同步優(yōu)化探究理數(shù)北師大版練習(xí):第八章 第七節(jié) 雙曲線 Word版含解析

上傳人:仙*** 文檔編號:42143189 上傳時間:2021-11-24 格式:DOC 頁數(shù):12 大小:133.50KB
收藏 版權(quán)申訴 舉報 下載
同步優(yōu)化探究理數(shù)北師大版練習(xí):第八章 第七節(jié) 雙曲線 Word版含解析_第1頁
第1頁 / 共12頁
同步優(yōu)化探究理數(shù)北師大版練習(xí):第八章 第七節(jié) 雙曲線 Word版含解析_第2頁
第2頁 / 共12頁
同步優(yōu)化探究理數(shù)北師大版練習(xí):第八章 第七節(jié) 雙曲線 Word版含解析_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《同步優(yōu)化探究理數(shù)北師大版練習(xí):第八章 第七節(jié) 雙曲線 Word版含解析》由會員分享,可在線閱讀,更多相關(guān)《同步優(yōu)化探究理數(shù)北師大版練習(xí):第八章 第七節(jié) 雙曲線 Word版含解析(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、課時作業(yè) A組——基礎(chǔ)對點練 1.已知F為雙曲線C:x2-my2=3m(m>0)的一個焦點,則點F到C的一條漸近線的距離為(  ) A.         B.3 C.m D.3m 解析:雙曲線方程為-=1,焦點F到一條漸近線的距離為.選A. 答案:A 2.已知雙曲線-=1(a>0)的離心率為2,則a=(  ) A.2 B. C. D.1 解析:因為雙曲線的方程為-=1,所以e2=1+=4,因此a2=1,a=1.選D. 答案:D 3.雙曲線x2-4y2=-1的漸近線方程為(  ) A.x2y=0 B.y2x=0 C.x4y=0 D.y4x=0 解析:依題意

2、,題中的雙曲線即-x2=1,因此其漸近線方程是-x2=0,即x2y=0,選A. 答案:A 4.已知雙曲線-y2=1的左、右焦點分別為F1,F(xiàn)2,點P在雙曲線上,且滿足|PF1|+|PF2|=2,則△PF1F2的面積為(  ) A.1 B. C. D. 解析:在雙曲線-y2=1中,a=,b=1,c=2.不防設(shè)P點在雙曲線的右支上,則有|PF1|-|PF2|=2a=2,又|PF1|+|PF2|=2,∴|PF1|=+,|PF2|=-.又|F1F2|=2c=4,而|PF1|2+|PF2|2=|F1F2|2,∴PF1⊥PF2,∴S△PF1F2=|PF1||PF2|=(+)(-)=1.故

3、選A. 答案:A 5.已知雙曲線C:-=1(a>0,b>0),直線l:y=2x-2.若直線l平行于雙曲線C的一條漸近線且經(jīng)過C的一個頂點,則雙曲線C的焦點到漸近線的距離為 (  ) A.1 B.2 C. D.4 解析:根據(jù)題意,雙曲線C的方程為-=1(a>0,b>0),其焦點在x軸上,漸近線方程為y=x,又由直線l平行于雙曲線C的一條漸近線,可知=2,直線l:y=2x-2與x軸的交點坐標(biāo)為(1,0),即雙曲線C的一個頂點坐標(biāo)為(1,0),即a=1,則b=2a=2,故雙曲線C的焦點到漸近線的距離為2,故選B. 答案:B 6.已知雙曲線的焦點到漸近線的距離等于半實軸長,則該雙曲

4、線的離心率為 (  ) A. B.2 C. D.2 解析:不妨設(shè)雙曲線的方程為-=1(a>0,b>0),因為焦點F(c,0)到漸近線bx-ay=0的距離為a,所以=a,即=a,所以=1,所以該雙曲線的離心率e== =,故選C. 答案:C 7.已知雙曲線C:-=1的離心率e=,且其右焦點為F2(5,0),則雙曲線C的方程為(  ) A.-=1 B.-=1 C.-=1 D.-=1 解析:由題意得e==,又右焦點為F2(5,0),a2+b2=c2,所以a2=16,b2=9,故雙曲線C的方程為-=1. 答案:C 8.已知雙曲線-=1(a>0,b>0)的焦距為2,且雙曲

