仿生機械手結構設計與功能仿真【仿生物三指機械手】【說明書+CAD+PROE+仿真】
仿生機械手結構設計與功能仿真【仿生物三指機械手】【說明書+CAD+PROE+仿真】,仿生物三指機械手,說明書+CAD+PROE+仿真,仿生機械手結構設計與功能仿真【仿生物三指機械手】【說明書+CAD+PROE+仿真】,仿生,機械手,結構設計,功能,仿真,生物,說明書,仿單,cad,proe
西華大學畢業(yè)實習報告
實習生姓名
班 級
聯(lián)系電話
指導教師姓名
職 稱
聯(lián)系電話
實習單位(地點)
西華大學
實習起止時間
2011 年 3 月 18日始, 2011 年 4 月 01 日止,共 2 周 14 (天)
1.仿生機械手簡介
1.1仿生機械的概述
仿生學是近期發(fā)展起來的一門新興學科,仿生學的的發(fā)展促進了與之密切相關的的仿生機械學的誕生和發(fā)展。機器人機構在仿生機械領域中發(fā)展最快,也是應用最廣泛的仿生機構。模仿各類動物的行走﹑爬行的動作,為移動機器人的設計與構思提供了美好的前景。在這里主要介紹生物運動機理與仿生機構的設計構思,為開展仿生機構的研究提供入門知識。
在仿生機械中,仿生機構作為仿生機械的重要組成部分,是模仿生物的運動形態(tài)﹑生理結構和控制原理設計制造出的功能更集中效率更高﹑應用更加廣泛并具有生物特征的機構,是仿生機械中完成機械運動的物質載體。
模仿生物的形態(tài)、結構和控制原理設計制造出的功能更集中、效率更高并具有生物特征的機械。研究仿生機械的學科稱為仿生機械學,它是20世紀60年代末期由生物學、生物力學、醫(yī)學、機械工程、控制論和電子技術等學科相互滲透、結合而形成的一門邊緣學科。在自然界中,生物通過物競天擇和長期的自身進化,已對自然環(huán)境具有高度的適應性。它們的感知、決策、指令、反饋、運動等機能和器官結構遠比人類所曾經(jīng)制造的機械更為完善。
模仿生物形態(tài)結構創(chuàng)造機械的技術有悠久的歷史。15世紀意大利的列奧納多.達芬奇認為人類可以模仿鳥類飛行,并繪制了撲翼機圖。到19世紀,各種自然科學有了較大的發(fā)展,人們利用空氣動力學原理,制成了幾種不同類型的單翼機和雙翼滑翔機。1903年,美國的W.萊特和O.萊特發(fā)明了飛機。然而,在很長一段時間內(nèi),人們對于生物與機器之間到底有什么共同之處還缺乏認識,因而只限于形體上的模仿。直到20世紀中葉,由于原子能利用、航天、海洋開發(fā)和軍事技術的需要,迫切要求機械裝置應具有適應性和高度的可靠性。而以往的各種機械裝置遠遠不能滿足要求,迫切需要尋找一條全新的技術發(fā)展途徑和設計理論。隨著近代生物學的發(fā)展,人們發(fā)現(xiàn),生物在能量轉換、控制調節(jié)、信息處理、辨別方位、導航和探測等方面有著以往技術所不可比擬的長處。同時在自然科學中又出現(xiàn)了“控制論”理論。它是研究機器和生物體中控制和通信的科學。控制論是溝通技術系統(tǒng)和生物系統(tǒng)工作原理之間的橋梁,它奠定了機器與生物可以類比的理論基礎。1960年 9月在美國召開了第一屆仿生學討論會,并提出了“生物原型是新技術的關鍵”的論題,從而確立了仿生學學科,以后又形成許多仿生學的分支學科。1960年由美國機械工程學會主辦,召開了生物力學學術討論會。1970年日本人工手研究會主辦召開了第一屆生物機構討論會,從而確立了生物力學和生物機構學兩個學科,在這個基礎上形成了仿生機械學。
