2022-2023學(xué)年福建省德化市高一年級(jí)下冊(cè)學(xué)期5月聯(lián)考數(shù)學(xué)試題【含答案】
《2022-2023學(xué)年福建省德化市高一年級(jí)下冊(cè)學(xué)期5月聯(lián)考數(shù)學(xué)試題【含答案】》由會(huì)員分享,可在線閱讀,更多相關(guān)《2022-2023學(xué)年福建省德化市高一年級(jí)下冊(cè)學(xué)期5月聯(lián)考數(shù)學(xué)試題【含答案】(20頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、一、單選題 1.復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為,則(????) A. B. C. D. 【答案】C 【分析】根據(jù)復(fù)數(shù)的幾何意義及模長(zhǎng)公式計(jì)算即可. 【詳解】由題意得,則, 故選:C 2.已知圓錐的底面半徑為1,其側(cè)面展開圖是一個(gè)圓心角為的扇形,則此圓錐的母線長(zhǎng)為(????) A. B. C. D. 【答案】B 【分析】由圓錐的特征及扇形的弧長(zhǎng)公式計(jì)算即可. 【詳解】由圓錐的特征可知圓錐的側(cè)面展開圖形成的扇形弧長(zhǎng)為底面圓的周長(zhǎng), 則該弧長(zhǎng)為, 又,由扇形的弧長(zhǎng)公式可知:圓錐的母線長(zhǎng)為. 故選:B 3.在平面四邊形中,是的中點(diǎn),則(????) A. B. C. D.
2、 【答案】A 【分析】由平面向量的線性運(yùn)算結(jié)合圖形的幾何性質(zhì)計(jì)算即可. 【詳解】?? 由是的中點(diǎn),且可得,即四邊形為平行四邊形, 由, 故, 故選:A 4.設(shè)是兩條不同的直線,是一個(gè)平面,則下列命題正確的是(????) A.若,則 B.若,,則 C.若,則 D.若,則 【答案】D 【分析】根據(jù)空間中直線與平面的位置關(guān)系一一判定即可. 【詳解】?? 如圖所示,正方體ABCD-EFGH, 若平面ABCD為,EF為直線l,F(xiàn)G為直線m,顯然,而,即A錯(cuò)誤; 若平面ABCD為,EF為直線l,DC為直線m,顯然,,而,即B錯(cuò)誤; 若平面ABCD為,EA為直線l,DC為直
3、線m,顯然,而,即C錯(cuò)誤; 對(duì)于D項(xiàng),過m作面,由面面平行與線面垂直的性質(zhì)可知,而,故,即D正確; 故選:D 5.在中,若,則最大角和最小角之和為(????) A. B. C. D. 【答案】D 【分析】利用正弦定理,推出三條邊的比值,通過余弦定理求解中間角的大小,即可得出結(jié)果. 【詳解】由正弦定理得, , 所以最大角為,最小角為, 所以設(shè),, 則由余弦定理得, , 又,所以,. 故選:D 6.我國(guó)古代名著《張邱建算經(jīng)》中記載:“今有方錐,下廣二丈,高三丈.欲斬末為方亭,令上方六尺.問:斬高幾何?”大致意思是:有一個(gè)正四棱錐的下底面邊長(zhǎng)為二丈,高為三丈,現(xiàn)從上面截
4、去一段,使之成為正四棱臺(tái),且正四棱臺(tái)的上底面邊長(zhǎng)為六尺,則截去的正四棱錐的高是多少?如果我們把求截去的正四棱錐的高改為求剩下的正四棱臺(tái)的體積,則該正四棱臺(tái)的體積是(????)(注:1丈=10尺) A.立方尺 B.立方尺 C.3892立方尺 D.11676立方尺 【答案】C 【分析】由棱臺(tái)的特征及其體積公式計(jì)算即可. 【詳解】?? 如圖所示,由四棱錐I-ABCD截得棱臺(tái)ABCD-EFGH,W、X分別為上下底面的中心,即IX為棱錐的高,WX為棱臺(tái)的高, 由題意可知棱臺(tái)上下底面均為正方形, 故其上下底面面積分別為,則, 棱錐的高,由棱臺(tái)的性質(zhì)可知,所以棱臺(tái)的高. 故(立方尺).
