱為往復運動質量,即。
3.不平衡回轉質量
曲拐的不平衡質量及其代換質量如圖3-6所示:
圖3-6曲拐的不平衡質量及其代換質量
曲拐在繞軸線旋轉時,曲柄銷和一部分曲柄臂的質量將產生不平衡離心慣性力,稱為曲拐的不平衡質量。為了便于計算,所有這些質量都按離心力相等的條件,換算到回轉半徑為的連桿軸頸中心處,以表示,換算質量為:
式(3.23)
式中:——曲拐換算質量();
——連桿軸頸的質量();
——個曲柄臂的質量();
——曲柄臂質心位置與曲拐中心的距離,。
質量與換算到大頭中心的連桿質量之和稱為不平衡回轉質量,即
式(3.24)
由上述換算方法計算得:
往復直線運動部分的質量=0.583,不平衡回轉質量=0.467。
在曲軸設計中已經確定曲柄連桿機構中曲柄的長度為25mm,故根據(jù)使曲柄均勻旋轉的條件曲柄半徑(或偏心距)與連桿一長度和吊桿長度之比不超過1/10,所以取定連桿的長度為450mm。在此設計中主要是應用曲柄連桿機構的往復運動從而實現(xiàn)篩面的往復運動,因為運動的頻率比較快,在連桿的聯(lián)接處應加軸瓦以減少桿體的磨損。選用軸瓦的厚度為1mm。
3.4比重分選篩曲柄軸與電機軸間的V帶傳動設計
對于電機與比重分選篩曲柄軸之間的帶傳動設計,首先列出設計的基本條件:
凸輪軸輸入功率:
轉速:=600r/min
傳動比:
假設每天運轉時間t<10h
1.確定計算功率
查表得工作情況系數(shù) =1.1
由式(3.7)得
2.選擇V帶帶型
根據(jù)、查文獻[13],由表14.1-3確定帶型為A型
3.確定帶輪基準直徑
由主動輪基準直徑系中選取,
從動輪基準直徑為
由式(3.8)有
取
驗算帶的速度
由式(3.9)有
=<=
因此所選帶的速度合適
4.確定中心距a和帶的基準長度
根據(jù)初步確定中心距,計算帶的基準長度
由式(3.10)得=824.94mm
由V帶的基準長度系中選取基準長度
計算實際中心距a
由式(3.11)得
5.驗算主動輪上的包角
由式(3.12)得
主動輪包角合適
6.計算V帶的根數(shù)z
由,,=1.57查表得
,,,
代入數(shù)值,經由式(3.13)計算得
Z=3.08
取z=4
7.計算預緊力
查文獻[13]表14.1-14得::
由式(3.14)得
8.計算作用在軸上的壓軸力
由式(3.15)代入數(shù)值計算得
=1022.1N
9.V帶輪的結構尺寸計算及選用
帶輪材料選用HT200
根據(jù)基準直徑的大小選用不同的帶輪類型,小徑帶輪采用實心式,大徑帶輪采用輪輻式,主要結構尺寸如下
表3-7曲柄軸與刮板轉子軸間的V帶輪參數(shù) 單位:mm
尺寸類型
小帶輪
大帶輪
75
118
基準寬度
11.0
11.0
基準線上槽深
2.75
2.75
基準線下槽深
8.7
8.7
槽間距e
15±0.3
15±0.3
第一槽對稱面至端面距離f
輪緣厚d
12
12
帶輪寬B
50
40
外徑
8
收藏
編號:44906364
類型:共享資源
大?。?span id="xnfpn1z" class="font-tahoma">1.13MB
格式:ZIP
上傳時間:2021-12-06
30
積分
- 關 鍵 詞:
-
家用
核桃
去殼
設計
- 資源描述:
-
家用核桃去殼機設計,家用,核桃,去殼,設計
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經上傳用戶書面授權,請勿作他用。