仿生機械研究的主要領域有生物力學、控制體和機器人。生物力學研究生命的力學現(xiàn)象和規(guī)律,包括生體材料力學和生體流體力學,生體機械力學和生體流體力學??刂企w和機器人是根據(jù)從生物了解到的知識建造的工程技術系統(tǒng)。其中用人腦控制的稱為控制體(如肌電假手、裝具);用計算機控制的稱為機器人。仿生機械學的主要研究課題有擬人型機械手、步行機、假肢以及模仿鳥類、昆蟲和魚類等生物的各種機械。
1.2課題的研究目的和意義
自從1960年第一臺機器人問世以來,機器人技術有了迅猛的發(fā)展,在國防、科研、生產(chǎn)等領域都有了廣泛的應用,代替人們從事一些復雜的、危險的、或者非人可達的工作,從而減輕了人們的勞動強度,提高了效率,擴大了人類活動的空間。但是就目前國內(nèi)外的工業(yè)機器人而一言,大都是針對專門的任務而設計的,使用的也是夾鉗式或平行移動式的單自由度末端執(zhí)行器。這種末端執(zhí)行器的結構簡單,控制方便,對于實現(xiàn)負荷的大范圍運動作業(yè)十分有效,但卻存在以下幾個方面的缺點:
1.它對物體的夾持和定位是通過施加較大的壓力所產(chǎn)生的摩擦力來實現(xiàn)的,不存在抓取的幾何封閉和力封閉,因此難于達到很高的抓取精度,穩(wěn)定性和可靠性差。
2.它限制了機器人系統(tǒng)的精細作業(yè)水平。傳統(tǒng)的機器人通過臂調整末端位置,通過手腕調整末端姿態(tài)。由于臂的尺寸較大,因此通過整個臂部的運動很難實現(xiàn)物體的精確位姿調整和操作,且動態(tài)響應較差。
3.它缺少精確的力控制,只能完成夾持力要求不高的作業(yè)。
4.不能適應物體外形的變化。
多指靈巧手的研制有助于解決上述問題。因為作為末端執(zhí)行器的靈巧手相當于安裝在機器人臂上的可獨立實現(xiàn)精細操作運動的一組機器人,通過機器人臂實現(xiàn)粗定位,利用靈巧手實現(xiàn)精確定位。若采用適當?shù)淖ト》绞胶妥ト∫?guī)劃算法,從理論上可以抓取任意形狀的物體并且對物體施加任意的運動和力。這對提高機器人智能化作業(yè)水平有著重要的意義。本課題通過對靈巧手手指結構的優(yōu)化設計及對控制系統(tǒng)的研究,想解決以下幾個問題:
(1)能適應被操作對象外形的變化、盡可能抓取不同形狀的物體;
(2)能控制操作力,以便對不同材質的對象進行操作;
(3)能對被抓物體進行微小的位姿調整;
(4)通過上位機控制完成抓取運動規(guī)劃,能夠使靈巧手平穩(wěn)的運動并能實
現(xiàn)對物體的穩(wěn)定抓取。
1.3國內(nèi)外該領域的研究現(xiàn)狀
1962年美國就有一種類似多指靈巧手的手爪制造出來。但是真正的靈巧手是1974年日本的okada手[1],如圖1.1所示。
該手具有三個手指,有一個手掌,拇指有三個自由度,另兩個手指各有四個自由度。各自由度都是由電機驅動,并由鋼絲和滑輪完成運動和動力的傳遞,屬于n驅動方式。該手的抓取重量為0.8Kg,自重0.24Kg。這種手的靈巧性比較好,但由于拇指只有三個自由度,還不是最靈巧的手。此外,在結構上,各個手指細長而單薄,難以實現(xiàn)較大的抓取力和操作力。
德國宇航中心研制的DLR手被公認為迄今為止世界上最復雜、智能化和集成化最高的仿人機器人多指靈巧手[2]。如圖1.2所示,該手是一種仿人手,它是由四個完全相同手指組成,每個手指有四個關節(jié)。整個手共由1000個機械零件以及1500個電子元件和112個傳感器組成。其中,末端的兩個關節(jié)同人手類似,存在著機械禍合,使用一個驅動器進行驅動?;P節(jié)使用兩個驅動器,實現(xiàn)兩個方向的運動。DLR手采用電驅動方式,使用微型直線驅動器作為驅動元件,n+1驅動方式。該直線驅動器將旋轉電機、旋轉直線轉換結構和減速機構融為一體。所以它可將所有的驅動器集成在手指或手掌中,減小了手指的尺寸,同時使腿的傳動距離縮短,提高了動態(tài)響應。DLR手在每個手指上集成有28個傳感器,包括類似人工皮膚的觸覺傳感器、關節(jié)力矩傳感器、位置傳感器、速度傳感器和溫度傳感器等。
