6、-2x+t經(jīng)過(guò)點(diǎn)C時(shí),直線y=-2x+t的截距最大,此時(shí)t最大,對(duì)應(yīng)的z也最大,
由2x-y=0,x-2y+3=0,得x=1,y=2.
即C(1,2)代入t=2x+y得t=4,所以z=log2(2x+y+4)的最大值為log2(4+4)=log28=3.故選D.
二、填空題
7.(20xx河北省重點(diǎn)中學(xué)聯(lián)合考試)設(shè)z=2x+y,其中x,y滿足x+y≥0,x-y≤0,0≤y≤k,若z的最大值為6,則z的最小值為 .
解析: 不等式組表示的平面區(qū)域如圖所示,
當(dāng)直線z=2x+y過(guò)點(diǎn)A(k,k)時(shí),z取最大值,則zmax=3k=6,解得k=2,易知當(dāng)直線z=2x+y過(guò)點(diǎn)B(-k
7、,k)時(shí),z取最小值,則zmin=-2.
答案:-2
8.(20xx濟(jì)南高三模擬)已知x和y是實(shí)數(shù),且滿足約束條件x+y≤10,x-y≤2,2x≥7,則z=2x+3y的最小值是 .
解析: 做出不等式對(duì)應(yīng)的可行域如圖所示,
由z=2x+3y得y=-23x+z3,做直線y=-23x,平移直線y=-23x,由圖象可知當(dāng)直線經(jīng)過(guò)C點(diǎn)時(shí),直線y=-23x+z3的截距最小,此時(shí)z最小,又C(72,32),代入目標(biāo)函數(shù)得z=2x+3y=272+332=232.
答案:232
9.(20xx廣東高三綜合測(cè)試)已知函數(shù)f(x)=x2-2x,點(diǎn)集M={(x,y)|f(x)+f(y)≤2},
8、N={(x,y)|f(x)-f(y)≥0},則M∩N所構(gòu)成平面區(qū)域的面積為 .
解析:M={(x,y)|x2-2x+y2-2y≤2}={(x,y)|(x-1)2+(y-1)2≤4},
N={(x,y)|x2-2x-(y2-2y)≥0}={(x,y)||x-1|≥|y-1|},
M∩N構(gòu)成平面區(qū)域如圖陰影部分所示,
由圖知平面區(qū)域的面積為12π22=2π.
答案:2π
10.(20xx深圳二調(diào))點(diǎn)P(x,y)是以A(4,1),B(-1,-6),C(-3,2)為頂點(diǎn)的三角形及其內(nèi)部的任一點(diǎn),則4x-3y的最大值為 .
解析:令z=4x-3y,由圖知當(dāng)直線z=4x-3y
9、經(jīng)過(guò)點(diǎn)B(-1,-6)時(shí),z有最大值為4(-1)-3(-6)=14.
答案:14
11.(20xx咸陽(yáng)一模)設(shè)實(shí)數(shù)x、y滿足x-y-2≤0,x+2y-4≥0,2y-3≤0,則yx的最大值是 .
解析: 不等式組確定的平面區(qū)域如圖陰影部分.
設(shè)yx=t,則y=tx,求yx的最大值,即求y=tx的斜率的最大值.顯然y=tx過(guò)A點(diǎn)時(shí),t最大.
由x+2y-4=0,2y-3=0,解得A(1,32).
代入y=tx,得t=32.所以yx的最大值為32.
答案:32
三、解答題
12.(20xx黃山模擬)設(shè)x,y滿足約束條件x+y≥1,x-y≥-1,2x-y≤2,
(1)
10、求目標(biāo)函數(shù)z=12x-y+12的最值;
(2)若目標(biāo)函數(shù)z=ax+2y僅在點(diǎn)(1,0)處取得最小值,求a的取值范圍.
解: (1)作出可行域如圖所示,
可求得A(3,4),B(0,1),C(1,0).
平移初始直線12x-y=0,過(guò)A(3,4)取最小值-2,過(guò)C(1,0)取最大值1.
∴z的最大值為1,最小值為-2.
