在海上生產(chǎn)平臺上使用滾動壓縮技術回收儲存罐內閃發(fā)氣體[中文3850字] 【中英文WORD】
在海上生產(chǎn)平臺上使用滾動壓縮技術回收儲存罐內閃發(fā)氣體[中文3850字] 【中英文WORD】,中文3850字,中英文WORD,在海上生產(chǎn)平臺上使用滾動壓縮技術回收儲存罐內閃發(fā)氣體[中文3850字],【中英文WORD】,海上,生產(chǎn),平臺,使用,滾動,壓縮,技術,回收,儲存,罐內閃發(fā),氣體,中文,3850
[中文3850字].
在海上生產(chǎn)平臺上使用滾動壓縮技術回收儲存罐內閃發(fā)氣體
G.B.(比爾)施耐德,SPE, 布萊恩E. 博耶,SPE,馬克A.古德伊爾,商科工程
摘要
位于墨西哥灣外大陸架的一個獨立的石油天然氣生產(chǎn)操作遭到颶風艾克的襲擊并損壞了一些設施。作為重建的一部分,其中一個海上平臺被翻新了。翻新包括濃縮產(chǎn)品系列控制來自附近生產(chǎn)平臺的額外油氣產(chǎn)品。平臺的額外產(chǎn)品需要一個蒸發(fā)回收系統(tǒng)來回收設備的閃蒸汽。項目小組選擇渦旋壓縮機蒸發(fā)回收裝置(VRU)來回收和重新壓縮閃蒸汽。該項目是在近海環(huán)境渦旋壓縮蒸汽回收技術的首次應用。
生產(chǎn)者為了使設施能夠回收石油儲存罐中的閃發(fā)蒸汽和裝置中的過剩的未使用的閃發(fā)蒸汽而安裝了蒸汽回收裝置。在項目的初始階段回收的平均量是大約每天58,000標準立方英尺天然氣?;厥盏奶烊粴庵屑淄楹空伎傤~的69%。每天甲烷的回收量估計為0.84噸,溫室氣體回收量估計為17.6噸二氧化碳。揮發(fā)性有機化合物(VOC)每天回收量為1.0噸。渦旋壓縮機蒸汽回收裝置滿足了美國礦產(chǎn)管理局的放空燃燒和法規(guī)的監(jiān)督要求。該項目預計時間為15個月(基本支出)。
該項目的重要意義有:1、首次在離岸申請中使用渦旋壓縮技術。
2、裝置占地面積小對于近海有限操作空間的重要性。
3、渦旋技術比典型的機械壓縮機所需的維修少。
4、低成本和低消耗加快經(jīng)濟恢復。
5、回收的閃發(fā)蒸汽含有揮發(fā)性有機化合物(VOCs)和甲烷以及溫室氣體。
引言
在墨西哥灣外大陸架上的許多石油天然氣生產(chǎn)平臺和管道遭到2008年11月颶風艾克的破壞。在墨西哥灣當?shù)氐囊粋€主要的獨立石油天然氣生產(chǎn)商有一些設施被暴風雨毀壞。作為重建的一部分,其中一個近海平臺被翻新。平臺的翻新包括濃縮和改進產(chǎn)品系列控制來自附近生產(chǎn)平臺的額外油氣產(chǎn)品,由于颶風艾克的影響附近的生產(chǎn)平臺不能輸送其產(chǎn)品到集合管道中。平臺的額外產(chǎn)品需要一個蒸發(fā)回收系統(tǒng)來回收儲存罐中的閃蒸汽。生產(chǎn)商的工程小組決定利用渦旋壓縮機來回收和重新壓縮來自儲存罐和石油設備中的閃發(fā)蒸汽。
石油儲存罐中的天然氣蒸汽資源包含閃發(fā)損失、工作損失和呼吸損失。對于壓力容器(如分離器、加熱器)或油罐當原油或凝析油中溶解氣從高壓向低壓移動時發(fā)生閃發(fā)。隨著油壓的下降油中未溶解的輕組分被釋放或“一閃而過”。工作損失歸因于儲存罐壓縮空間內的天然氣壓縮量作為一個罐已經(jīng)滿了。呼吸損失歸因于每天儲存罐壓縮空間內的天然氣壓縮量隨著罐內溫度和壓力變化而改變。對于本文,我們將油罐的排出氣體統(tǒng)稱為閃蒸汽。
通常情況下,來自近海生產(chǎn)平臺的閃發(fā)蒸汽要么直接排放到大氣中要么燒毀。歷史上蒸發(fā)回收裝置被用于當投資量大并且要滿足排放標準的情況下回收閃發(fā)蒸汽。用于排出閃發(fā)蒸汽的典型蒸發(fā)回收壓縮機是天然氣驅動的螺桿壓縮機和旋轉葉壓氣機。
美國礦產(chǎn)管理局(MMS)是擁有在墨西哥灣中部和西部地區(qū)天然氣放空管轄權的管理機構。美國礦產(chǎn)管理局規(guī)定需要一個設施每天回收天然氣量大于50,000標準立方英尺,而不是直接排放到大氣中或者焚燒。對于近海生產(chǎn)平臺,甲板空間需求是蒸發(fā)回收裝置的重要考慮因素。為了適應這一限制條件,渦動壓縮機機組的占地面積是傳統(tǒng)蒸發(fā)回收裝置的三分之一。另外,降低總體維修成本是決定使用渦旋壓縮機技術的一個重要因素。相對于典型機械壓縮機每季度換油,渦旋壓縮機只需要每年更換一次。在近海環(huán)境使用的機器要求資金提高到典型的陸上壓縮機組程度,原因是海水腐蝕環(huán)境和近海操作的額外安全控制的要求。對于這個項目陸上蒸發(fā)回收裝置的標準已經(jīng)達到近海條件和管理的規(guī)格。
設備和流程的描述和應用
渦旋壓縮技術
