喜歡這套資料就充值下載吧。。。資源目錄里展示的都可在線預(yù)覽哦。。。下載后都有,,請(qǐng)放心下載,,文件全都包含在內(nèi),,【有疑問咨詢QQ:414951605 或 1304139763】
I 畢業(yè)設(shè)計(jì)論文 題目名稱: 超精密三坐標(biāo)測(cè)量?jī)x整機(jī)機(jī)構(gòu)設(shè)計(jì) 摘 要 本文中,對(duì)三坐標(biāo)測(cè)量?jī)x的研究現(xiàn)狀和精密測(cè)量的關(guān)鍵技術(shù)做了總結(jié),對(duì)所設(shè) 計(jì)的測(cè)量?jī)x的總體布局、床身的選材、導(dǎo)軌的設(shè)計(jì)、進(jìn)給方式的選擇做了介紹,選 用燕尾型氣體靜壓導(dǎo)軌,同步齒形帶和鋼帶傳動(dòng),摩擦桿進(jìn)行驅(qū)動(dòng)。對(duì)移動(dòng)橋和溜 板進(jìn)行了簡(jiǎn)單的 ANSYS 分析,計(jì)算了移動(dòng)橋受力時(shí)最大的變形量和直線度;選用伺 服電機(jī)作為動(dòng)力源,并對(duì)其進(jìn)行了簡(jiǎn)單的功率計(jì)算,分析了測(cè)量?jī)x的工作環(huán)境對(duì)其 精度的影響和它的應(yīng)用環(huán)境;定位采用開式光柵尺,對(duì)光柵尺的選型做了比較。最 后針對(duì)測(cè)量?jī)x整機(jī)進(jìn)行精度分析,查找誤差源和精度的綜合分析。 關(guān)鍵詞:超精密、氣靜壓、高精度、精密測(cè)量 II Three Coordinates Measuring Instrument Ultra-precision Machine ABSTRACT In this paper, three coordinates measuring instrument for precision measurement, the research present situation and the key technology of summing up, the design of measuring instrument lathe bed of the general layout, the design of the selection of materials, guide rail, into to the choice of the ways of doing introduced, choose coattails type aerostatic guide rail, synchronous cog belt and steel belt transmission, friction lever driven. Slip board of mobile bridge and the simple ANSYS analysis method, the largest mobile bridge when stress deformation and straightness; Choose servo motor as a power source, and analyses the simple power calculation, analyzes the working environment of measuring apparatus to the precision of the influence and its application environment; The positioning of grating open grating feet, comparison of the selection of the feet. Finally, according to the measuring apparatus for precision analysis, find the error sources and precision of the comprehensive analysis. Keywords: The ultra precision, Gas static pressure, High accuracy, Precision measurement 1 目 錄 1 緒 論 .2 1.1 課題的來源 .2 1.2 課題的意義 .2 1.3 精密測(cè)量的研究現(xiàn)狀 .2 1.4 精密測(cè)量的關(guān)鍵技術(shù) .6 2 超精密三坐標(biāo)測(cè)量?jī)x整機(jī)機(jī)構(gòu)介紹 .8 2.1 總體布局 .8 2.2 床身材料選用 .9 2.3 導(dǎo)軌的設(shè)計(jì) .10 2.4 進(jìn)給傳動(dòng)方式的選擇 .14 2.5 測(cè)量?jī)x整體結(jié)構(gòu)設(shè)計(jì) .16 2.6 測(cè)量?jī)x的工作原理 .17 3 測(cè)量?jī)x的主要零部件的設(shè)計(jì) .18 3.1 移動(dòng)橋的設(shè)計(jì) .18 3.2 溜板的設(shè)計(jì) .19 3.3 電機(jī)選型 .21 3.4 環(huán)境控制平臺(tái) .25 3.5 光柵尺的選型 .26 4 測(cè)量?jī)x精度分析 .27 4.1 測(cè)量?jī)x誤差源 .27 4.2 測(cè)量?jī)x精度分析 .29 5 結(jié)束語 .32 參考文獻(xiàn) .33 致 謝 .34 2 1 緒 論 1.1 課題的來源 為了響應(yīng)教育部的號(hào)召,實(shí)施大學(xué)本科教改計(jì)劃,北京微納精密機(jī)械有限公司 與中原工學(xué)院聯(lián)合實(shí)施“卓越工程師”的培養(yǎng)計(jì)劃。由該公司接收中原工學(xué)院大四 學(xué)生來公司實(shí)習(xí)并完成畢業(yè)設(shè)計(jì),為學(xué)生走上工作崗位提供一個(gè)鍛煉自己的平臺(tái)。 本課題來自北京微納精密機(jī)械有限公司,在學(xué)校和公司的商討后,確定了我的課題: 超精密三坐標(biāo)測(cè)量?jī)x整機(jī)機(jī)構(gòu)設(shè)計(jì)。 1.2 課題的意義 本課題研制的超精密三坐標(biāo)測(cè)量?jī)x具有重要意義:一方面將促進(jìn)超精密光學(xué)、 機(jī)械制造技術(shù)快速發(fā)展,填補(bǔ)我國(guó)相應(yīng)領(lǐng)域的技術(shù)空白;另一方面將提高我國(guó)產(chǎn)品 質(zhì)量和市場(chǎng)競(jìng)爭(zhēng)力以及我國(guó)測(cè)量?jī)x器的性價(jià)比水平。 1.3 精密測(cè)量的研究現(xiàn)狀 精密測(cè)量技術(shù)和裝置是先進(jìn)制造主要支撐技術(shù)之一,體現(xiàn)國(guó)家工業(yè)與科技水平。 國(guó)民經(jīng)濟(jì)和先進(jìn)制造的不斷發(fā)展對(duì)精密測(cè)量提出了新的要求,因此,提高精密測(cè)量 水平,對(duì)提升我國(guó)先進(jìn)制造能力,促進(jìn)國(guó)民經(jīng)濟(jì)發(fā)展具有重要意義。隨著近 20 年 科學(xué)技術(shù)的迅速發(fā)展, 對(duì)儀器精度要求出現(xiàn)了數(shù)量級(jí)的變化。從精密測(cè)量 (0.5m0.05m),發(fā)展到超精密測(cè)量(0.05m0.005m), 近年來又提出納米 精度測(cè)量(5nm 0.05nm)的要求。據(jù)專家們的推測(cè),隨著精密工程技術(shù)、尖端科技 和空間技術(shù)的迅猛發(fā)展,輪廓形狀允差為 50nm5nm,尺度允差為 100nm10nm 的 超精密零件將被廣泛使用,所以超精密測(cè)量技術(shù)和儀器工程的研究與應(yīng)用已成為科 學(xué)技術(shù)發(fā)展的關(guān)鍵因素之一。 當(dāng)今世界上超精密三坐標(biāo)測(cè)量?jī)x在質(zhì)量和性能方面首推德國(guó) ZEISS 公司(即原 西德 OPTON 公司)和 LEITZ 公司。到目前為止 ZEISS 已有多項(xiàng)專利技術(shù),從而使 ZEISS 公司在坐標(biāo)測(cè)量技術(shù)上遠(yuǎn)遠(yuǎn)領(lǐng)先于其它公司。其生產(chǎn)的三坐標(biāo)測(cè)量?jī)x既有橋 式測(cè)量?jī)x,也有龍門式、懸臂式測(cè)量?jī)x,既有生產(chǎn)型測(cè)量?jī)x,也有計(jì)量型測(cè)量?jī)x。 在國(guó)內(nèi) ZEISS 三坐標(biāo)測(cè)量?jī)x在航空、航天、汽車、電子、機(jī)械等多個(gè)行業(yè)中得到廣 泛地使用。