(2)直線ax+2y=z僅在點(diǎn)(1,0)處取得最小值,由圖象可知-1<-a2<2,
解得-4
11、生產(chǎn)乙產(chǎn)品1桶需耗A原料2千克、B原料1千克.每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗A、B原料都不超過(guò)12千克.通過(guò)合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤(rùn)是( C )
(A)1800元 (B)2400元
(C)2800元 (D)3100元
解析:設(shè)每天生產(chǎn)甲種產(chǎn)品x桶,乙種產(chǎn)品y桶,
則根據(jù)題意得x、y的約束條件為x≥0,x∈N,y≥0,y∈N,x+2y≤12,2x+y≤12.
設(shè)獲利z元,則z=300x+400y.
畫(huà)出可行域如圖.
畫(huà)直線l:300x+400y=0,
即3x+4
12、y=0.
平移直線l,從圖中可知,當(dāng)直線l過(guò)點(diǎn)M時(shí),目標(biāo)函數(shù)取得最大值.
由x+2y=12,2x+y=12,
解得x=4,y=4,
即M的坐標(biāo)為(4,4),
∴zmax=3004+4004=2800(元).故選C.
14.(20xx廣州模擬)已知實(shí)數(shù)x、y滿足x≥0,y≤1,2x-2y+1≤0.
若目標(biāo)函數(shù)z=ax+y(a≠0)取得最小值時(shí)的最優(yōu)解有無(wú)數(shù)個(gè),則實(shí)數(shù)a的值為 .
解析:畫(huà)出平面區(qū)域所表示的圖形,如圖中的陰影部分所示,
平移直線ax+y=0,可知當(dāng)平移到與直線2x-2y+1=0重合,即a=-1時(shí),目標(biāo)函數(shù)z=ax+y的最小值有無(wú)數(shù)多個(gè).
答案:-1
13、15.實(shí)數(shù)x、y滿足x-y+1≤0,x>0,y≤2.
(1)若z=yx,求z的最大值和最小值,并求z的取值范圍;
(2)若z=x2+y2,求z的最大值與最小值,并求z的取值范圍.
解:由x-y+1≤0,x>0,y≤2,作出可行域如圖中陰影部分所示.
(1)z=yx表示可行域內(nèi)任一點(diǎn)與坐標(biāo)原點(diǎn)連線的斜率,因此yx的取值范圍為直線OB的斜率到直線OA的斜率(OA的斜率不存在).
而由x-y+1=0y=2得B(1,2),則kOB=21=2.
∴zmax不存在,zmin=2,
∴z的取值范圍是[2,+∞).
(2)z=x2+y2表示可行域內(nèi)的任意一點(diǎn)與坐標(biāo)原點(diǎn)之間距離的平方.
14、因此x2+y2的范圍最小為|OA|2(取不到),
最大為|OB|2.
由x-y+1=0x=0得A(0,1),
∴|OA|2=(02+12)2=1.
|OB|2=(12+22)2=5.
∴z的最大值為5,沒(méi)有最小值.
故z的取值范圍是(1,5].
16.咖啡館配制兩種飲料,甲種飲料每杯含奶粉9克、咖啡4克、糖3克,乙種飲料每杯含奶粉4克、咖啡5克、糖10克.已知每天原料的使用限額為奶粉3600克、咖啡2000克、糖3000克,甲種飲料每杯能獲利潤(rùn)0.7元,乙種飲料每杯能獲利潤(rùn)1.2元,每天應(yīng)配制兩種飲料各多少杯能獲利最大?
解:設(shè)每天配制甲種飲料x(chóng)杯、乙種飲料y杯可以獲得最大利潤(rùn),利潤(rùn)總額為z元.
由條件知:z=0.7x+1.2y,變量x、y滿足
9x+4y≤3600,4x+5y≤2000,3x+10y≤3000,x≥0,y≥0,且x、y均為整數(shù).
作出不等式組所表示的可行域如圖所示.
作直線l:0.7x+1.2y=0,
把直線l向右上方平移至經(jīng)過(guò)A點(diǎn)的位置時(shí),
z=0.7x+1.2y取最大值.
由方程組3x+10y-3000=0,4x+5y-2000=0,
得A點(diǎn)坐標(biāo)(200,240).
答:應(yīng)每天配制甲種飲料200杯,
乙種飲料240杯方可獲利最大.