5、故選:C 7.某市有一寶塔主體是由圓柱、棱柱、球等幾何體構(gòu)成,如圖所示.為了測(cè)量寶塔的高度,某數(shù)學(xué)興趣小組在寶塔附近選擇樓房作為參照物,樓房高為,在樓頂A處測(cè)得地面點(diǎn)處的俯角為,寶塔頂端處的仰角為,在處測(cè)得寶塔頂端處的仰角為,其中在一條直線上,則該寶塔的高度(????) ?? A. B. C. D. 【答案】B 【分析】由已知條件解三角形得CM,再解求CD即可. 【詳解】, 在中,易得, 在中,易得, 由正弦定理得:, 在中,. 故選:B 8.若正的邊長(zhǎng)為4,為所在平面內(nèi)的動(dòng)點(diǎn),且,則的取值范圍是(????) A. B. C. D. 【答案】D 【分析】以為坐
6、標(biāo)原點(diǎn),以所在直線為軸建立平面直角坐標(biāo)系,則,,由題意設(shè),根據(jù)數(shù)量積的坐標(biāo)運(yùn)算結(jié)合三角函數(shù)求最值即可. 【詳解】由題知, 以為坐標(biāo)原點(diǎn),以所在直線為軸建立平面直角坐標(biāo)系,如圖, ?? 則,, 由題意設(shè), 則, , , , , 可得. 故選:D 二、多選題 9.已知向量,,下列說法正確的是(????) A. B. C.與向量平行的單位向量是 D.向量在向量上的投影向量為 【答案】AD 【分析】利用向量的坐標(biāo)表示逐一判斷即可. 【詳解】選項(xiàng)A:,,所以,A正確; 選項(xiàng)B:,所以,B錯(cuò)誤; 選項(xiàng)C:,所以與向量平行的單位向量是或,C錯(cuò)誤; 選項(xiàng)
7、D:向量在向量上的投影向量為,D正確; 故選:AD 10.如圖,在四面體中,截面是正方形,則下列判斷正確的是(????) ?? A. B.平面 C. D.點(diǎn)B,D到平面的距離不相等. 【答案】BC 【分析】由平行線分線段成比例可判斷A;由線面平行的判定定理和性質(zhì)定理可判斷B;由線線平行和垂直的性質(zhì)可判斷C;由線面平行性質(zhì)可判斷D. 【詳解】在四面體中,若截面是正方形,可得平面平面,可得平面 又平面,而平面平面,可得 又平面,面,則平面,故B正確; 同樣可得平面,所以點(diǎn)B,D到平面的距離相等,故D錯(cuò)誤; 由,可得,故C正確; 由,且,但不一定與相等,故,不一定相等,故A
8、錯(cuò)誤. 故選:BC 11.已知點(diǎn)是所在平面內(nèi)一點(diǎn),下列命題正確的是(????) A.若,則點(diǎn)是的重心 B.若點(diǎn)是的外心,則 C.若,則點(diǎn)是的垂心 D.若點(diǎn)是的垂心,則 【答案】ACD 【分析】利用三角形重心、外心、垂心的性質(zhì),結(jié)合向量數(shù)量積的運(yùn)算,根據(jù)選項(xiàng)逐個(gè)驗(yàn)證可得答案. 【詳解】對(duì)于A,取的中點(diǎn), 則, 因?yàn)?,所以,即點(diǎn)在中線上; 同理可得點(diǎn)在中線上,所以點(diǎn)是的重心,A正確. ?? 對(duì)于B,設(shè)為的中點(diǎn),因?yàn)辄c(diǎn)是的外心,所以; ,B不正確. ?? 對(duì)于C,因?yàn)?,所以? 即點(diǎn)在邊上的高線上,同理可得點(diǎn)也在邊上的高線上, 所以點(diǎn)是的垂心;C正確. 對(duì)于D,
9、因?yàn)? ,即. 因?yàn)辄c(diǎn)是的垂心,所以,所以, 所以存在,使得,D正確. 故選:ACD. 12.如圖,正方體的棱長(zhǎng)為,點(diǎn)是側(cè)面上的一個(gè)動(dòng)點(diǎn)(含邊界),下列結(jié)論正確的有(????) ?? A.若四點(diǎn)共面,則點(diǎn)的運(yùn)動(dòng)軌跡長(zhǎng)度為 B.若,則點(diǎn)的運(yùn)動(dòng)軌跡長(zhǎng)度為 C.若,則點(diǎn)的運(yùn)動(dòng)軌跡長(zhǎng)度為 D.若直線與所成的角為,則點(diǎn)的運(yùn)動(dòng)軌跡長(zhǎng)度為 【答案】ABD 【分析】根據(jù)各項(xiàng)分別確定點(diǎn)的軌跡即可求解. 【詳解】對(duì)于A,因?yàn)?,所以確定一個(gè)平面,而不共線的三點(diǎn)在這個(gè)平面內(nèi), 所以確定的平面即為平面,故點(diǎn)在上,即點(diǎn)的軌跡為,,故A正確; ?? 對(duì)于B,連接,因?yàn)樵谡襟w中,所以平面,