圖 1-1 是 ZEISS 最新的 DuraMax 三坐標(biāo)測(cè)量?jī)x系列,代表著當(dāng)今測(cè)量?jī)x 行業(yè)的尖端技術(shù)。 3 圖 1-1 DuraMax 三坐標(biāo)測(cè)量?jī)x 德國(guó) LEITZ 公司憑借其在高精度測(cè)量領(lǐng)域積累的世界級(jí)測(cè)量技術(shù)以及豐富的應(yīng) 用理論知識(shí),通過高性能,高精確度的 PMM-C 三坐標(biāo)測(cè)量?jī)x與功能強(qiáng)大的工業(yè)級(jí)計(jì) 量軟件 QUIND-OS 的結(jié)合,不斷解決來自工業(yè)各個(gè)領(lǐng)域的高精度和復(fù)雜幾何形狀的 計(jì)量需求。LEITZ 主要從事研制、開發(fā)、制造超高精度坐標(biāo)測(cè)量?jī)x,包括在世界高 精度三坐標(biāo)測(cè)量?jī)x的發(fā)展歷史上具有里程碑意義的 PMM 機(jī)型。其動(dòng)態(tài)指標(biāo)分別為最 大測(cè)量加速度 3000mm/s 或最大測(cè)量速度 400mm/s,平均觸測(cè)頻率 40 點(diǎn)/秒。圖 1-2 為 LEITZ 最新的三坐標(biāo)系列reference 測(cè)量?jī)x系列,和 ZEISS 的 DuraMax 三坐 標(biāo)測(cè)量?jī)x系列一樣,在全球三坐標(biāo)行業(yè)中,隸屬最尖端技術(shù)。表 1-1 為 reference 測(cè)量?jī)x系列的部分參數(shù)。 4 圖 1-2 reference 測(cè)量?jī)x 表 1-1 reference 測(cè)量?jī)x系列參數(shù) 機(jī)型(x.y.z) (100mm) E (m) P (m) THP (m) Vmax (mm/s) a max (mm/s2) Reference 10-7-6 0.9+L/350 1.0 1.9/45s 520 3300 Reference 15-9-7 0.9+L/350 1.0 1.9/45s 520 3300 Reference 20-10-7 0.9+L/350 1.0 1.9/45s 520 3300 Reference 22-12-9 1.5+L/350 1.5 2.1/45s 520 3300 Reference 30-12-9 1.7+L/350 1.5 2.1/45s 520 3300 Reference 45-12-9 1.7+L/350 1.5 2.1/45s 520 3300 意大利 DEA 公司也是世界著名的三坐標(biāo)測(cè)量?jī)x的生產(chǎn)商之一。該公司生產(chǎn)的三 坐標(biāo)測(cè)量?jī)x,主要使用對(duì)象大多數(shù)是與汽車產(chǎn)品相關(guān)的生產(chǎn)廠家。國(guó)內(nèi)許多大型企 業(yè)都訂購(gòu)了該公司的三坐標(biāo)測(cè)量?jī)x,目前,世界上為汽車行業(yè)車身檢測(cè)提供專業(yè)檢 測(cè)方案的最知名廠家當(dāng)屬意大利 DEA 公司,并在推動(dòng)汽車車身研究和“白車身”的 尺寸檢測(cè)方面作出了突出貢獻(xiàn)。 三豐公司也是著名的測(cè)量?jī)x生產(chǎn)廠家,目前,己累計(jì)向世界提供了 33000 臺(tái)三 坐標(biāo)測(cè)量?jī)x,占世界測(cè)量?jī)x市場(chǎng)份額的 35%,雄踞三坐標(biāo)測(cè)量?jī)x世界第一供應(yīng)商的 位置。經(jīng)過不斷改進(jìn)和發(fā)展,已開發(fā)出現(xiàn)在的高速高精度三坐標(biāo)測(cè)量?jī)x,如 5 Crysta-Apex 系列和 MACH、LEGEX 等新型機(jī)種。其他世界上較有名的坐標(biāo)測(cè)量?jī)x制 造廠商有 Brown-sharp 公司,英國(guó)的 ZX 公司、LK 公司等。 我國(guó)坐標(biāo)測(cè)量?jī)x發(fā)展過程可分為三個(gè)階段:第一階段自上世紀(jì) 70 年代開始至 80 年代初。由于該技術(shù)密集度高,特別受我國(guó)計(jì)算機(jī)技術(shù)落后的嚴(yán)重影響,致使 研究和生產(chǎn)總是處于樣機(jī)試制階段,第二階段自上世紀(jì) 80 年代開始至 80 年代末, 隨著改革開放的政策實(shí)施,我國(guó)三坐標(biāo)測(cè)量?jī)x的研制工作一改過去封閉狀況,走上 了引進(jìn)國(guó)外先進(jìn)技術(shù),結(jié)合自身特點(diǎn)進(jìn)行開發(fā)生產(chǎn),加快我國(guó)三坐標(biāo)測(cè)量?jī)x生產(chǎn)的 步伐,初步形成了國(guó)產(chǎn)測(cè)量?jī)x的生產(chǎn)能力。第三階段為進(jìn)入上世紀(jì) 90 年代至今。 目前我國(guó)已具備了從生產(chǎn)精密型測(cè)量?jī)x到生產(chǎn)型測(cè)量?jī)x各種型號(hào)的三坐標(biāo)測(cè)量?jī)x的 能力,開始占領(lǐng)國(guó)內(nèi)市場(chǎng)。 1982 年北京機(jī)床研究所研制出第一臺(tái) CLW63 型萬能測(cè)量?jī)x。同年國(guó)內(nèi)率先研 制出帶氣浮導(dǎo)軌的 CLZ864 型手動(dòng)三坐標(biāo)測(cè)量?jī)x。北京航空精密機(jī)械研究所(原航空 部第三 O 三研究所)從 1972 年開始研制三坐標(biāo)測(cè)量?jī)x,1978 年三坐標(biāo)測(cè)量?jī)x商品 化是國(guó)內(nèi)第一家生產(chǎn)測(cè)量?jī)x的企業(yè),至今己有十種不同系列品種的測(cè)量?jī)x。如 CIOTA 橋移動(dòng)式測(cè)量?jī)x、SZC 一 J866 橋固定式高精度測(cè)量?jī)x、XB654 手動(dòng)懸臂式測(cè) 量?jī)x、TS654 手動(dòng)式數(shù)控測(cè)量?jī)x、LZ 立柱式測(cè)量?jī)x、LM 龍門式測(cè)量?jī)x、CENTURY 世 紀(jì)型測(cè)量?jī)x、ORIENT 東方型測(cè)量?jī)x、PEARL 甩珍珠型測(cè)量?jī)x、FUTURE 未來型測(cè)量 儀等。 近幾年來,隨著數(shù)據(jù)檢測(cè)技術(shù)研究的深入,國(guó)內(nèi)測(cè)量?jī)x得到了進(jìn)一步的發(fā)展。 目前,在國(guó)內(nèi)測(cè)量?jī)x廠家中,??怂箍禍y(cè)量技術(shù)(青島)有限公司擁有產(chǎn)品系列最多, 測(cè)量精度較高。??怂箍禍y(cè)量技術(shù)(青島)有限公司是世界級(jí)數(shù)控三坐標(biāo)測(cè)量?jī)x專業(yè) 制造廠商,是瑞典高科技制造業(yè)集團(tuán) HEXAGON 與中國(guó)航空工業(yè)第二集團(tuán)公司下屬青 島前哨精密機(jī)械公司共同投資在中國(guó)組建的國(guó)際化合資公司。??怂箍倒镜那吧?是青島前哨精密測(cè)量技術(shù)有限公司(Brown-shorpe 前哨)。其與享譽(yù)全球的坐標(biāo)測(cè) 量?jī)x制造公司 Brown-shorpe 前哨公司、意大利 DEA 公司、德國(guó) LEITZ 公司、瑞典 CE JOHNASSAN 公司并列,同屬 HEXAGON 集團(tuán)計(jì)量產(chǎn)業(yè)的核心成員和五大測(cè)量?jī)x制 造基地之一。??怂箍邓峁┑臏y(cè)量?jī)x產(chǎn)品在汽車工業(yè)、航空航天,機(jī)床工具、國(guó) 防軍工、電子和模具等領(lǐng)域得以廣泛應(yīng)用,產(chǎn)品系列包括: 活動(dòng)橋式測(cè)量?jī)x、固定 橋式測(cè)量?jī)x、龍門測(cè)量?jī)x、水平臂式測(cè)量?jī)x、懸劈式測(cè)量?jī)x其中以 1997 年推出的 Z003 系列活動(dòng)橋式測(cè)量?jī)x為典范。該種測(cè)量?jī)x系中小型測(cè)量?jī)x系列,屬于高速度、 高精度生產(chǎn)型測(cè)量?jī)x,測(cè)量速度是固定橋式測(cè)量?jī)x的兩倍。這種測(cè)量?jī)x在生產(chǎn)在線 測(cè)量應(yīng)用最為廣泛。該種測(cè)量?jī)x的技術(shù)水平達(dá)到國(guó)際同類中小型測(cè)量?jī)x的水平。