渦旋壓縮機是一種容積式機器,使用兩個交錯的螺旋形渦旋盤來壓縮天然氣。渦旋壓縮技術中,一個渦旋盤是固定的,另一個做離心運動,從而在連續(xù)的小滾動空間“泡”間抽動壓縮氣體,直到在中心處達到最大壓力值。在中心處,氣體被釋放到固定渦旋盤上的一個排放點。壓縮在滾動軌道上是連續(xù)的,大量氣泡被同時壓縮。
壓縮機的驅動裝置是電動馬達。渦旋壓縮機是一種設計使用高壓制冷劑的密閉壓縮機。它有一個寬松的運行范圍并且本質上是無泄漏的。渦旋壓縮機技術已被廣泛用于制冷系統(tǒng)。
渦旋壓縮機蒸發(fā)回收裝置采用了臥式設計,并且滴糙度、低噪音、低振動,使用變速控制電機。根據(jù)不同情況蒸發(fā)回收裝置的進氣壓力范圍為-10.4-101.3磅每平方英寸,排氣壓力范圍為43.5-363磅每平方英寸。壓縮比為3-15。
自2004年渦旋壓縮技術就被用于石油天然氣蒸發(fā)回收應用中。
渦旋技術的應用
在2009年5月,聯(lián)邦和生產(chǎn)商開始聯(lián)合共同修改一個典型陸上渦旋壓縮機蒸發(fā)回收裝置,這個裝置用于被毀壞翻新的生產(chǎn)平臺上。
這個渦旋壓縮機蒸發(fā)回收裝置包含兩個堆疊的模塊,每個模塊是8英尺長4英尺寬4英尺高的剛撬,每個剛撬含有一個進氣洗滌器。每個模塊包含兩個15馬力的渦旋壓縮機和冷卻器。每個模塊還包含一個可編程邏輯控制(PLC)和變頻驅動器(VFD)的控制面板。這個雙模塊機組的設計回收能力是每天200,000標準立方英尺。
一條連接油罐通用出口和石油處理機(例如加熱處理器)出口的進氣管線被安裝在渦旋壓縮機蒸發(fā)回收裝置的進氣洗滌器上。連接石油處理機的進氣管線用來收集處理機內的額外天然氣,這些天然氣是在平臺上未使用的燃料天然氣。在渦旋壓縮機蒸發(fā)回收裝置前端的進氣管線上安裝了一個流量計,用來計量被回收的天然氣量。渦旋壓縮機組的排放被輸送到現(xiàn)場主壓縮機的進氣分離器/洗滌器中。這個主壓縮機壓縮的天然氣最終輸送到銷售管線中。
當儲存罐內閃發(fā)蒸汽壓力較低時,在渦旋壓縮機蒸發(fā)回收裝置安裝一個洗氣系統(tǒng)用來回收氣體。該洗氣系統(tǒng)的作用是保持蒸發(fā)回收裝置的運行能夠維持渦旋壓縮機的油溫在最低值華氏235度。當保持油溫等于或高于華氏235度時,閃發(fā)蒸汽能夠維持氣相狀態(tài)。
為安全起見,在油罐上安裝填充氣系統(tǒng)來維持罐上每平方英寸約有0.5盎司壓力,從而阻止氧氣進入罐內。、
圖1是一個包含蒸發(fā)回收裝置的簡化流程。
變頻驅動器的控制面板安裝在馬達控制中心(MCC)里,其線路系統(tǒng)也接到位于生產(chǎn)平臺下層的渦旋壓縮機蒸發(fā)回收裝置中。
在功能上,渦旋壓縮機在回收模式正常運行時能達到每分鐘2400轉(rpm)。當罐內產(chǎn)生壓力時,壓力變送器會發(fā)出信號使壓縮機的轉速提高到4800rpms,同時閃發(fā)蒸汽也被回收并壓縮。一旦罐內的閃發(fā)蒸汽被回收并且罐內壓力下降,那么變頻驅動器使壓縮機轉速降到2400rpms。然后蒸發(fā)回收裝置重新回到回收模式。
氣體洗滌器回收的任何氣體都被用泵輸送回儲油罐。
蒸發(fā)回收裝置機組的改進
為了滿足近海要求,渦旋壓縮機組的結構部分已經(jīng)經(jīng)過熱鍍鋅處理并適合近海安裝,但是其他組件需要修補以抵抗海水的腐蝕環(huán)境。壓縮機和一些其他組件已從模塊中移除,特別添加了一個三層環(huán)氧樹脂涂料的圖層來抵抗腐蝕環(huán)境。
除了近海環(huán)境所需的特種涂料外,還有大量的安全系統(tǒng)需要修改以使渦旋壓縮機蒸發(fā)回收裝置遵從美國礦產(chǎn)管理局(MMS)的規(guī)定。近海經(jīng)營商需要遵守美國石油學會(API)建議措施14C(RP14C)。美國石油學會建議措施14C包括近海平臺安全系統(tǒng)的設計,安裝和測試標準。它確定了每個不良事件可能影響一個流程的要素,并討論了每種要素類型的安全裝置選擇標準。如果不能符合建議措施14C的要求會導致對生產(chǎn)商罰款,在其他情況下,需要中斷生產(chǎn)直到遵守規(guī)定,這可能導致生產(chǎn)商的收入損失。
具體來說,應對建議措施14C的修改有:
1、為氣體洗滌器的高液位報警/關機月檢安裝測試線路。
2、為壓縮機排氣線的高排氣壓力報警/關機月檢安裝測試線路。
3、為儲油罐的低壓報警/關機月檢安裝測試線路。
4、添加冗余的油罐壓力變送器。為油罐的高壓報警/關機月檢安裝測試線路。
此外,生產(chǎn)商的近海規(guī)格要求一些閥門更換到鋼結構,而不是黃銅。
2009年7月渦旋壓縮機蒸發(fā)回收裝置被運到操作平臺上。2009年8月渦旋壓縮機蒸發(fā)回收裝置的互聯(lián)管道已經(jīng)完工。一旦安裝完成并且平臺投入運行,渦旋壓縮機蒸發(fā)回收裝置也就投入運行了。