10、而平面,所以, 又平面,所以平面, 又平面,所以,同理可證, 又平面,所以平面,故當(dāng)時(shí),點(diǎn)在上,即點(diǎn)的軌跡為,,故B正確; 對(duì)于C,因?yàn)樵谡襟w中,所以平面, 而平面,所以,所以, 所以點(diǎn)的軌跡是以為圓心,2為半徑的圓,則軌跡長(zhǎng)度為,故C錯(cuò)誤; 對(duì)于D,因?yàn)椋本€與所成的角為,所以與所成的角為,即,所以在直角中,, 所以點(diǎn)的軌跡是以為圓心,4為半徑的圓,則軌跡長(zhǎng)度為,故D正確; 故選:ABD. 三、填空題 13.若復(fù)數(shù)為一元二次方程的一個(gè)根,則_____ . 【答案】6 【分析】把復(fù)數(shù)代入,根據(jù)復(fù)數(shù)相等可求答案. 【詳解】因?yàn)閺?fù)數(shù)為一元二次方程的一個(gè)根, 所以
11、,整理得, 所以且,解得, 所以. 故答案為:6. 14.在長(zhǎng)方體中,,,則異面直線與所成角的余弦值為______. 【答案】/ 【分析】根據(jù)已知作出圖形,利用異面直線所成角的定義及余弦定理即可求解. 【詳解】由題意可知,連接,如圖所示, 在長(zhǎng)方體中, 所以,且, 所以四邊形是平行四邊形, 所以. 所以角為異面直線與所成的角. 又因?yàn)?,? 所以, 在中,由余弦定理得, 異面直線與所成角的余弦值為. 故答案為:. 15.已知一球體剛好和圓臺(tái)的上、下底面及側(cè)面都相切,且圓臺(tái)上底面的半徑為,下底面的半徑為,則該球的體積為_________. 【答案】 【分
12、析】在軸截面梯形中,,,,然后利用,求出母線長(zhǎng),再由可求出球的半徑,從而可求出球體的體積. 【詳解】?? 如圖,在軸截面梯形中,,, 設(shè)球的半徑為,M為球與圓臺(tái)的一個(gè)切點(diǎn),. 因?yàn)椋? ,即得, 解得. 又因?yàn)?,即,所以,? 所以該球體的體積為. 故答案為: 16.記的內(nèi)角的對(duì)邊分別為,,若的面積為3,則當(dāng)?shù)闹荛L(zhǎng)取到最小值時(shí),_______. 【答案】 【分析】根據(jù)給定條件,結(jié)合三角形面積定理、余弦定理求出周長(zhǎng)的函數(shù)表達(dá)式,再借助函數(shù)性質(zhì)、均值不等式計(jì)算作答. 【詳解】由題意得,因?yàn)椋瑒t, 由余弦定理,所以即,即,則, 而函數(shù)在上單調(diào)遞增,即當(dāng)a最小時(shí),的周長(zhǎng)最小,
13、 顯然,當(dāng)且僅當(dāng)時(shí)取“=”,此時(shí), 所以當(dāng)?shù)闹荛L(zhǎng)取到最小值時(shí),. 故答案為: 【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:求的周長(zhǎng)取到最小值時(shí)先將周長(zhǎng)表達(dá)為變量的函數(shù),根據(jù)函數(shù)的單調(diào)性確定當(dāng)且僅當(dāng)取最小值時(shí)周長(zhǎng)最小,再用基本不等式求取最小值時(shí)的取值. 四、解答題 17.已知復(fù)數(shù). (1)若復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)的取值范圍. (2)若復(fù)數(shù),求的共軛復(fù)數(shù). 【答案】(1) (2) 【分析】(1)先化簡(jiǎn),再根據(jù)對(duì)應(yīng)的點(diǎn)在第四象限列出限制條件,求解不等式可得答案; (2)先化簡(jiǎn),再根據(jù)共軛復(fù)數(shù)的概念求解. 【詳解】(1)因?yàn)? 所以 因?yàn)閺?fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第四象限