與 國(guó)外測(cè)量?jī)x廠家的發(fā)展相比,國(guó)內(nèi)的發(fā)展就顯得很慢,遠(yuǎn)遠(yuǎn)不能適應(yīng)國(guó)家重點(diǎn)行業(yè) 6 技術(shù)改造和市場(chǎng)發(fā)展的需要,無論從技術(shù)實(shí)力還是市場(chǎng)開拓方面均大大落后于國(guó)外 測(cè)量?jī)x廠家。 1.4 精密測(cè)量的關(guān)鍵技術(shù) 1.4.1 直線導(dǎo)軌 總的來說,從精度角度看,空氣導(dǎo)軌是現(xiàn)在最好的導(dǎo)軌。雖然它沒有液體靜壓 導(dǎo)軌的剛性大,但氣浮導(dǎo)軌優(yōu)點(diǎn)也很明顯,如無需進(jìn)行油溫控制,對(duì)環(huán)境沒有污染。 此外,納米級(jí)精度儀器的負(fù)荷和行程沒有那么大,所以應(yīng)優(yōu)先考慮空氣導(dǎo)軌。目前 空氣導(dǎo)軌的直線度可達(dá)(0.10.2)m/250mm 的水平,國(guó)內(nèi) 303 所也可做到 0.1m/200mm 5。納米水平的儀器導(dǎo)軌行程比上述要短,通過補(bǔ)償技術(shù)還可進(jìn)一步 提高導(dǎo)軌的直線度,國(guó)防科技大學(xué)利用二維微進(jìn)給裝置補(bǔ)償導(dǎo)軌直線度,取得了較 好的效果,可補(bǔ)償?shù)?0.1m/300mm 的精度水平。在導(dǎo)軌的結(jié)構(gòu)設(shè)計(jì)上還有潛力可 挖,如采用多根導(dǎo)軌并聯(lián)來加強(qiáng)氣膜的誤差勻化作用,加大氣墊式導(dǎo)軌跨度來縮小 直線度誤差等。由于空氣導(dǎo)軌的氣膜厚度大概只有 10m 左右,在使用過程中防塵 顯得很重要,若不保證潔凈的環(huán)境,導(dǎo)軌有可能因?yàn)榛覊m而受損傷,這種損傷常常 是難以修復(fù)的。 1.4.2 傳動(dòng)系統(tǒng) 傳統(tǒng)的傳動(dòng)方法為滾珠絲杠傳動(dòng),精密儀器一般用 C0 級(jí)滾珠絲杠,利用閉環(huán) 控制目前最高可達(dá)到 0.01m 的定位精度。利用滾珠絲杠的微小彈性變形原理,也 可實(shí)現(xiàn)納米分辨率的進(jìn)給,但在進(jìn)行非球面等輪廓曲線跟蹤時(shí),滾珠絲杠的精度及 其在運(yùn)動(dòng)中的微小振動(dòng)都會(huì)對(duì)系統(tǒng)的靜態(tài)特性與動(dòng)態(tài)特性產(chǎn)生影響。國(guó)防科技大學(xué) 利用微進(jìn)給系統(tǒng)補(bǔ)償輪廓誤差,在對(duì)半徑為 50 mm 的圓進(jìn)行跟蹤試驗(yàn)時(shí),跟蹤定位 精度可達(dá) 0.033m。靜壓絲杠的絲杠和螺母不直接接觸,有一層高壓膜相隔,所 以沒有摩擦引起的爬行和反向間隙,而且可以長(zhǎng)期保持精度,進(jìn)給分辨率也會(huì)更高。 由于介質(zhì)膜(油、空氣)有勻化作用,可以提高進(jìn)給精度,在較長(zhǎng)行程上,可以達(dá) 到納米的定位分辨率。目前的空氣靜壓絲杠分辨率可達(dá)到 0.01m,進(jìn)給精度比 C0 級(jí)絲杠高 2 個(gè)數(shù)量級(jí)。但它的剛度比較小,直徑 25mm,導(dǎo)程為 10mm 的空氣靜壓絲 杠,剛度可達(dá)到 50N/m。摩擦驅(qū)動(dòng)可以實(shí)現(xiàn)無反向間隙的傳動(dòng),由于結(jié)構(gòu)上比較 簡(jiǎn)單,因而彈性變形因素大為減少,所以一直被認(rèn)為是一種非常適合精密的傳動(dòng)系 統(tǒng)。一般的摩擦驅(qū)動(dòng)機(jī)構(gòu)的結(jié)構(gòu)和齒輪齒條相似,可以把電機(jī)的回轉(zhuǎn)運(yùn)動(dòng)直接轉(zhuǎn)換 7 為直線運(yùn)動(dòng)。英國(guó) Rank Tailor Hobson 公司開發(fā)的 Nanoform 600 精密鏡面儀器的 進(jìn)給機(jī)構(gòu)采用了這種裝置,300mm 的行程上可獲得 1.25nm 分辨率,0.1m 的定 位精度。最近,由國(guó)防科技大學(xué)設(shè)計(jì)的一種扭輪摩擦傳動(dòng)系統(tǒng),模擬絲杠的傳動(dòng)原 理,大大提高了系統(tǒng)的進(jìn)給分辨率。從原理上說,利用分辨率為六萬分之一轉(zhuǎn)的電 機(jī)驅(qū)動(dòng),系統(tǒng)可達(dá) 0.1nm 級(jí)水平的進(jìn)給分辨率。 1.4.3 尺寸測(cè)量技術(shù) 尺寸測(cè)量技術(shù)在精密領(lǐng)域尺寸測(cè)量主要有 2 種技術(shù):一是激光干涉技術(shù),二是 光柵技術(shù)。激光干涉儀分辨率高,最高可達(dá) 0.3nm,一般為 1.25nm;測(cè)量范圍大, 可達(dá)幾十米;測(cè)量精度高,日本和美國(guó)的使用精度都可到 0.210-6,但使用困難, 特別是高精度測(cè)量,激光波長(zhǎng)受溫度、濕度、壓力的影響比較大,因此使用過程中 對(duì)環(huán)境要求很苛刻。近年來精密領(lǐng)域越來越多地選用光柵作為測(cè)量工具。從分辨率 上看,HEIDENHAIN 的 LIP382 型開啟式直線編碼器可達(dá) 1nm,俄羅斯的全息光柵系 統(tǒng)達(dá) 10nm,北京光電量?jī)x研究中心的光柵系統(tǒng)分辨率可達(dá) 0.1nm;從測(cè)量長(zhǎng)度看, LIP382 型光柵尺測(cè)量范圍 70mm,分辨率為 5nm 的 LIP401 型測(cè)量長(zhǎng)度可達(dá) 220mm; 精度上,HEIDENHAIN 的 LIP401 的準(zhǔn)確度為0.2m(ML220 mm) , 0.1m(ML100mm) ,俄羅斯的全息光柵精度是0.1m,LG100 光柵系統(tǒng)分辨 率可達(dá) 0.1nm,測(cè)量范圍 100 mm,精度0.01m ,8。單從分辨率和精度上看,光 柵技術(shù)可以和激光干涉技術(shù)相媲美,對(duì)環(huán)境的要求相對(duì)較低,可以滿足納米精度的 使用要求,特別是相位光柵,是一種非常有前途的精測(cè)量工具。 8 2 超精密三坐標(biāo)測(cè)量?jī)x整機(jī)機(jī)構(gòu)介紹 2.1 總體布局 三坐標(biāo)測(cè)量?jī)x是近三十年發(fā)展起來的一種高效率的新型精密測(cè)量?jī)x器。它以精 密機(jī)械為基礎(chǔ),綜合電子技術(shù)、數(shù)控技術(shù)、計(jì)算機(jī)技術(shù)以及精密位移技術(shù)為一體的 高技術(shù)、高精度、高效率的精密儀器,并廣泛用于機(jī)械制造的檢測(cè)、電子、汽車和 航空航天等工業(yè)中??梢赃M(jìn)行零件和部件的尺寸、形狀及相互位置的檢測(cè),例如箱 體、導(dǎo)軌、蝸輪和葉片、缸體、凸輪、齒輪、形體等空間型面的測(cè)量。此外,還可 用于畫線、定中心孔、光刻集成電路等,并可對(duì)連續(xù)曲面進(jìn)行掃描及制備數(shù)控機(jī)床 的加工程序等。由于它的通用性強(qiáng)、測(cè)量范圍大、精度高、效率高、性能好、能與 柔性制造系統(tǒng)相連接,已成為一類大型精密儀器,有“測(cè)量中心”之稱。 我這次設(shè)計(jì)的超精密三坐標(biāo)測(cè)量?jī)x總體布局如圖 2-1 所示。結(jié)構(gòu)整體為移動(dòng)橋 式結(jié)構(gòu),這種結(jié)構(gòu)簡(jiǎn)單、緊湊、剛度好,具有較開闊的空間。工件安裝在固定的工 作臺(tái)上,承載能力較強(qiáng),工件質(zhì)量對(duì)測(cè)量?jī)x的動(dòng)態(tài)性能沒有影響;工作臺(tái)采用人造 花崗巖材料,其主要優(yōu)點(diǎn)是變形小、穩(wěn)定性好、不生銹,易于作平面加工,易于達(dá) 到比鑄鐵更高的平面度,適合制作超精密的平臺(tái);橫梁和 Z 軸采用陶瓷材料,在保 證所需要的剛度的同時(shí),減少了本身的重量,保證測(cè)量?jī)x的測(cè)量精度;X 向、Y 向、 Z 向均采用氣體靜壓導(dǎo)軌,使測(cè)量?jī)x在運(yùn)動(dòng)時(shí)有足夠的精度;X 向、Z 向采用摩擦 桿驅(qū)動(dòng),Y 向采用剛帶傳動(dòng)。 9 圖 2-1 三坐標(biāo)測(cè)量?jī)x總體布局圖 其主要技術(shù)指標(biāo)要求如下: 1)X 軸,最大行程:800 mm,直線度:0.2 m/100 mm,光柵反饋分辨率: 0.1m; 2)Y 軸,最大行程:600 mm,直線度:0.2 m/100 mm,光柵反饋分辨率: 0.1m; 3)Z 軸,最大行程:400mm,直線度:0.2 m/100 mm,光柵反饋分辨率: 0.1m; 4)驅(qū)動(dòng):伺服電機(jī)驅(qū)動(dòng)摩擦輪傳動(dòng); 5)導(dǎo)軌形式:超精密氣體靜壓導(dǎo)軌; 6)承重 2000kg。 