數(shù)據(jù)和結果的介紹
投入的美元值:
標準雙蒸發(fā)回收裝置機組費 135,000
海水環(huán)境修改費 15,000
美國礦產(chǎn)管理局的相應修改費 5,000
安裝費 40,000
啟動/調試費 6,000
總投入 201,000
這樣安裝之后,渦旋壓縮機蒸發(fā)回收裝置平均回收的罐內閃發(fā)蒸汽量高于初試運營期的每天58,000標準立方英尺?;厥盏姆逯盗髁坑涗洖槊刻?15,000標準立方英尺。
用于化學分析的回收氣體樣本的分子量是26.6,其中甲烷體積大約占69%。揮發(fā)性有機化合物(非甲烷烴,非烷烴碳氫化合物)體積大約占29%。較高的加熱數(shù)值大約是每標準立方英尺1540英熱單位(BTU)。閃發(fā)蒸汽中的硫化氫氣體量被認為是基于設備加工新天然氣的最小含量。
以平均回收量和天然氣價格每英熱單位5美元為標準計算的渦旋壓縮機蒸發(fā)回收裝置基本支出為15個月。
甲烷排放量估計回收值為每天0.84美噸,溫室氣體二氧化碳的估計回收值為每天17.6美噸。揮發(fā)性有機化合物(VOC)的排放量回收值為每天1.0美噸。
生產(chǎn)商目前正在修改渦旋壓縮機蒸發(fā)回收裝置的控制系統(tǒng)。這些修改包括安裝一個單一的可編程邏輯控制器(PLC)來控制兩個模塊,更換變送器的壓力開關,以及在蒸發(fā)回收裝置旁邊安裝一個觸屏的控制面板。這些修改需要符合生產(chǎn)商運營標準。這些修改的費用將導致額外增加8000美元的初始成本。
結論
渦旋壓縮技術應用于惡劣的海上環(huán)境是一種具有成本效益、最有效的油氣回收解決方案。通過應用渦旋壓縮技術回收蒸汽,近海生產(chǎn)商能夠滿足監(jiān)管要求,以減少廢氣排放,提高他們的碳足跡,并能經(jīng)濟地回收閃發(fā)蒸汽。
致謝
我們衷心感謝威爾士詹姆斯先生和達姆倫羅恩先生,因為有他們的專業(yè)知識和辛勤的工作才能取得這個項目的成功。
參考文獻
1、艾默生環(huán)境優(yōu)化技術。2008年4月。全封閉渦旋壓縮機在高溫壓縮氣體中的應用
http://www.emersonclimate.com/oil_gas/PDF/HermeticScrollCompressorWhitePaper.pdf.
2、建議措施14C關于海上生產(chǎn)平臺基礎表面安全系統(tǒng)的分析、設計、安裝和測試,第六版。1998年3月,華盛頓:美國石油學會。
原文
Recover flash gas in storage tanks on offshore platforms by useing Rolling compression technology
Abstract
A major independent oil and gas producer (Producer) with operations located on the Outer Continental Shelf of the Gulf of Mexico had several facilities damaged by Hurricane Ike. As a part of restoring operations, one of the offshore platforms was refurbished.The refurbishment included upgrading the production train to handle additional oil and gas production from other nearby production platforms. The additional production to the platform required a vapor recovery system to recover facility flash gas.The project team chose the scroll compressor vapor recovery unit (VRU) to recover and recompress the flash gas. The project was the first application of scroll compression technology for vapor recovery in an offshore environment.