14、,所以 ,所以, 即實(shí)數(shù)的取值范圍為 (2),所以. 18.已知向量滿足,,. (1)求向量的夾角的大小; (2)設(shè)向量,若的夾角為銳角,求實(shí)數(shù)k的取值范圍. 【答案】(1) (2) 【分析】(1)利用向量的模公式及向量的夾角公式即可求解; (2)根據(jù)向量夾角與向量數(shù)量積的關(guān)系即可求解. 【詳解】(1)由,兩邊平方得, ∵,, ,解得, , ,?? . (2)向量的夾角為銳角,等價(jià)于且方向不同. 所以,解得, 若方向相同,設(shè), , ∵不共線, ,解得, 綜上所述,的取值范圍是. 19.如圖,已知四棱錐中,,、分別是、的中點(diǎn),底面ABCD,且
15、 ?? (1)證明:平面; (2)若,求三棱錐的體積. 【答案】(1)證明見解析 (2) 【分析】(1)可以通過作輔助線結(jié)合中位線得到線線平行證明線面平行或者通過證明面面平行得到線面平行; (2)先求三棱錐的體積,得到三棱錐的體積,利用幾何體的分割可得答案. 【詳解】(1)證法一:連接AC交BO于點(diǎn),連接. , ∴四邊形為平行四邊形,∴是的中點(diǎn); ∵中,是的中點(diǎn),; ∵ 平面,平面, ∴ 平面. ?? 證法二:中,分別是的中點(diǎn),, 又平面,平面,平面 , 且, ∴四邊形是平行四邊形, , 又平面,平面,平面; ,平面,∴平面平面, ∵平面,平面
16、. (2)連結(jié),, ?? 由中,, 得,, ∴ 的面積; 又平面,, ∴三棱錐的體積為; ∵是的中點(diǎn), , ∴. 20.在下列3個(gè)條件中任選一個(gè),補(bǔ)充到下面問題,并解答. ①;②;③. 問題:在中,內(nèi)角的對(duì)邊分別為,為的面積,且滿足 . (1)求角的大小; (2)若,平分,交于點(diǎn),求的長(zhǎng). 【答案】(1)任選一條件,都有 (2) 【分析】(1)若選①:根據(jù)已知條件及正弦定理邊角化,利用輔助角公式及三角函數(shù)的特殊值對(duì)應(yīng)的特殊角,注意角的范圍即可求解; 若選②:根據(jù)已知條件及同角三角函數(shù)的平方關(guān)系,利用正弦定理角化邊及余弦定理的推論,結(jié)合三角函數(shù)的特殊值
17、對(duì)應(yīng)的特殊角,注意角的范圍即可求解; 若選③:根據(jù)已知條件及三角形的面積公式,利用向量的數(shù)量積的定義及同角三角函數(shù)的商數(shù)關(guān)系,結(jié)合三角函數(shù)的特殊值對(duì)應(yīng)的特殊角,注意角的范圍即可求解; (2)根據(jù)(1)的結(jié)論及三角形的面積公式,利用余弦定理及等面積法即可求解. 【詳解】(1)若選①, 由及正弦定理,得, 中,, , , 中,, , ,?? . 若選②: 由, 得, , 由正弦定理得,, , 若選③: 由,又, , , , , (2)由(1)知,, 所以,解得, 由余弦定理得 ,又, , , , 由平分,及,得 ,
18、 , . 21.如圖所示,三棱臺(tái)中,底面,. (1)證明:是直角三角形; (2)若,問為何值時(shí),直線與平面所成角的正弦值為? 【答案】(1)證明見解析 (2) 【分析】(1)結(jié)合棱臺(tái)的特征及條件先證得平面,由即可得結(jié)論; (2)作,先證為直線與平面所成角,設(shè)邊長(zhǎng),結(jié)合條件解直角三角形得出含參表示的邊長(zhǎng),作商即可解得. 【詳解】(1)∵平面,平面,∴ 又,,平面,∴平面, ∵三棱臺(tái)中, ∴平面, 又平面,,故是直角三角形. (2) 在平面內(nèi)作,垂足為,連接. 由(1)知,平面,又平面,, ,平面,平面, 是在平面上的射影,即為直線與平面所成角. 設(shè),