2.床身材料選用 床身要支撐整機(jī)的重量,它應(yīng)具有良好的剛度和強(qiáng)度,可以采用不同材料,比 如優(yōu)質(zhì)耐磨鑄鐵、花崗巖、人造花崗巖等。 1)優(yōu)質(zhì)耐磨鑄鐵 10 鑄鐵是制造床身的傳統(tǒng)材料,它的優(yōu)點(diǎn)是工藝性好。選用耐磨性好,熱膨脹系 數(shù)低,對(duì)振動(dòng)衰減能力強(qiáng),并經(jīng)時(shí)效處理的優(yōu)質(zhì)合金鑄鐵作精密儀器的床身,可以 得到滿意的結(jié)果。近年來,雖然多數(shù)精密坐標(biāo)測(cè)量?jī)x和精密機(jī)床改用花崗巖,但美 國(guó) Moore 公司和瑞士 SIP 公司仍使用鑄鐵床身,他們認(rèn)為花崗巖有吸濕性,會(huì)導(dǎo)致 微量變形,降低測(cè)量的精度,反不如鑄鐵好。 2)花崗巖 花崗巖現(xiàn)在已是制造精密測(cè)量?jī)x和精密機(jī)床的床身的熱門材料,這是因?yàn)榛◢?巖比鑄鐵長(zhǎng)期尺寸穩(wěn)定性好,熱膨脹系數(shù)低,對(duì)振動(dòng)的衰減能力強(qiáng),硬度高、耐磨 并且不會(huì)生銹等。用花崗巖作機(jī)架時(shí),一般都用整體方塊,鉆孔埋入螺母以便和其 它件連接。但花崗巖加工比較困難,而且吸濕后會(huì)產(chǎn)生微量變形,影響精度。 3)人造花崗巖 花崗巖不能鑄造成形且有吸濕性。為解決這問題國(guó)外提出了人造花崗巖。人造 花崗巖是由花崗巖碎粒用樹脂粘結(jié)而成。用不同粒度的花崗巖組合可提高人造花崗 石的體積比,使人造花崗巖有優(yōu)良的性能,不僅可鑄造成形,吸濕性低,并對(duì)振動(dòng) 的衰減能力加強(qiáng)。 在溫度特性、動(dòng)態(tài)特性以及工藝特性的方面的相關(guān)參數(shù)的基礎(chǔ)上,考慮到測(cè)量 儀當(dāng)今制造業(yè)中的使用特點(diǎn)、使用環(huán)境、精度以及效率要求,考慮到測(cè)量?jī)x對(duì)精度 的要求是第一位的,而對(duì)速度要求一般;由于價(jià)值高,一般配備專用的工作環(huán)境, 環(huán)境較好。其移動(dòng)部件的選材,需要兼顧密度和剛性;而對(duì)于固定部件,則對(duì)密度 /剛性比的要求比較寬松,一般通過加大截面尺寸提高剛性,故固定部件的材料可 選擇陶瓷或花崗石,所以本次設(shè)計(jì)的測(cè)量?jī)x采用花崗巖為床身材料。國(guó)內(nèi)的泰山青 是比較優(yōu)秀的花崗巖。 2.3 導(dǎo)軌的設(shè)計(jì) 在精密加工與測(cè)量領(lǐng)域,進(jìn)行直線運(yùn)動(dòng)的機(jī)械元部件的導(dǎo)軌主要有滑動(dòng)導(dǎo)軌、 滾動(dòng)導(dǎo)軌、液體靜壓導(dǎo)軌和空氣靜壓導(dǎo)軌。滑動(dòng)導(dǎo)軌具有結(jié)構(gòu)簡(jiǎn)單、緊湊、剛性高、 停止時(shí)的穩(wěn)定性高和熱穩(wěn)定性高及價(jià)格低等優(yōu)點(diǎn),缺點(diǎn)是由于其導(dǎo)軌與支承結(jié)構(gòu)直 接接觸,摩擦力較大而且動(dòng)摩擦系數(shù)和靜摩擦系數(shù)的差值較大,有爬行,定位精度 有限,低速時(shí)運(yùn)行的平滑度較其他導(dǎo)軌差一些。 滾動(dòng)導(dǎo)軌結(jié)構(gòu)簡(jiǎn)單,已實(shí)現(xiàn)標(biāo)準(zhǔn)化,是目前使用較多的一種導(dǎo)軌,但精度比滑 動(dòng)導(dǎo)軌和靜壓導(dǎo)軌要低。液體靜壓相對(duì)于氣體靜壓導(dǎo)軌具有載荷量大、剛度高,阻 尼高,對(duì)振動(dòng)的衰減好,應(yīng)用激光干涉儀的情況下,得到定位精度可以達(dá)到 11 0.02m/200mm,直線運(yùn)動(dòng)精度為 0.05m/200mm。缺點(diǎn)是目前靜壓導(dǎo)軌的大部分 設(shè)計(jì)只是依賴于簡(jiǎn)單的工程計(jì)算或者實(shí)際經(jīng)驗(yàn),缺乏一套成熟的理論支持。采用液 體靜壓導(dǎo)軌時(shí),還存在設(shè)備復(fù)雜和油污染的問題,成本也非常高。液體靜壓導(dǎo)軌由 于油的粘性剪切阻力,發(fā)熱問題不可忽視,因此對(duì)液壓油必須采取徹底的冷卻對(duì)策。 液體靜壓油膜厚度要保持恒定不變比較困難,調(diào)試調(diào)整費(fèi)時(shí)費(fèi)力。而且在運(yùn)行過程 中,需要一個(gè)壓力(或流量)穩(wěn)定、過濾嚴(yán)格的靜壓供油系統(tǒng),才能保證導(dǎo)軌運(yùn)動(dòng)的 高精度。 空氣靜壓導(dǎo)軌主要有如下特點(diǎn): 1)由于空氣的粘性系數(shù)為油的 1/50 以下,而且粘度對(duì)溫度和壓力的變化不敏 感,空氣靜壓導(dǎo)軌的摩擦力非常小且近似為常數(shù)。 2)采用空氣靜壓潤(rùn)滑支承,在運(yùn)動(dòng)過程中導(dǎo)軌不與支承體直接接觸,基準(zhǔn)面 摩損小,因此精度高而且使用壽命長(zhǎng)。 3)分布于導(dǎo)軌及支承面之間的 5 一 15m 的空氣膜對(duì)部件缺陷具有平均效應(yīng), 容易得到高精度。 4)爬行少,機(jī)械摩損小,噪聲低。 5)發(fā)熱量少,工作溫度范圍寬,熱變形非常小。 6)無環(huán)境污染。 因此現(xiàn)在國(guó)內(nèi)外大部分的精密測(cè)量設(shè)備都用空氣靜壓導(dǎo)軌作為精密運(yùn)動(dòng)部件; 在適應(yīng)參數(shù)控制模式(MRAC)下采用氣體靜壓花崗巖導(dǎo)軌得到好于土 15nm 的位置控 制精度。 在精密測(cè)量?jī)x中,要求摩擦發(fā)熱小,載荷不需要太高,因此主要應(yīng)用空氣靜壓 導(dǎo)軌來構(gòu)成高精度的直線運(yùn)動(dòng)機(jī)構(gòu)。 所以根據(jù)以上的分析,測(cè)量?jī)x的導(dǎo)軌采用空氣靜壓導(dǎo)軌。 凡能同時(shí)承受軸向、徑向或其它方向作用力的氣體支撐裝置均稱為氣體靜壓組 合裝置??諝忪o壓導(dǎo)軌是典型的氣體靜壓組合裝置。根據(jù)工作臺(tái)的移動(dòng)量、載荷量 和精度要求等的不同,一般有如下幾種形式,圖 2-2 是氣浮導(dǎo)軌的結(jié)構(gòu)示意圖。 12 (a) 平面封閉性 (b) 圓柱封閉性 (c) 重量平衡式 (d) 真空負(fù)壓平衡式 圖 2-2 氣浮導(dǎo)軌結(jié)構(gòu)形式 1)平面封閉型導(dǎo)軌 這種形式的導(dǎo)軌,因工作臺(tái)導(dǎo)軌面產(chǎn)生的撓度較小,可取得高精度、高剛性、 大負(fù)載量,最適用于作為精密加工機(jī)床和測(cè)量?jī)x等的長(zhǎng)導(dǎo)軌。 2)圓柱封閉型導(dǎo)軌 這種結(jié)構(gòu)的導(dǎo)軌結(jié)構(gòu)簡(jiǎn)單,導(dǎo)桿的圓度、圓柱度和導(dǎo)向孔的間距等精度完全由 機(jī)械加工決定,全部負(fù)載由導(dǎo)柱承受,容易產(chǎn)生撓度,故除了用于立式外,常用于 輕載、短導(dǎo)軌。 3)重量平衡式導(dǎo)軌 這種導(dǎo)軌結(jié)構(gòu)簡(jiǎn)單,加工方便。但是軸承剛度低,適用于負(fù)載變化小的場(chǎng)合。 4)真空負(fù)壓平衡式導(dǎo)軌 這種導(dǎo)軌與重量平衡式導(dǎo)軌是同一型式,適用于工作臺(tái)重量輕或不能加重的場(chǎng) 合,使真空負(fù)壓和靜壓保持的同時(shí),由維持固定的導(dǎo)軌間隙。根據(jù)本次測(cè)量?jī)x的設(shè) 計(jì)要求氣靜壓導(dǎo)軌型式采用平面封閉式,圖 2-3 為橫梁的氣浮分布。圓形氣浮墊的 13 機(jī)構(gòu)見圖 2-4 ,部分尺寸和參數(shù)見表 2-1.氣 浮 塊 圖 2-3 橫梁的氣浮分布 剛 性 螺 桿氣 墊 ( 含 節(jié) 流 塞 ) 氣 管 接 頭氣 管 外 徑 4 氣 浮 工 作 面 14 圖 2-4 圓形氣浮墊結(jié)構(gòu)圖 表 2-1 圓形氣浮塊部分尺寸和參數(shù) 2.4 進(jìn)給傳動(dòng)方式的選擇 2.4.1 進(jìn)給絲杠 這是目前較多采用的一種進(jìn)給傳動(dòng)方式。常用的進(jìn)給絲杠形式有梯形絲杠、滾 珠絲杠、空氣靜壓絲杠或液體靜壓絲杠和滾柱絲杠等。