圖1.2DLR多指靈巧手指
具代表性的多指靈巧手是1985年美國麻省理工學院和猶他大學聯(lián)合研制的Utah/M工T靈巧手[3],這是一種仿人手,其大小、形狀、功能都與人手相似。Utah/MIT手采用了模塊化的結構設計,四個手指(拇指、食指、中指和無名指)完全相同,每個手指有四個自由度,各手指都連接到手掌并且相對于手掌運動。手指的每個關節(jié)都由腿(繩索)、滑輪進行遠距離帶動,屬于2n驅動方式,驅動元件采用的是一排氣動伺服缸,能在指尖上產(chǎn)生31N的抓取力。16個位置傳感器裝在每個關節(jié)上,32個腿拉緊傳感器裝在腕后面。目前該手多用于實驗室的各種研究,它的主要問題是關節(jié)自由度太多,控制太復雜,難以實現(xiàn)實時的在線控制,還未得到實際應用。
美國斯坦福大學研制的Stanford/JPL手(Salisbry手)[4]也是一種非常具有代表性的非仿人多指靈巧手。該手沒有手掌,共三個手指,每指三個關節(jié),拇指相對另兩指布置。每個手指由四個直流力矩電機驅動,通過四條繩索張力的調節(jié)來控制三個關節(jié)力矩的大小,屬于n+1驅動。關節(jié)1、2有士90’的運動范圍,末端關節(jié)3有士135’的運動范圍。這種手每個手指的自由度只有三個,在抓取物體時,抓取點(指尖位置)一旦確定后,其抓取姿態(tài)就唯一確定。因此,實際上手指沒有冗余關節(jié),也就沒有抓取的柔性,無法像人手一樣進行靈巧、穩(wěn)定的抓取和操作。
此外,根據(jù)欠驅動原理研制的三指10個自由度的機器人手爪具有驅動元件數(shù)量少、抓取物體范圍廣泛等優(yōu)點,在欠驅動手爪的4個主要機構中,欠驅動手指對抓取物體具有被動柔順和形狀自適應的特性,首先對三關節(jié)欠驅動手指機構進行靜力學分析,提出合理的設計目標和約束條件;然后根據(jù)設計目標,采用遺傳算法得到手指機構的各個關節(jié)連桿尺寸和抓取物體時的特殊構形,使得在抓取給定物體時各關節(jié)指面的接觸力達到均勻分布,得到高效的力傳遞和更加緊湊的機構尺寸。加拿大MD ROBOTICS公司和Laval大學合作研制出SARAH手爪 (Self-AdaptingRobotic Auxiliary Hand) [5]如圖1.3所示,該手爪共有10個自由度,只用兩個電機驅動,一個電機負責三個手指的開合;另一個負責調整手指方向,使其能采取不同的抓取姿勢抓取物體。SARAH手爪既可以用末關節(jié)指面捏取的方式完成各種精確捏取,如圖1.4所示,又可以用欠驅動的方式完成包絡抓取,如圖1.5所示。
圖1.3 欠驅動10-DOF SARAH手爪
圖1.4欠驅動10-DOF SARAH手爪用末關節(jié)指面捏取
圖1.5欠驅動10-DOF SARAH手爪用欠驅動的方式完成包絡抓取
在國內(nèi),對靈巧手的研究是從20世紀80年代后期開始的,其中以北京航空航天大學研制的BH系列為代表,從1987年以來,北航已先后研制出BH一1、BH一2、BH一3型多指靈巧手,該型手是一種仿Stanford/JPL手,三指九自由度,每個手指由四個電機驅動,屬于n+1驅動方式。近幾年,北航開始研究BH一4型靈巧手,該手為四指十六自由度,采用模塊化設計,分為手指、手掌和機械接口三個模塊,改變手掌設計一可以獲得擬人或非擬人手,機械接口用于確定手與臂的連接,改變機械接口可以使靈巧手適應不同的機械臂。傳動元件全部由齒輪副組成,電機完全置于手指中。傳動路線短,結構簡單、緊湊。