19、則,, ∵三棱臺(tái)中,, ,. 在中,,, 在中,, 解得. ∴ 當(dāng)時(shí),直線與平面所成角的正弦值為. 22.如圖,設(shè)的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,為邊上的中線,已知. (1)求的面積; (2)點(diǎn)為上一點(diǎn),,過點(diǎn)的直線與邊(不含端點(diǎn))分別交于.若,求的值. 【答案】(1) (2) 【分析】(1)法一、由正弦定理得,由AD為中線得,結(jié)合三角形面積公式可得,從而由正弦的和角公式得,求面積即可; 法二、由正弦定理得,在和中,由正弦定理作商得的正余弦值,從而由正弦的和角公式得,求面積即可; 法三、設(shè),利用平面向量的數(shù)量積公式可求得,解方程求得的余弦值,繼而可
20、得. (2)設(shè),利用向量共線的充要條件可得結(jié)合得,,從而可得兩個(gè)三角形面積之比. 【詳解】(1)法一:由及正弦定理得: 又∵是邊上的中線,, 即 易知為銳角,, ; (法二)由及正弦定理得: , 在中,由正弦定理得 ①, 在中,設(shè),由正弦定理得②, ①②得,??易知為銳角,, ; (法三):由及正弦定理得:, 設(shè),∵AD為邊上的中線,∴, 則, , , ∴, 整理得,即, ∴ 或 , 經(jīng)檢驗(yàn),符合題意, ∴, ∴. (2) 設(shè) ∵D為BC的中點(diǎn),, , 又E、G、F三點(diǎn)共線,所以,即③ 又, , 由(1)知,, 化簡(jiǎn)得④,??由③④,得,,?? ∴. 【點(diǎn)睛】思路點(diǎn)睛:第二問以為基底,設(shè)利用向量共線充要條件即:若三點(diǎn)共線,則平面中任一點(diǎn),有,有,故得出的一個(gè)關(guān)系式,再結(jié)合得出的另一個(gè)關(guān)系式,解方程組求出,再計(jì)算面積比值即可.
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 經(jīng)營(yíng)管理之道培訓(xùn)(經(jīng)營(yíng)管理的核心價(jià)值戰(zhàn)略規(guī)劃與決策制定)
- 班組凝聚力執(zhí)行力培訓(xùn)(班組長(zhǎng)怎樣提升班組的凝聚力和執(zhí)行力)
- 燃放煙花爆竹安全培訓(xùn)珍惜生命和健康安全燃放煙花爆竹
- 加強(qiáng)廉潔文化建設(shè)夯實(shí)廉政思想根基(開展廉潔文化建設(shè)具有深厚的文化基礎(chǔ))
- XX學(xué)校班主任期末工作總結(jié)教學(xué)成果自我管理班級(jí)風(fēng)采
- XX地區(qū)文旅部門新年工作計(jì)劃工作目標(biāo)與愿景工作保障與監(jiān)督
- 2025從常長(zhǎng)二字讀懂反腐倡廉(反腐敗斗爭(zhēng)永遠(yuǎn)在路上)
- XX地區(qū)糧食部門未來工作計(jì)劃糧食安全保障產(chǎn)業(yè)發(fā)展人才隊(duì)伍建設(shè)
- 在線貸款平臺(tái)介紹如何選擇在線貸款平臺(tái)
- XX地區(qū)衛(wèi)生部門工作述職匯報(bào)工作成果與亮點(diǎn)
- 燃放煙花爆竹安全教育安全燃放的注意事項(xiàng)
- 節(jié)后收心主題班會(huì)節(jié)后收心再出發(fā)踔厲奮發(fā)譜新篇
- 四篇:普通黨員觀看《反腐為了人民》之以案促改促治心得體會(huì)范文
- 紀(jì)委書記(黨員)觀看《反腐為了人民》心得體會(huì)三篇匯編
- 2025年春節(jié)集體廉政談話會(huì)上的講話范文