The Producer installed the VRU allowing the facility to recover flash gas from the oil storage tanks and excess unused flash gas from the oil treater. The average volume recovered was approximately 58,000 standard cubic feet of natural gas per day during the initial phase of the project. The methane content of the recovered natural gas was approximately 69 percent by volume. The estimated methane recovered was 0.84 US tons per day and the estimated recovery of greenhouse gases were 17.6 US tons per day CO2e. Volatile organic compounds (VOC) recovered were 1.0 US tons per day. The scroll compressor VRU met the regulatory requirements of the U.S. Minerals Management Service’s flaring and venting regulations. The projected payout was 15 months(simple payout).
The significance of this project includes:
1. First use of scroll compression technology in an offshore application
2. Small physical footprint of unit important to offshore operations with limited space
3. Scroll technology requires less maintenance than typical mechanical compressors
4. Lower initial costs and lower operating costs enhance economics of recovery
5. Recovered flash gas that contained volatile organic compounds (VOCs) and methane, a greenhouse gas
Introduction
Many oil and gas production platforms and pipelines operating in the Outer Continental Shelf of the Gulf of Mexico were damaged by Hurricane Ike in November of 2008. A major independent oil and gas producer (Producer) with operations located on the Gulf of Mexico had several facilities damaged by the storm. As a part of restoring operations, one the offshore platforms was refurbished. The refurbishment of the platform included upgrading and improving the production train to handle additional production from other nearby production platforms that could not send their production to the gathering pipelines due to the effects of Hurricane Ike. The additional production to the platform required the installation of a VRU to recover flash gas from the oil storage tanks. The Producer’s project team decided to utilize scroll compressors to recover and recompress the flash gas from the storage tanks and oil treater.