但是由于國內(nèi)對機械手研究的滯后等原因,我國目前已經(jīng)制造出來的這些多指靈巧手在結構方面都存在許多不完善的地方。因此,有必要對多指靈巧手結構進行深入的分析,并引進合理的優(yōu)化設計方法,設計出結構更為合理的多指靈巧手,為多指靈巧手的實用化和其他方面的研究提供最理想的結構。
1.4關節(jié)運動的驅動方式
機器人關節(jié)運動的驅動方式有直接驅動方式和間接驅動方式兩種。直接驅動方式是驅動器的輸出軸和機器人的關節(jié)軸直接相連,間接驅動方式是把驅動器的力通過減速器或鋼絲繩、皮帶、平行連桿等傳遞給關節(jié)。
直接驅動方式的驅動器和關節(jié)之間的機械系統(tǒng)較少,因而能夠減少摩擦等非線性因素的影響,控制性能比較好。然而,在另一方面為了直接驅動關節(jié),驅動器的輸出力矩必須很大,除此之外,對于本設計,要求手指結構要小巧的因素顯然決定了不能采取這種驅動方式。間接驅動方式也正是大部分機器人所采取的驅動方式,這種間接,驅動驅動器的輸出力矩一般遠遠小于驅動關節(jié)所需的力矩,因此,通常使用減速器。對于手臂的懸臂梁結構,如果驅動器的安裝位置不當,將會使手臂根部關節(jié)驅動器的負荷增大,對子手指結構同樣也存在這個問題。對此通常采用的間接驅動機構,常見的有以下幾種:
1.4.1繩索滑輪驅傳動方式
繩索滑輪驅傳動方式是常用的靈巧手驅傳動方式。這種傳動方式是比較有利的,它可以很方便地實現(xiàn)運動和動力的遠距離傳送,也能較好的滿足靈巧手結構上的要求,并且質量輕、 慣性負載低、 摩擦較小、 經(jīng)濟實用、 耐用性強,傳動結構示意圖如圖1.6所示。末端桿有兩個電機,分別驅動末端桿的正轉與反轉,以實現(xiàn)手指的夾持和松開。
圖1.6繩索滑輪驅傳動方式
但此種傳動方式具有力和運動傳遞的剛性不足的固有特點,并由此引起各種缺陷:
(1) 繩索有張力,容易變形,會引起傳動的滯后現(xiàn)象,使用時間長了,繩索會變松弛,將會帶來較大的運動傳遞誤差。
(2) 繩索在工作前還需要預緊,通常預緊力比較大,但又不能過大,張力過大可能會使繩索拉斷,不利于大負載條件下的抓取工作。
(3) 雖然繩索與滑輪或套筒的摩擦可以比較小,但采用這種方式需要正確布置繩索的走向,否則會產(chǎn)生很大的附加力和附加力矩。當產(chǎn)生這種附加力矩時,會使運動出現(xiàn)耦合,增加控制的難度。這種摩擦具有嚴重的非線性和強耦合性,給控制帶來了很大的困難。
(4)繩索只能受拉,不能受壓,所以實現(xiàn)回程將會很困難??刂屏σ坏┏{,消除起來將是一件非常麻煩的事,但超調又是在實際中不可避免的。要想實現(xiàn)回程,只有在每個關節(jié)處再加置一個電機,使兩個電機配合工作實現(xiàn)一個關節(jié)的正反轉,這樣給手指的安裝和控制都會帶來不便。由上述分析可以看出,用繩索加滑輪這種傳動方式并不理想,不能滿足靈巧手的設計要求。
1.4.2 鏈條、鋼帶驅動
鏈條、鋼帶這種方式同樣是把驅動器和關節(jié)分開安裝,是遠程驅動的手段之一,鏈條、鋼帶與鋼絲繩相比,剛性高,可以傳遞較大的輸出,但設計上的限制也很大,在SCARA型的關節(jié)機器人中多采用了此法。
1.4.3 閉式鏈連桿傳動機構的驅動方式