空氣靜壓絲杠或液體靜壓絲 杠的制造誤差、彎曲變形等對(duì)工作臺(tái)直線方向上的運(yùn)動(dòng)精度影響小,因此在較長(zhǎng)的 行程上可以達(dá)到納米級(jí)的分辨率,另外由于不存在摩擦引起的爬行和回程間隙,可 以長(zhǎng)期保持精度,但其軸向剛度和承載能力小,制造和裝配難度非常大。滾珠絲杠 因具有高速、節(jié)省能源、易于潤(rùn)滑、跟隨靈敏、對(duì)周邊環(huán)境適應(yīng)性強(qiáng)等特點(diǎn),應(yīng)用 最廣泛。但滾珠絲桿存在回程影響和軸向誤差。滾珠絲杠的配合直接影響了滾珠絲 杠的精度,很明顯,滾珠與螺母之間為點(diǎn)接觸,其性能劣于采用面接觸的傳動(dòng)螺桿。 滾珠絲杠之間為摩擦環(huán)節(jié),是一個(gè)二階系統(tǒng),故從控制角度來講系統(tǒng)不穩(wěn)定,容易 序 號(hào) 直徑 mm 厚度 D mm 球徑 S mm 承載 Kg f 剛度 Kg f/m 接頭 螺紋 1 30 15 10 16 1 M5 2 40 15 10 27 2 M5 3 50 15 10 44 3 M5 4 60 15 16 63 5 M5 5 70 20 16 87 9 M5 6 80 20 16 113 13 M5 7 90 25 16 156 19 M5 8 100 25 16 196 25 M5 9 120 25 25 282 40 M5 10 150 30 25 440 70 M5 11 200 50 25 780 120 M5 12 250 60 50 1220 180 M5 13 300 60 50 1766 270 M5 15 產(chǎn)生振蕩現(xiàn)象,導(dǎo)致不能夠很好的定位。滾珠絲杠之間若為間隙配合,絲杠產(chǎn)生回 程誤差,但是通過雙頻激光檢測(cè)系統(tǒng)對(duì)進(jìn)給量的檢測(cè)和反饋可以進(jìn)行補(bǔ)償,問題并 不嚴(yán)重;若為過盈配合,微小量的進(jìn)給實(shí)現(xiàn)起來比較困難,容易產(chǎn)生爬行現(xiàn)象。最 近一些學(xué)者的研究表明,滾珠絲杠在數(shù)微米的行程范圍內(nèi)呈非線性彈性現(xiàn)象。 Shigeo fuakda 根據(jù)滾珠和滾道之間的接觸狀況分別測(cè)試了其納米精度定位的能力。 最主要的是,在進(jìn)給全行程中,絲杠和螺母配合的松緊程度有變化,滾珠螺母之間 產(chǎn)生非線性的接觸變形,影響進(jìn)給運(yùn)動(dòng)的平穩(wěn)性和精度,而且不同滾珠所承受載荷 的不一致性也影響了它的使用壽命。 2.4.2 鋼絲和鋼索傳動(dòng) 這種傳動(dòng)方法可以獲得穩(wěn)定而平滑的運(yùn)動(dòng)方式。這種傳動(dòng)方式的優(yōu)點(diǎn)是無反向 間隙,但是由于鋼絲等具有伸縮性,進(jìn)給方向的剛性較弱,隨著工作臺(tái)行程的增大, 其力矩和輸出位移之間存在明顯的非線性遲滯現(xiàn)象。 2.4.3 摩擦驅(qū)動(dòng) 摩擦驅(qū)動(dòng)是獲得平滑而無伸縮變形運(yùn)動(dòng)的一種較好驅(qū)動(dòng)方式,在國(guó)內(nèi)外的一些 精密機(jī)床和坐標(biāo)測(cè)量?jī)x上有所應(yīng)用,其中國(guó)防科技大學(xué)在國(guó)家自然科學(xué)基金的資助 下,對(duì)小角度扭輪摩擦進(jìn)行了系統(tǒng)的研究,并成功研制了扭輪摩擦傳動(dòng)精密定位系 統(tǒng)。圖 2-4 出的是摩擦驅(qū)動(dòng)示意圖,摩擦傳動(dòng)具有定位精度高和結(jié)構(gòu)簡(jiǎn)單的優(yōu)點(diǎn), 但是在高速進(jìn)給中電動(dòng)機(jī)軸和摩擦桿之間容易產(chǎn)生滑動(dòng),進(jìn)給方向的剛性較低。 1、伺服電機(jī) 2、減速器 3、驅(qū)動(dòng)輪 4 摩擦桿 5、預(yù)緊力 6、線性刻度尺 7、摩擦力 16 圖 2-4 摩擦驅(qū)動(dòng)示意圖 驅(qū)動(dòng)軸和從動(dòng)桿是摩擦傳動(dòng)系統(tǒng)的主要元件。驅(qū)動(dòng)軸亦稱滾輪,斷面為圓形, 由軸承(滾動(dòng)軸承、液壓軸承、空氣軸承)支撐著,在伺服電機(jī)帶動(dòng)下,通過減速 器做旋轉(zhuǎn)運(yùn)動(dòng)。從動(dòng)桿或稱滑尺,斷面為矩形或圓形,以直角或某一角度與驅(qū)動(dòng)軸 接觸,在預(yù)壓機(jī)構(gòu)產(chǎn)生的壓緊力 P 的作用下,接觸部位產(chǎn)生摩擦力 F,帶動(dòng)從動(dòng)桿 作直線運(yùn)動(dòng)。 2.5 測(cè)量?jī)x整體結(jié)構(gòu)設(shè)計(jì) 各主要部分確定以后,按照各部分的尺寸進(jìn)行測(cè)量?jī)x的總體設(shè)計(jì),圖 2-5 為測(cè) 量?jī)x的三維模型圖,圖 2-6 為測(cè)量?jī)x的總裝配圖。 圖 25 測(cè)量?jī)x三維圖 17 圖 2-6 測(cè)量?jī)x的總裝配圖 2.6 測(cè)量?jī)x的工作原理 如圖 2-6,在 X 向、Z 向上,伺服電機(jī) 6 通過同步齒形帶帶動(dòng)摩擦輪轉(zhuǎn)動(dòng),摩 擦輪通過摩擦桿 4、11 分別帶動(dòng)床身 1 和 Z 軸 10 做直線運(yùn)動(dòng),在 Y 向上,伺服電 機(jī)通過同步齒形帶帶動(dòng)滾珠轉(zhuǎn)動(dòng),再通過鋼帶 5 帶動(dòng)溜板 2 在 Y 向上的直線運(yùn)動(dòng)。 測(cè)量時(shí),工件固定在工作臺(tái)上,X、Y、Z 三軸均做直線運(yùn)動(dòng),對(duì)工件做三維測(cè) 量,通過測(cè)量?jī)x上的光柵尺進(jìn)行三軸的測(cè)量定位,然后通過軟件把數(shù)據(jù)收集分析, 18 完成測(cè)量任務(wù)。 19 3 測(cè)量?jī)x的主要零部件的設(shè)計(jì) 3.1 移動(dòng)橋的設(shè)計(jì) 移動(dòng)橋是測(cè)量?jī)x設(shè)計(jì)中,保證機(jī)械部分測(cè)量精度最重要的零件。它的精度要求 直接關(guān)系到測(cè)量?jī)x的精度。 由于移動(dòng)橋的尺寸較大,用常規(guī)的簡(jiǎn)化計(jì)算很難滿足設(shè)計(jì)要求所以采用 solidworks 進(jìn)行零件設(shè)計(jì)校核。 移動(dòng)橋承受的重量主要有溜板的重量和 Z 軸的重量,總重量估算有 800N?;?崗巖的彈性模量 147000MPa,抗壓強(qiáng)度 255MpPa。 根據(jù) AutoCAD 的二維圖紙,在 solidworks 畫出如圖 3-1 的龍門架三維模型。 然后經(jīng)過 Cosmosxpress 分析后,得出圖 3-2 龍門架受力變形量;圖 3-3 龍門 架應(yīng)力分布。 由圖 3-2 可得出龍門架橫梁最大變形處的直線度 t:2.97m0.143/0m16htL 由于 t0.2 m/100 mm,所以滿足設(shè)計(jì)要求。 由圖 3-3 進(jìn)行與花崗巖的參數(shù)比較強(qiáng)度符合要求。 圖 3-1 移動(dòng)橋三維模型 20 圖 3-2 移動(dòng)橋受力變形量 圖 3-3 移動(dòng)橋應(yīng)力分布 3.2 溜板的設(shè)計(jì) 首先建立溜板三維模型如圖 3-4,經(jīng)過分析后得到的圖 3-5 和圖 3-6。 由圖 3-5 溜板的受力變形量,看出移動(dòng)受的力為豎直方向的,同一個(gè)面內(nèi)變形 均勻。所以只要溜板加工時(shí)候滿足設(shè)計(jì)要求,在加載后加載力對(duì) Z 軸的直線度影響 21 很小。 圖 3-6 移動(dòng)的應(yīng)力分布中最大應(yīng)力為 0.8363*106MPa,遠(yuǎn)小于許用應(yīng)力 45*106MPa。 圖 3-4 溜板的三維模型 圖 3-5 溜板的受力變形量 22 圖 3-6 溜板的應(yīng)力分布 3.3 電機(jī)選型 驅(qū)動(dòng)裝置是測(cè)量?jī)x的重要運(yùn)動(dòng)機(jī)構(gòu),可實(shí)現(xiàn)機(jī)動(dòng)和程序控制伺服運(yùn)勸的功能。 在測(cè)量?jī)x上一般采用的驅(qū)動(dòng)裝置有絲杠絲母、滾動(dòng)輪、鋼絲、齒形帶、齒輪齒條、 光軸滾動(dòng)輪等傳動(dòng),并配以伺服馬達(dá)驅(qū)動(dòng)。 運(yùn)動(dòng)控制系統(tǒng)是在自動(dòng)控制理論的指導(dǎo)下,以電動(dòng)機(jī)為控制對(duì)象,以人或機(jī)器 的操作為控制核心,以電力電子功率變換裝置為執(zhí)行機(jī)構(gòu)組成的電氣傳動(dòng)控制系統(tǒng)。 