5、線的一條漸近線與直線2x+y=0垂直,則雙曲線的方程為(  ) A.-y2=1 B.x2-=1 C.-=1 D.-=1 解析:由題意得c=,=,則a=2,b=1,所以雙曲線的方程為-y2=1. 答案:A 9.(2018山西八校聯(lián)考)已知雙曲線C:-=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,焦距為2c,直線y=(x+c)與雙曲線的一個交點P滿足∠PF2F1=2∠PF1F2,則雙曲線的離心率e為(  ) A. B. C.2+1 D.+1 解析:∵直線y=(x+c)過左焦點F1,且其傾斜角為30,∴∠PF1F2=30,∠PF2F1=60,∴∠F2PF1=90,

6、即F1P⊥F2P.∴|PF2|=|F1F2|=c,|PF1|=|F1F2|sin 60=c,由雙曲線的定義得2a=|PF1|-|PF2|=c-c,∴雙曲線C的離心率e===+1,選D. 答案:D 10.已知F1,F(xiàn)2是雙曲線C:-=1(a>0,b>0)的兩個焦點,P是雙曲線C上一點,若|PF1|+|PF2|=6a,且△PF1F2最小內(nèi)角的大小為30,則雙曲線C的漸近線方程是(  ) A.xy=0 B.xy=0 C.2xy=0 D.x2y=0 解析:不妨設(shè)|PF1|>|PF2|,則 所以|PF1|=4a,|PF2|=2a,且|F1F2|=2c,即|PF2|為最小邊,即∠PF1F2

7、=30,則△PF1F2為直角三角形,所以2c=2a,所以b=a,即漸近線方程為y=x,故選A. 答案:A 11.已知雙曲線C:-=1(a>0,b>0)的焦距為10,點P(2,1)在C的一條漸近線上,則C的方程為(  ) A.-=1 B.-=1 C.-=1 D.-=1 解析:依題意,解得, ∴雙曲線C的方程為-=1. 答案:A 12.已知雙曲線過點(4,),且漸近線方程為y=x,則該雙曲線的標(biāo)準(zhǔn)方程為 . 解析:法一:因為雙曲線過點(4,)且漸近線方程為y=x,故點(4,)在直線y=x的下方.設(shè)該雙曲線的標(biāo)準(zhǔn)方程為-=1(a>0,b>0),

8、所以,解得故雙曲線方程為-y2=1. 法二:因為雙曲線的漸近線方程為y=x,故可設(shè)雙曲線為-y2=λ(λ≠0),又雙曲線過點(4,),所以-()2=λ,所以λ=1,故雙曲線方程為-y2=1. 答案:-y2=1 13.雙曲線Γ:-=1(a>0,b>0)的焦距為10,焦點到漸近線的距離為3,則Γ的實軸長等于 . 解析:雙曲線的焦點(0,5)到漸近線y=x,即ax-by=0的距離為==b=3,所以a=4,2a=8. 答案:8 14.已知雙曲線C:-=1(a>0,b>0)與橢圓+=1有相同的焦點,且雙曲線C的漸近線方程為y=2x,則雙曲線C的方程為

9、 . 解析:易得橢圓的焦點為(-,0),(,0), ∴∴a2=1,b2=4, ∴雙曲線C的方程為x2-=1. 答案:x2-=1 15.(2018合肥市質(zhì)檢)雙曲線M:-=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,直線x=a與雙曲線M的漸近線交于點P,若sin∠PF1F2=,則該雙曲線的離心率為 . 解析:不妨設(shè)P為直線x=a與雙曲線M的漸近線在第一象限內(nèi)的交點,則P點坐標(biāo)為(a,b),因為sin∠PF1F2=,所以|PF1|=3b,所以(a+c)2+b2=9b2,即9a2+2ac-7c2=0,7e2-2e-9=0,又e>1,解