對于像靈巧手指這類不是很遠距離的運動和動力傳送,連桿機構也是可行的方法。手指機構的主體是開環(huán)串聯(lián)三連桿機構,在此開環(huán)機構上添加一些零自由度的桿組,就可以構造出閉環(huán)連桿機構,通過這些桿組可以將手指根部的動力傳送到各個關節(jié),如圖1.7
圖1.7閉式鏈手指機構
桿件1、桿件2和桿件3分別為根關節(jié)、中關節(jié)和末關節(jié),根關節(jié)固定于掌上。圖 2 中的桿件 1、4、6 被同軸驅動,電機直接驅動桿件1、4 和6 ,桿件 4 通過一個四連桿機構帶動桿件2的運動。桿件6通過另外一個平面四連桿機構驅動蓮花桿8 ,然后再通過第 3 個四連桿機構驅動手指末關節(jié)桿 3。其中蓮花8的作用是在為了改善兩個平面四邊形之間的傳遞性能,這樣就實現(xiàn)了手指3個關節(jié)的獨立驅動??紤]到一般四連桿機構傳動的運動在傳動過程中有較大變化,因此采用輸出等于輸入的平行四邊形機構??梢钥闯?桿件3分別由桿件2和桿件9領銜的兩條支鏈直接并聯(lián)驅動,而這兩條支鏈又都串聯(lián)于桿件1上,所以手指末端的位形將由桿件1 的位形以及桿件1上的兩個平行四邊形機構分別所引導的支鏈的位形共同確定。以上的特征說明了這是一種混聯(lián)結構,同時具備并聯(lián)結構和串聯(lián)結構的優(yōu)勢,即繼承了并聯(lián)結構的高速、 高剛度,又兼?zhèn)淞舜?lián)結構的高靈活性;就驅動方式來說是并聯(lián)驅動,但對整個手指來說是串聯(lián)結構的,具有串聯(lián)結構的特點。
閉式鏈傳動機構的特點:
這種傳動結構在常規(guī)驅動方式下與傳統(tǒng)的繩索滑輪驅傳動方式相比,有以下一些優(yōu)點:
(1)運動副為低副,接觸面為面接觸,低副兩元素間便于潤滑,桿件幾何構形簡單,便于加工制造。
(2)剛性傳遞,變形小,沒有滯后性,通過幾何約束定位,傳動可靠,工作安全。
(3)桿件并聯(lián)驅動可以承受較大載荷,機械損耗比較小,這是連桿驅動最突出的優(yōu)點。
(4)桿件即可受拉也可受壓,一個電機就可實現(xiàn)關節(jié)的正反轉,回程方便,因此控制力一旦超調,消除起來很簡單。
(5)閉式鏈采用平行四邊形機構傳動,平行四邊形機構有著輸入等于輸出的特性,因此手指的運動學和各種性能等同于開環(huán)平面 3 自由度連桿機構,因此運動學求解和性能分析得以簡化。由以上的分析比較可知,所設計的新型并聯(lián)連桿機構傳動方式比傳統(tǒng)的繩索滑輪傳動有較好的優(yōu)勢,特別是針對傳統(tǒng)傳動方式傳遞剛性不足的固有缺陷,此種新型傳動方式具有一定的改善功效。當然,這種傳動方式將會使靈巧手的結構變得復雜些,在結構的具體設計時需注意。
綜合上述驅動方式的分析和研究,本文中的機械手采用閉式鏈連桿傳動機構的驅動方式驅動
1.5本文主要研究內(nèi)容
針對目前多指靈巧手研究中存在的問題,并考慮現(xiàn)有的研究條件,本文著重進行以下研究工作:
1. 多指手結構設計的研究對多指手的結構型式進行綜合分析,選用合理的優(yōu)化方法對靈巧手結構參數(shù)進行優(yōu)化,從仿人手的角度,以人手結構形式及比例參數(shù)為依據(jù),進行多指靈巧手的具體結構設計,使其有較好的機械特性,保證力傳遞的精度。并用Pro/e軟件進行了多指靈巧手的三維造型。
2. 多指靈巧手的運動學和靜力學分析對所設計的三指靈巧手分析并建立了運動學模型,得出正、反向運動學方程,并對抓持狀態(tài)下各手指的運動姿態(tài)進行了仿真。通過靜力學研究計算出在靜平衡狀態(tài)下各關節(jié)的力矩,為深入研究機械手的控制提供了理論依據(jù)。
3.進行機械手的裝配和仿真。
11
收藏