根據(jù)位置反饋形式,即有無反饋裝置,運(yùn)動(dòng)控制系統(tǒng)分為開環(huán)、半閉環(huán)和全閉環(huán)三 種控制方式。開環(huán)控制系統(tǒng)沒有位置檢測(cè)反饋裝置,這類系統(tǒng)結(jié)構(gòu)簡(jiǎn)單,控制方便, 但位置精度不高。半閉環(huán)控制系統(tǒng)位置反饋裝置采用直接安裝在伺服電機(jī)端部的角 度檢測(cè)元件,這類控制系統(tǒng)雖有位置反饋比較,但大部分機(jī)械傳動(dòng)環(huán)節(jié)未包括在系 統(tǒng)閉環(huán)環(huán)路內(nèi),故只可獲得較大的定位精度。全閉環(huán)控制系統(tǒng)利用安裝在最后一級(jí) 機(jī)械運(yùn)動(dòng)部件上的光柵等檢測(cè)元件作為位置反饋裝置,這類系統(tǒng)可以消除從電機(jī)到 被控單元之間整個(gè)機(jī)械傳動(dòng)鏈中的傳動(dòng)誤差,獲得很高的定位精度,但系統(tǒng)的設(shè)計(jì) 和調(diào)整較復(fù)雜。 隨著電力電子技術(shù)、傳感器技術(shù)、自動(dòng)控制技術(shù)及計(jì)算機(jī)技術(shù)的發(fā)展,全閉環(huán) 運(yùn)動(dòng)控制系統(tǒng)在高精度定位系統(tǒng)的機(jī)電一體化產(chǎn)品中得到越來越廣泛的應(yīng)用。由于 交流伺服系統(tǒng)與直流伺服電機(jī)相比,不僅具有動(dòng)態(tài)響應(yīng)好、堅(jiān)固耐用,經(jīng)濟(jì)可靠等 優(yōu)點(diǎn),而且克服了直流伺服電機(jī)造價(jià)高、壽命短、應(yīng)用環(huán)境受限制等缺點(diǎn),近年來 交流伺服系統(tǒng)多用作全閉環(huán)運(yùn)動(dòng)控制系統(tǒng)。交流伺服系統(tǒng)包括交流伺服驅(qū)動(dòng)器和伺 23 服電動(dòng)機(jī),與直流伺服電機(jī)相比,交流伺服系統(tǒng)具有以下優(yōu)點(diǎn): 1)電機(jī)散熱性好; 2)功率相同時(shí),交流伺服電機(jī)具有較小的體積和重量; 3)由于轉(zhuǎn)子轉(zhuǎn)動(dòng)慣量小; 4)可靠性高,對(duì)維護(hù)保養(yǎng)要求不高。 根據(jù) X 向、Y 向和 Z 向機(jī)械運(yùn)動(dòng)平臺(tái)的構(gòu)成和各伺服電機(jī)主軸承載的徑向載荷 (相對(duì)于電機(jī)軸施加的垂直方向的載荷) 、軸向載荷(相對(duì)于電機(jī)軸施加的水平方 向的載荷)的大小,近似計(jì)算各機(jī)械系統(tǒng)的慣性矩即負(fù)載慣性矩 JL以及驅(qū)動(dòng)機(jī)械 所需的轉(zhuǎn)矩即負(fù)載轉(zhuǎn)矩 TL,最后決定選購(gòu)日本富士 FALDIC-W 系列型號(hào)為 GYS401DC2-T2A 的交流伺服電機(jī)以及與伺服電機(jī)配套使用的型號(hào)為 RYC401D3-VVT2 的交流伺服放大器共兩套,如圖 3-7 所示,并選購(gòu)了伺服放大器和伺服電機(jī)等連接 所用的不同規(guī)格的連接器和電纜線。該伺服電機(jī)具有防水、防塵等特點(diǎn),內(nèi)部裝有 分辨率為 17 位的專用編碼器,內(nèi)裝編碼器與伺服電機(jī)的位置關(guān)系是調(diào)好的,不可 拆卸。與伺服電機(jī)相配使用的伺服放大器采用微處理器的電子部件構(gòu)成,將控制電 路、驅(qū)動(dòng)電路、多路保護(hù)電路等集成在一個(gè)模塊內(nèi),提高了系統(tǒng)的性能,其功能在 于完成伺服系統(tǒng)的閉環(huán)控制,通過簡(jiǎn)易調(diào)試功能可實(shí)現(xiàn)機(jī)械和電機(jī)最理想的匹配。 表 3-1 為所選購(gòu)的伺服電機(jī)和伺服放大器的部分具體參數(shù)。 圖 3-7 富士 FALDIC-W 系列型號(hào)為 GYS401DC2-T2A 的交流伺服電機(jī)和配套伺服放器 24 表 3-1 伺服電機(jī) GYS401DC2-T2A 和伺服放大器 RYC401D3-VVT2 的部分參數(shù) 參數(shù) GYS401DC2-T2A 電機(jī) 參數(shù) RYC401D3-VVT2 伺服放大器 額定輸出(kW) 0.4 適用電機(jī)的輸出(kW) 0.4 額定轉(zhuǎn)矩(Nm) 1.27 電源相數(shù) 單相 最大轉(zhuǎn)矩(Nm) 3.82 電源電壓 AC200-230V 額定旋轉(zhuǎn)速度 min- 1(r/min) 3000 電源頻率 50/60Hz 最大旋轉(zhuǎn)速度 min- 1(r/min) 5000 載頻 10KHz 慣性矩(kgm 2) 0.24610-4 反饋 17 位串行編碼器 (增量) 額定電流(A) 2.7 位置控制方式 脈沖串 最大電流(A) 8.1 速度控制方式 模擬電壓 耐振動(dòng)(m/s) 49 轉(zhuǎn)矩控制方式 模擬電壓指令 電機(jī)計(jì)算 25 26 3.4 環(huán)境控制平臺(tái) 在沒有測(cè)量環(huán)境保障的前提下,談實(shí)現(xiàn)精密測(cè)量是毫無意義的。要實(shí)現(xiàn)精密測(cè) 量,對(duì)環(huán)境條件的要求十分嚴(yán)格,要求恒溫、恒濕和潔凈,而且還要隔絕振動(dòng)。 3.4.1 溫度控制 導(dǎo)致測(cè)量熱變形誤差效應(yīng)的主要熱源有: 1)不同溫度空氣之間的對(duì)流,如空調(diào)的溫度調(diào)節(jié)系統(tǒng); 2)測(cè)量?jī)x內(nèi)部發(fā)熱源,如主軸電機(jī)以及運(yùn)動(dòng)機(jī)構(gòu)的摩擦發(fā)熱等; 3)周圍環(huán)境的熱輻射,如在測(cè)量?jī)x周圍有其它加工測(cè)量?jī)x械,并且正在運(yùn)行; 4)測(cè)量?jī)x周圍人體的熱效應(yīng),如人體本身的發(fā)熱、人員走動(dòng)以及呼吸作用等; 5)測(cè)量?jī)x構(gòu)件和被測(cè)工件的溫度慣性作用。 當(dāng)這些熱源的作用使測(cè)量?jī)x溫度偏離標(biāo)準(zhǔn)環(huán)境溫度 20時(shí)或引起溫度分布不 均時(shí),由于輪廓儀的主要構(gòu)件,如長(zhǎng)度計(jì)、氣浮導(dǎo)軌、光柵尺等的熱特性差異,它 們的熱膨脹系數(shù)、形狀將發(fā)生變化,從而導(dǎo)致各構(gòu)件內(nèi)部應(yīng)力狀態(tài)互不相同,連接 構(gòu)件之間應(yīng)力關(guān)系復(fù)雜,最終作用將導(dǎo)致輪廓儀在測(cè)量空間、時(shí)間域內(nèi)形成復(fù)雜的 非線性測(cè)量誤差。因此環(huán)境溫度的保障是實(shí)現(xiàn)精密測(cè)量關(guān)鍵要素之一。對(duì)于金屬零 件溫度每變化 1,就會(huì)造成尺寸誤差 1-1.6m 左右。所以要保證 0.1m 以上的 尺寸測(cè)量精度,必須有能檢測(cè)、控制的測(cè)量環(huán)境的措施,盡可能地減小溫度變化。 3.4.2 隔振 在精密測(cè)量中,測(cè)量?jī)x本身振動(dòng)已通過合理的設(shè)計(jì)解決,而外界振動(dòng)對(duì)測(cè)量精 度影響極大。隔振設(shè)計(jì)主要分為兩類:一類為積極隔振,另一類為消極隔振。所謂 積極隔振,是為了減少動(dòng)力設(shè)備產(chǎn)生的擾力對(duì)測(cè)量、設(shè)備的支撐結(jié)構(gòu)和生產(chǎn)科研人 員的有害影響而對(duì)動(dòng)力設(shè)備所采用的隔振措施,即減小振動(dòng)的輸入。而消極隔振, 就是為了減小支撐結(jié)構(gòu)的振動(dòng)對(duì)精密測(cè)量的影響而對(duì)設(shè)備采取的隔振措施。無論是 積極隔振還是消極隔振,其主要的方法是在振源、精密測(cè)量設(shè)備與支撐結(jié)構(gòu)之間設(shè) 置屏障、減振器或減振材料。 設(shè)計(jì)的測(cè)量?jī)x總的重量達(dá) 2 噸多,所以要在表格 3-2 中選擇四個(gè) ZD-12,形狀 如圖 3-8。 