10、得e=. 答案: B組——能力提升練 1.已知F1,F(xiàn)2是雙曲線C:-=1(a>0,b>0)的兩個焦點,若在雙曲線上存在點P滿足2|+|≤||,則雙曲線的離心率的取值范圍是(  ) A.(1,] B.(1,2] C.[,+∞) D.[2,+∞) 解析:∵2|+|≤||?4||≤2c?||≤,又||≥a,∴a≤,即c≥2a,∴e=≥2.故選D. 答案:D 2.若實數(shù)k滿足0

11、. 答案:D 3.(2018云南五市聯(lián)考)設(shè)P為雙曲線x2-=1右支上一點,M,N分別是圓(x+4)2+y2=4和(x-4)2+y2=1上的點,設(shè)|PM|-|PN|的最大值和最小值分別為m,n,則|m-n|=(  ) A.4 B.5 C.6 D.7 解析:易知雙曲線的兩個焦點分別為F1(-4,0),F(xiàn)2(4,0),恰為兩個圓的圓心,兩個圓的半徑分別為2,1,所以|PM|max=|PF1|+2,|PN|min=|PF2|-1,故|PM|-|PN|的最大值為(|PF1|+2)-(|PF2|-1)=(|PF1|-|PF2|)+3=5,同理|PM|-|PN|的最小值為(|PF1|-2)-

12、(|PF2|+1)=(|PF1|-|PF2|)-3=-1,所以|m-n|=6,故選C. 答案:C 4.(2018江南十校聯(lián)考)已知l是雙曲線C:-=1的一條漸近線,P是l上的一點,F(xiàn)1,F(xiàn)2分別是C的左、右焦點,若=0,則點P到x軸的距離為(  ) A. B. C.2 D. 解析:由題意知F1(-,0),F(xiàn)2(,0),不妨設(shè)l的方程為y=x,點P(x0,x0),由=(--x0,-x0)(-x0,-x0)=3x-6=0,得x0=,故點P到x軸的距離為|x0|=2,故選C. 答案:C 5.已知雙曲線-=1(b>0),以原點為圓心,雙曲線的實半軸長為半徑長的圓與雙曲線的兩條漸近

13、線相交于A,B,C,D四點,四邊形ABCD的面積為2b,則雙曲線的方程為(  ) A.-=1 B.-=1 C.-=1 D.-=1 解析:根據(jù)圓和雙曲線的對稱性,可知四邊形ABCD為矩形.雙曲線的漸近線方程為y=x,圓的方程為x2+y2=4,不妨設(shè)交點A在第一象限,由y=x,x2+y2=4得xA=,yA=,故四邊形ABCD的面積為4xAyA==2b,解得b2=12,故所求的雙曲線方程為-=1,選D. 答案:D 6.已知雙曲線-=1(a>0,b>0)的左、右焦點分別為F1、F2,以|F1F2|為直徑的圓與雙曲線漸近線的一個交點為(3,4),則此雙曲線的方程為(  ) A.-=1

14、 B.-=1 C.-=1 D.-=1 解析:因為以|F1F2|為直徑的圓與雙曲線漸近線的一個交點為(3,4),所以c=5,=,又c2=a2+b2,所以a=3,b=4,所以此雙曲線的方程為-=1. 答案:C 7.過雙曲線-=1(a>0,b>0)的一個焦點F作一條漸近線的垂線,垂足為點A,與另一條漸近線交于點B,若=2,則此雙曲線的離心率為(  ) A. B. C.2 D. 解析:不妨設(shè)B(x,-x),|OB|==c,可取B(-a,b),由題意可知點A為BF的中點,所以A(,),又點A在直線y=x上,則=,c=2a,e=2. 答案:C 8.若直線l1和直線l2相交于