The source of natural gas vapors from oil storage tanks include flashing losses, working losses and breathing losses. Flashing for a pressure vessel (e.g., separator, heater treater) or oil storage tank occurs when the crude oil or condensate with dissolved gases moves from a higher pressure to a lower pressure. As the pressure of the oil drops some of the lighter components dissolved in the oil are released or “flashed.” Working losses are due to displacement of the natural gas vapors within the storage tank vapor space as a tank is filled. Breathing losses are due to displacement of natural gas vapor within the storage tank vapor space due to changes in the tank temperature and pressure throughout the day. For this paper we refer to the vent gas from the oil storage tanks collectively as flash gas.
Often flash gases from offshore production platforms are either vented directly to the atmosphere or burned by a flare. Historically VRUs have been used to recover flash gas when there is sufficient quantity to justify the investment and to meet air emission standards. The typical type of vapor recovery compressors used for vent flash gas has been natural gas driven rotary screw compressors and rotary vane compressors.
The United States Minerals Management Service (MMS) is the regulatory agency with jurisdiction over venting of natural gas in the central and western areas of the Gulf of Mexico. MMS regulations require a facility to recover natural gas volumes over 50,000 standard cubic feet per day rather than venting directly to the atmosphere or burning in a flare. For offshore production platforms, deck space requirements are a significant consideration for vapor recovery units. To accommodate this limitation, the scroll compressor package has a footprint one-third the size of a traditional VRUs used. In addition, lower overall maintenance costs were a significant factor in the decision to utilize scroll compressor technology. The scroll compressor requires oil changes once per year compared to quarterly for the typical mechanical compressor. Equipment used in the offshore environment required capital upgrades to the typical onshore compression package due to the saltwater corrosive environment and additional safety controls required for operating offshore. For this project the standard onshore VRU was upgraded to meet specifications for the offshore conditions and regulations.
Description and Application of Equipment and Processes
Scroll Compression Technology.
Scroll compression technology is a positive displacement machine that uses two interleaved spiral-shaped scrolls to compress natural gas. With scroll compression technology, one of the scrolls is fixed, while the other orbits eccentrically, thereby trapping and pumping or compressing gas between through successively smaller scroll volume “pockets” until the gas reaches maximum pressure at the center. At the center, the gas is released through a discharge point in the fixed scroll. Compression is continuous since during orbit of the orbiting scroll, multiple gas pockets are compressed simultaneously.
The driver for the compressor is an electric motor. The scroll compressor is a hermetic compressor designed for use with high-pressure refrigerants. It has a broad range of operation and is intrinsically leak free. Scroll compressor technology has been widely used in cooling system applications.
The scroll compressor VRU installed had a horizontal design that has a low profile, low noise, low vibration, and uses variable speed control motors. Depending on the application, the range of inlet pressures of gas to the scroll compressor VRUs may vary from -10.4 to 101.3 pounds per square inch gage and the discharge pressures can range from 43.5 to 363 pounds per square inch gage. The compression ratio ranges from 3 to 15.
Scroll compression technology has been used in oil and gas vapor recovery applications since 2004.
Application of Scroll Technology.
In May of 2009, COMM and the Producer began working together to modify a typical onshore scroll compressor VRU for the platform that was damaged and being refurbished.
The scroll compressor VRU consisted of two stacked modules each 8-foot long by 4-foot wide by 4-foot high steel skids each with an inlet gas scrubber. Each module contained two 15-horsepower scroll compressors and an aftercooler. Each module also included a control panel with Programmable Logic Control (PLC) and variable frequency drive (VFD). The design recovery capacity of this twin module package used was 200,000 standard cubic feet per day.