27 圖 3-8 阻尼彈簧減震器 表 3-2 減震器的型號(hào)表 外型尺寸(mm)產(chǎn)品型號(hào) 載荷范圍 (Kg) 豎向剛度 (N/mm) H D L1 M1 M2 ZD-9 360-420 89 90 161 207 12 13 ZD-10 420-480 102 110 161 207 12 13 ZD-11 488-500 129 110 161 207 12 13 ZD-12 500-630 180 110 161 207 12 13 ZD-13 630-700 196 110 161 207 12 13 3.5 光柵尺的選型 要選擇合適的光柵尺要滿足:分辨率小于 0.1m;量程 X 軸要大于 1000mm,Z 軸要大于 400mm。 直線光柵尺在測(cè)量?jī)x械運(yùn)動(dòng)位移時(shí)安裝在最后一級(jí)運(yùn)動(dòng)平臺(tái)上,不存在任何附 加的機(jī)械傳動(dòng)元件,減小了機(jī)械的傳動(dòng)誤差,故它已成為高精度定位測(cè)控制系統(tǒng)不 可或缺的檢測(cè)設(shè)備。根據(jù)形狀測(cè)量?jī)x在 X 向、Y 向、Z 向的測(cè)量范圍,本測(cè)量?jī)x選 購(gòu)了德國(guó)海德漢 HEIDENHAIN 公司生產(chǎn)的 LIP581 超精密敞開式直線光柵尺為 X 軸、Y 軸和 Z 軸光柵尺,分別用于 X 向、Y 向、Z 向的位移檢測(cè)設(shè)備。外形如圖 3-12 所示。 圖 3-9 LIP581 敞開式直線光柵尺 28 該系列光柵尺是增量式直線光柵尺,由光柵讀數(shù)頭和標(biāo)尺光柵構(gòu)成,標(biāo)尺光柵 的基體為鋼帶,安裝方式為將鋼帶光柵尺的背面粘貼在安裝面上。本測(cè)量?jī)x所選的 光柵尺的技術(shù)參數(shù)如表 3-2 所示。標(biāo)尺光柵和光柵讀數(shù)頭的相互位置由機(jī)床導(dǎo)軌確 定,他們之間沒有機(jī)械接觸。 表 3-3 LIP 581 系列光柵尺的技術(shù)參數(shù) 技術(shù)參數(shù) LIP 581 測(cè)量基準(zhǔn) 在玻璃上的 DRADUR 相位光柵 8m 測(cè)量長(zhǎng)度(mm) 701440mm 參考標(biāo)記 在中間有一個(gè)參考標(biāo)記 增量信號(hào) 正弦波 準(zhǔn)確度等級(jí) 1m 最大移動(dòng)速度 信號(hào)周期 48m/min 內(nèi)置 10 倍頻細(xì)分:0.4m 電源功耗 5V5%220mA( 無負(fù)載) 信號(hào)接口 D 型接口, 3m 電纜 工作溫度 0到 50 29 4 測(cè)量?jī)x精度分析 4.1 測(cè)量?jī)x誤差源 測(cè)量?jī)x作為多軸的復(fù)雜系統(tǒng),常為伺服控制系統(tǒng),用于高精度規(guī)格的復(fù)雜測(cè)量 任務(wù)。基于其部件的功能特點(diǎn),主要有以下影響精度的重要誤差源:機(jī)構(gòu)系統(tǒng)、驅(qū) 動(dòng)系統(tǒng)、測(cè)量系統(tǒng)、計(jì)算機(jī)系統(tǒng)等。測(cè)量?jī)x的機(jī)構(gòu)系統(tǒng)主要包括:支撐測(cè)量工件的 工作臺(tái),導(dǎo)軌,以及裝有軸承的橋架等。因?yàn)椴考圃?、調(diào)整以及其它屬性例如硬 度,熱膨脹等的非精確性,就會(huì)導(dǎo)致誤差的產(chǎn)生。這些誤差可能是靜態(tài)的,準(zhǔn)靜態(tài) 的或者動(dòng)態(tài)的。對(duì)于測(cè)量?jī)x,每個(gè)軸上都裝配有驅(qū)動(dòng)馬達(dá)、傳動(dòng)部件、伺服控制單 元。與驅(qū)動(dòng)系統(tǒng)相關(guān)影響測(cè)量精確性的因素有:不適當(dāng)?shù)摹⒎浅?shù)的測(cè)量速度,因 為橋架運(yùn)動(dòng)運(yùn)動(dòng)所產(chǎn)生的機(jī)構(gòu)載荷所導(dǎo)入的機(jī)構(gòu)振動(dòng)。因?yàn)閷?shí)際測(cè)量點(diǎn)的坐標(biāo)來自 于測(cè)量位置(通過標(biāo)尺讀數(shù)) ,而非驅(qū)動(dòng)系統(tǒng)中的指令位置,所以通常定位誤差并 不十分顯著。測(cè)量點(diǎn)的實(shí)際坐標(biāo)值來自于測(cè)量?jī)x線形標(biāo)尺的示數(shù)。由標(biāo)尺導(dǎo)致的誤 差主要源于其較低的制造精度,讀數(shù)裝置的對(duì)準(zhǔn)、調(diào)整誤差,內(nèi)部插值誤差和數(shù)字 性誤差。在對(duì)于表面點(diǎn)進(jìn)行探測(cè)時(shí),通常使用探針系統(tǒng)。許多的誤差源均與探針系 統(tǒng)相關(guān)聯(lián),例如測(cè)桿支撐的滯后,測(cè)桿彎曲等。同樣探測(cè)系統(tǒng)由于時(shí)間延遲產(chǎn)生的 的電(觸發(fā))信號(hào)也是重要的誤差源之一。計(jì)算機(jī)系統(tǒng)包括控制器單元,硬件、軟 件。硬件誤差一般很少存在。軟件主要任務(wù)是進(jìn)行數(shù)據(jù)計(jì)算,并將測(cè)量點(diǎn)的位置坐 標(biāo)與工件進(jìn)行匹配,以獲得工件的尺寸和形狀。軟件在數(shù)據(jù)計(jì)算擬合時(shí)就會(huì)產(chǎn)生誤 差,繼而嚴(yán)重影響測(cè)量結(jié)果及其準(zhǔn)確性。 除了上述誤差源而外,測(cè)量?jī)x的測(cè)量精度還受到外部操作者和工作環(huán)境的影響。 操作者所產(chǎn)生的誤差主要源于測(cè)量中產(chǎn)品的處理、測(cè)量的策略、以及實(shí)際操作者對(duì) 測(cè)量?jī)x的實(shí)際操作。產(chǎn)品的處理指測(cè)量前的準(zhǔn)備工作,如產(chǎn)品的清潔,工件的裝夾, 均一溫度等。如果測(cè)量前沒有充分的做好準(zhǔn)備工作,例如:工件臟污,溫度梯度等, 這時(shí)就會(huì)產(chǎn)生誤差。 測(cè)量策略主要是指測(cè)端的選用。不合理的測(cè)端選用會(huì)嚴(yán)重影響測(cè)量結(jié)果。測(cè)量 儀的操作主要是指在探測(cè)時(shí),盡量在垂直工件表面上以常數(shù)的測(cè)量速度進(jìn)行探測(cè), 30 以建立確定的接觸。測(cè)量?jī)x在手動(dòng)操作時(shí),由于探測(cè)力的大小很難控制,所以探測(cè) 更傾向于產(chǎn)生誤差。測(cè)量?jī)x放置位置對(duì)于測(cè)量精度也十分重要。放置位置環(huán)境的溫 度通常會(huì)嚴(yán)重影響機(jī)械結(jié)構(gòu)的幾何形狀、測(cè)量精度。同樣,由于測(cè)量?jī)x附近其他機(jī) 械體的振動(dòng)也會(huì)嚴(yán)重影響其測(cè)量精度。通常,這些振動(dòng)通過地面?zhèn)髦翜y(cè)量?jī)x的支撐 部件,并造成工件和探針產(chǎn)生相對(duì)的運(yùn)動(dòng),從而差生誤差。另一種環(huán)境誤差源于空 氣濕度,它會(huì)造成部件的變形,尤其花崗巖工作臺(tái)受濕度影響最大。 根據(jù)以往研究,機(jī)構(gòu)對(duì)誤差的影響最大。這些誤差可以是準(zhǔn)靜態(tài)的,也可能是 動(dòng)態(tài)的。準(zhǔn)靜態(tài)誤差是指:與機(jī)構(gòu)環(huán)相關(guān)、隨時(shí)間變化比較緩慢的誤差。衡量的尺 度取決于相關(guān)制程(例如測(cè)量)時(shí)間尺度的大小。機(jī)構(gòu)環(huán)由測(cè)量?jī)x中所有用于確定 探針和工件位置、方位的機(jī)械部件組成。測(cè)量任務(wù)的精確性首先取決于機(jī)構(gòu)環(huán)精度, 其次是誤差的影響。許多研究對(duì)于準(zhǔn)靜態(tài)誤差都有精確的闡述,對(duì)于測(cè)量?jī)x而言, 準(zhǔn)靜態(tài)誤差主要分為以下幾類: 1)幾何誤差。幾何誤差源于機(jī)構(gòu)部件的有限精度。導(dǎo)軌和測(cè)量系統(tǒng)部件的精 度取決于制造廠商部件的制造精度,裝配和維護(hù)的調(diào)節(jié)精度。導(dǎo)軌的幾何誤差是指 直線度誤差和旋轉(zhuǎn)誤差,其相對(duì)方位受垂直度誤差影響。標(biāo)尺在測(cè)量位置所產(chǎn)生的 誤差與軸線平行(線性誤差) 。 2)機(jī)構(gòu)載荷引起的誤差。機(jī)構(gòu)載荷引起的誤差源于靜態(tài)或者測(cè)量?jī)x部件上緩 慢變化的力。機(jī)構(gòu)載荷的變化源于移動(dòng)部件的重量,它使得與之配合的部件產(chǎn)生變 形、導(dǎo)致幾何誤差。機(jī)構(gòu)載荷引起的誤差取決于部件的剛度和重量、測(cè)量?jī)x的結(jié)構(gòu) 類型。 