15、一點,將直線l1繞該點逆時針旋轉(zhuǎn)到與l2第一次重合時所轉(zhuǎn)的角為θ,則角θ就稱為l1到l2的角,tan θ=,其中k1,k2分別是l1,l2的斜率,已知雙曲線E:-=1(a>0,b>0)的右焦點為F,A是右頂點,P是直線x=上的一點,e是雙曲線的離心率,直線PA到PF的角為θ,則tan θ的最大值為(  ) A. B. C. D. 解析:設(shè)PA,PF的斜率分別為k3,k4,由題意可知tan θ=,不妨設(shè)P(,y)(y>0),則k3=,k4=.令m=-a,n=-c,則tan θ==,由m-n=c-a>0,得當(dāng)+y取得最小值時tan θ取最大值,又y>0,m<0,n<0,所以+y≥2,

16、當(dāng)且僅當(dāng)y=時等號成立,此時tan θ===,故選C. 答案:C 9.(2018淄博模擬)過雙曲線-=1(a>0,b>0)的左焦點F1,作圓x2+y2=a2的切線交雙曲線的右支于點P,切點為T,PF1的中點M在第一象限,則以下結(jié)論正確的是(  ) A.b-a=|MO|-|MT| B.b-a>|MO|-|MT| C.b-a<|MO|-|MT| D.b-a=|MO|+|MT| 解析:如圖,連接OT,則OT⊥F1T,在直角三角形OTF1中,|F1T|==b,連接PF2, ∵M(jìn)為線段F1P的中點,O為F1F2的中點, ∴|OM|=|PF2|, ∴|MO|-|MT|=|PF2|-=(

17、|PF2|-|PF1|)+b=(-2a)+b=b-a,故選A. 答案:A 10.(2018昆明市檢測)已知點F為雙曲線C:-=1(a>0,b>0)的一個焦點,以點F為圓心的圓與C的漸近線相切,且與C交于A,B兩點,若AF⊥x軸,則C的離心率為 . 解析:不妨設(shè)F為雙曲線的右焦點,則F(c,0),易知雙曲線的漸近線方程為y=x,則雙曲線的焦點F到漸近線的距離d==b,所以圓F的半徑為b.在雙曲線方程中,令x=c,得y=,所以A(c,).因為點A在圓F上,所以=b,即a=b,所以c==a,所以e==. 答案: 11.雙曲線-=1(a>0,b>0)上一點M(-

18、3,4)關(guān)于一條漸近線的對稱點恰為右焦點F2,則該雙曲線的標(biāo)準(zhǔn)方程為 . 解析:不妨設(shè)雙曲線-=1的右焦點F2(c,0)關(guān)于漸近線y=x對稱的點在雙曲線上, 則過焦點F2且垂直于該漸近線的直線方程為y-0=-(x-c),即y=-(x-c). 聯(lián)立可得方程組 解得 由中點坐標(biāo)公式可得F2關(guān)于漸近線對稱的點的坐標(biāo)為(-c,), 將其代入雙曲線的方程可得-=1,化簡可得c2=5a2,c2=a2+b2=5a2,所以b2=4a2.因為M(-3,4)在雙曲線-=1上,所以-=1,-=1,所以a2=5,b2=20,則該雙曲線的標(biāo)準(zhǔn)方程為-=1

19、. 答案:-=1 12.設(shè)雙曲線x2-=1的左,右焦點分別為F1,F(xiàn)2.若點P在雙曲線上,且△F1PF2為銳角三角形,則|PF1|+|PF2|的取值范圍是 . 解析:由題意不妨設(shè)點P在雙曲線的右支上,現(xiàn)考慮兩種極限情況:當(dāng)PF2⊥x軸時,|PF1|+|PF2|有最大值8;當(dāng)∠P為直角時,|PF1|+|PF2|有最小值2.因為△F1PF2為銳角三角形,所以|PF1|+|PF2|的取值范圍為(2,8). 答案:(2,8) 13.(2018沈陽質(zhì)量監(jiān)測)已知P是雙曲線-y2=1上任意一點,過點P分別作雙曲線的兩條漸近線的垂線,垂足分別為A,B,求的值. 解析:設(shè)P(x0,y0),因為該雙曲線的漸近線分別是-y=0,+y=0,所以可取|PA|=,|PB|=,又cos∠APB=-cos∠AOB=-cos2∠AOx=-cos =-,所以=||||cos∠APB=(-)=(-)=-.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!