A suction line connected to the oil storage tanks’ common vent and to the oil treater (i.e., heater treater) vent was installed to the inlet scrubber of the scroll compressor VRU. The suction line to the oil treater was used to collect excess gas from the oil treater that was not used as platform fuel gas. A flow meter was placed on the suction line prior to the inlet of the scroll compressor VRU to measure the amount of natural gas recovered. The discharge of the scroll compressor package was piped to the suction separator/scrubber of the onsite main compressor. This main compressor compresses natural gas for ultimate injection into the sales pipeline.
A purge gas system was installed and used to recycle gas through the scroll compressor VRU when there is insufficient pressure from flash gas in the storage tanks. The purpose of the purge gas system is to keep VRU operating to maintain the scroll compressor’s oil temperature at a minimum of 235 degrees Fahrenheit. By maintaining the oil temperature at or above 235 degrees F, the flash gas will remain in a gas phase.
As a safety measure, a blanket gas system was installed on the storage tanks to maintain approximately 0.5 ounce per square inch of pressure on the tanks to keep oxygen from entering the tanks.
Figure 1 contains a simplified process flow for the VRU.
The control panels with VFD’s were located in the motor control center (MCC) and wiring was run to the scroll compressor VRU which was located on a lower deck of the platform.
Functionally, the scroll compressor operates normally in the recycle mode at 2400 revolutions per minute (rpm). When the pressure builds in the oil storage tanks, a pressure transmitter sends a signal enabling the speed of the compressor to increase to 4800 rpms and the flash gas is recovered and compressed. Once the flash gas from the storage tanks is recovered and the pressure drops in the storage tanks, the VFD ramps the compressor speed down to 2400 rpms. Then the VRU is in recycle mode again.
Any liquids recovered by the gas scrubber are pumped back to the oil storage tanks.
Modifications to VRU Package.
To meet offshore specification, the structural components of the scroll compressor package were already hot dipped galvanized and suitable for offshore installation but other components required refinishing to withstand the corrosive saltwater environment. The compressors and several other components were removed from the modules and specially coated with a three part epoxy coating to withstand the corrosive environment.
In addition to the special coatings needed for offshore, there was a number of safety system modifications needed to make the scroll compressor VRU compliant with the United States Minerals Management Service (MMS) regulations. Offshore operators are required to abide by the American Petroleum Institute (API) Recommended Practices 14C (RP 14C). API RP 14C contains the criteria for designing, installing and testing a safety system on an offshore platform. It identifies each undesirable event that could affect a process component and discusses safety device selection criteria for each component type.Failure to meet RP 14C requirements can result in fines to the operators and in some cases, require an interruption of production which could result in losses of income to the operator until compliance is restored.
Specifically, the modifications in response to RP-14C were:
1. Installation of test circuit for monthly testing of high level alarm/shutdown on the gas scrubber
2. Installation of test circuit for monthly testing of high discharge pressure alarm/shutdown on compressor discharge line
3. Installation of test circuit for monthly testing of low pressure alarm/shutdown on oil storage tanks
4. Addition on redundant oil storage tank pressure transmitter. Installation of test circuit for monthly testing of high pressure alarm/shutdown on oil storage tanks.
Additionally, the Producer’s offshore specifications required the replacement of
several valves to steel construction rather than brass.
The scroll compressor VRU was shipped to the platform in July 2009. The interconnecting piping to and from the scroll compressor VRU was completed in August 2009. Once the installation was completed and the platform was placed into operation, the scroll compressor VRU was brought into operation.
Presentation of Data and Results
For this installation, the scroll compressor VRU had an average recovery of tank flash gas over the initial operating period of 58,000 standard cubic feet per day. The peak flowrate documented was 215,000 standard cubic feet of flash gas per day. A sample of the recovered flash gas that was chemically analyzed had a molecular weight of 26.6 and contained approximately 69 percent by volume of methane. Volatile organic compounds (nonmethane, nonethane hydrocarbons) amounted to approximately 29 percent by volume. The higher heating value was approximately 1540 British Thermal Units (BTU) per standard cubic feet.The hydrogen sulfide content of the flash gas was considered de minimus based on the facility processing sweet natural gas.
The calculated simple payout of this scroll compressor VRU based on the average recovery and gas price of USD 5/MMBTU is 15 months.
The estimated methane emissions recovered were 0.84 US tons per day and the estimated recovery of greenhouse gases were 17.6 US tons per day CO2e. Volatile organic compound (VOC) emissions recovered were 1.0 US tons per day.
The Producer is in the process of modifying the scroll compressor VRU control system. These modifications include the installation of a single programmable logic controller (PLC) to control both modules, replacement of pressure switches with transmitters and the installation of a touch screen control panel next to the VRU. The modifications are needed to meet the Producer’s operating standards. The cost of this modification will result in an extra initial cost of USD 8,000.
Conclusions
The application of scroll based compression technology in the harsh offshore environment is a cost effective and most efficient solution for vapor recovery. By utilizing scroll compression technology for vapor recovery, offshore operators can meet regulatory requirements to reduce emissions, improve their carbon footprint and economically recover flash gas.
Acknowledgments
Our sincerest thanks go to Mr. James Welsh and Mr. Ron Damron for their expertise and diligence in making this project successful.
Reference List
1. Emerson Climate Technologies. April 2008. A Hermetic Scroll Compressor For Application To High Heat-Of-Compression Gases,
http://www.emersonclimate.com/oil_gas/PDF/HermeticScrollCompressorWhitePaper.pdf.
2. RP 14C, Recommended Practice for Analysis, Design, Installation and Testing of Basic Surface Safety Systems on Offshore Production Platforms, sixth edition. March 1998. Washington, DC: API.
第二篇:減輕高壓注氣壓縮機爆炸風險
摘要
這篇文章闡述了由安可收購公司和卡爾加里大學共同進行的一項研究,這是關于安可公司在蒙大拿州東南部壓縮機高壓注氣(HPAI)工程的合成潤滑油燃燒安全性的研究。擁有超過每天2,270標準立方米的空氣壓縮能力,而且排氣壓力可達31.0到34.5兆帕(4500到5000磅/平方英寸),該項目的一個重要方面就是壓縮機的安全和不間斷運行。安可公司和其他高壓注氣運營商的經(jīng)驗顯示,在高溫級間結構和排氣區(qū)域即使使用合成酯基潤滑油,高壓空氣壓縮機潤滑油也可能是一種麻煩(破壞性超壓)的來源。
利用加速量熱儀(ARC),使用了合成潤滑油的新樣本在空氣中的初始氣壓可以被加熱到34.5兆帕(5000磅/平方英寸),自升溫速率和壓力反映也能被測量出來。
研究結果高度強調了壓力對自燃溫度的重要影響。更重要的是,酯基潤滑油的自燃溫度從制造商所報告的在標準氣壓測量的攝氏410度(華氏770度)下降到在氣壓為17.2到34.5兆帕(2500到5000磅/平方英寸)測量的攝氏180度(華氏365度)。另外,氧化合成潤滑油的自燃溫度將進一步導致壓縮機運行溫度值的降低。最后,有人指出,不同品牌酯基潤滑油的自燃溫度都非常相似。
這項研究的意義不僅僅在于溫度數(shù)據(jù),更在于其研究結果即安可公司對旗下高壓空氣壓縮機的設計和運行的一些重要修改的討論。這些信息將有助于未來設計安全和可靠的空氣壓縮系統(tǒng)的高壓注氣運營商。
引言
通過高壓注氣(HPAI)改進傳統(tǒng)的輕質油回收已經(jīng)成為一個眾所周知的過程。隨著石油需求的增加以及減少初級和次級生產(chǎn)為基礎的儲備更多的生產(chǎn)商對高壓注氣產(chǎn)生濃厚的興趣。典型例子有2002年安可公司佩內爾機組的八注射器的每標準立方米17e3高壓注氣工程,已經(jīng)擴展到每標準立方米1700e3。在洪區(qū)原始部分里連續(xù)四年注入34.5兆帕的空氣。此外,一個新的每標準立方米566e3的高壓注氣工程在2004年在錫達河處展開,東靠小比弗蒙大拿/北達科他州的交界處。該項目有18個注入井,操作壓力為31兆帕。圖1表示的是位于錫達河背斜[超過160公里(100英
收藏