3)熱變形誤差。熱變形誤差源于測(cè)量?jī)x與工件的溫度場(chǎng)。熱誤差有兩種類型 的最為顯著。測(cè)量標(biāo)準(zhǔn)(例如測(cè)量?jī)x的測(cè)量標(biāo)尺)和工件之間的溫度差異。機(jī) 械內(nèi)部部件的溫度梯度(溫度梯度會(huì)導(dǎo)致部件部件變形,例如導(dǎo)軌彎曲變形產(chǎn)生幾 何誤差) 。 以上誤差取決于測(cè)量?jī)x的結(jié)構(gòu)、材料屬性、溫度分布。溫度分布與外部環(huán)境溫 度、內(nèi)部熱源例如驅(qū)動(dòng)電機(jī)有關(guān)。除了以上眾所周知的準(zhǔn)靜態(tài)誤差,動(dòng)態(tài)誤差也會(huì) 影響測(cè)量?jī)x的測(cè)量精度。動(dòng)態(tài)誤差相對(duì)隨時(shí)間變化較快,例如,由加速度所決定的 測(cè)量?jī)x部件的變形,這些變形源于部件移動(dòng)以及振動(dòng),振動(dòng)可以是自激振動(dòng)或者強(qiáng) 迫振動(dòng)。與準(zhǔn)靜態(tài)誤差相似,動(dòng)態(tài)誤差同樣會(huì)影響到測(cè)量?jī)x的結(jié)構(gòu)幾何形狀,并將 導(dǎo)致隨時(shí)間變化的測(cè)量誤差。動(dòng)態(tài)誤差和測(cè)量?jī)x的結(jié)構(gòu)屬性緊密相關(guān),例如質(zhì)量分 布、部件剛度、阻尼特性、控制力和干擾力。 31 4.2 測(cè)量?jī)x精度分析 影響儀器精度的原因有根多種,有些精度是由儀器硬件本身決定的,無法改變, 如測(cè)量表的測(cè)量精度;有些引起誤差的原因可以經(jīng)過后續(xù)數(shù)據(jù)處理得到改善,從而 達(dá)到提高測(cè)量?jī)x的測(cè)量精度,如儀器裝配引起的誤差。對(duì)于設(shè)計(jì)的測(cè)量?jī)x測(cè)量精度 要求小于 1m?,F(xiàn)對(duì)儀器的精度進(jìn)行分析。 4.2.1 測(cè)量表的精度 光柵尺采用海德漢的 LIP581 光柵尺測(cè)量分辨率為 O.05m;符合課題要求: 分辨率:0.1m。 4.2.2 數(shù)學(xué)模型的誤差 由圖 4-1 可知,測(cè)量頭讀數(shù)計(jì)讀出的數(shù)據(jù)實(shí)際上是測(cè)量頭球心相對(duì)于非球面包 絡(luò)線,圖中測(cè)頭所測(cè)的值為圓心所在的值,與測(cè)頭和被測(cè)表面的接觸點(diǎn)不是同一個(gè) 點(diǎn),測(cè)量誤差為: (4-1)/cosZr 式(4-1)中, 為實(shí)際切線角。/ 圖 4-1 數(shù)學(xué)模型誤差 該測(cè)量?jī)x的數(shù)學(xué)模型引起的測(cè)量誤差由兩個(gè)因素決定: 1)測(cè)量頭的大小。當(dāng)測(cè)量頭的半徑越小,測(cè)量精度越高; 2)被測(cè)非球面的面形質(zhì)量。當(dāng)被測(cè)面形越接近理論面形,測(cè)量精度也就越高。 本設(shè)計(jì)采用的測(cè)量頭半徑為 2mm,測(cè)量頭半徑 r 相對(duì)于 R(被測(cè)非球面近軸曲率 32 半徑)極小;而被測(cè)件將是一個(gè)連續(xù)光滑的表面,即使工件面形偏離了理論面形,也 不會(huì)在加工工件表面有突然的凸起或凹坑,因此實(shí)際切線角 將非常接近理論切/ 線角 a,因此測(cè)量?jī)x的數(shù)學(xué)模型引起的測(cè)量誤差對(duì)被測(cè)非球面矢高誤差曲線的測(cè)量 精度幾乎沒有影響,在測(cè)量精度范圍內(nèi)。 4.2.3 測(cè)桿受力引起的誤差 這個(gè)誤差是因?yàn)闇y(cè)頭與工件表面接觸時(shí)有接觸力產(chǎn)生,所以產(chǎn)生了變形。主要 對(duì) Z 軸方向的測(cè)量精度有影響。誤差值為 L (4-2) 2231*0.76FELR 因?yàn)楹5聺h的測(cè)頭材料的彈性模量 E1=70GPa,被測(cè)件材料的彈性模量 E2=55GPa。接觸力 F=0.6N, 。 2299830.6*75*01.67*01L m 這個(gè)誤差遠(yuǎn)小于測(cè)量?jī)x的精度,所以不予考慮。 33 5 結(jié)束語 大學(xué)最后的時(shí)光在在畢業(yè)設(shè)計(jì)中度過的,通過這學(xué)期從開始的畢業(yè)設(shè)計(jì)的前期 準(zhǔn)備,到最后的畢業(yè)設(shè)計(jì)的整理,我感覺到了一種變化,一種從無到有,從陌生到 熟悉再到熟練的的變化。 剛開始拿到課題的時(shí)候是那么的陌生,可是說是從未接觸過的。于是出于對(duì)陌 生事物的好奇,剛開始的時(shí)候有種渾身是勁,但不知如何下手的感覺。可能每個(gè)人 都有從理論到自行設(shè)計(jì)的過渡時(shí)期,但是我個(gè)人認(rèn)為它實(shí)在是太長(zhǎng)了,沒有了現(xiàn)行 的思路,沒有了設(shè)計(jì)的目的,很多想法也只是有靈感一現(xiàn)的感覺。 在老師的指導(dǎo)下我漸漸找到設(shè)計(jì)方向。但是畢竟這是畢業(yè)設(shè)計(jì)是需要真知識(shí)的, 很多學(xué)過的知識(shí)已被歲月無情的沖刷地只留下了淺淺的痕跡了。所以在設(shè)計(jì)中我不 斷地復(fù)習(xí)以前的知識(shí),在公司還得到許多師兄們的幫助。就這樣我的設(shè)計(jì)方案就漸 漸地浮出了水面,但是還是出現(xiàn)了不少問題,所以在最后的階段,我還是在不斷地 修改中度過了。 當(dāng)最后完成設(shè)計(jì)的時(shí)候,我覺得是夢(mèng)想已成現(xiàn)實(shí)。對(duì)機(jī)械的興趣,讓我了解機(jī) 械,讓我開始設(shè)計(jì)機(jī)械。 畢業(yè)設(shè)計(jì)結(jié)束了,畢業(yè)設(shè)計(jì)中我們學(xué)到的東西是寶貴的,在教會(huì)我們理論知識(shí) 的同時(shí)也教會(huì)我們以后學(xué)習(xí)的方法,讓我們?cè)诮窈蟮膶W(xué)習(xí)和工作中有一個(gè)清晰的思 維,完善的思路,不管在何種工作崗位,不論遇到什么情況,我們都會(huì)以一種平靜 敬業(yè)的心態(tài),踏實(shí)認(rèn)真的作風(fēng)認(rèn)真投入到工作中去。這次任務(wù)的完成給了我信心, 給了我斗志,我相信在今后的工作生活中,我都會(huì)一步步改正自己的不足,一點(diǎn)點(diǎn) 提高自己的能力,完善自我提高自己。 34 參考文獻(xiàn) 1 李慶祥.現(xiàn)代精密儀器設(shè)計(jì)M.北京:清華大學(xué)出版社.2005 2 李圣怡,戴一帆.精密和超精密機(jī)床設(shè)計(jì)理論與方法G.國(guó)防科技大學(xué)出版社.2009 3 大連理工大學(xué)工程畫教研室編.機(jī)械制圖M.高等教育出版社.2003 4 機(jī)械設(shè)計(jì)手冊(cè)編委會(huì).機(jī)械設(shè)計(jì)手冊(cè)第 2 卷G.機(jī)械工業(yè)出版社.2008 5 王先奎.精密加工技術(shù)實(shí)用手冊(cè)G.機(jī)械工業(yè)出版社.2001 6 陳智鋒.精密柱徑測(cè)量理論_方法與技術(shù)的研究D.國(guó)防科技大學(xué).2002 7 黃大宇,梅瑛.機(jī)械設(shè)計(jì)課程設(shè)計(jì)M.吉林大學(xué)出版社.2006 8 裘祖榮. 精密機(jī)械設(shè)計(jì)基礎(chǔ)M. 北京: 機(jī)械工業(yè)出版社.2007 9 哈爾濱工業(yè)大學(xué)編.長(zhǎng)度計(jì)量手冊(cè)S.北京:科技出版社.1979 10 王惠敏主編.儀器儀表結(jié)構(gòu)設(shè)計(jì)手冊(cè)S.北京:國(guó)防工業(yè)出版社.1989 11 竺培國(guó).精密儀器結(jié)構(gòu)設(shè)計(jì)基礎(chǔ)M.哈爾濱:哈爾濱工業(yè)大學(xué)出版社.1988 12 陽平華. Solidworks2006 機(jī)械設(shè)計(jì)時(shí)尚百例.北京:機(jī)械工業(yè)出版社.2006 13 趙則祥.公差配合與質(zhì)量控制M.河南:河南大學(xué)出版社.1999 14 鄧星鐘主編.機(jī)械傳動(dòng)控制M.武漢:華中科技大學(xué)出版社.2001 15 王平安,王杰賢等.精密儀器工作臺(tái)的隔振設(shè)計(jì)J.西安建筑科技大學(xué)學(xué)報(bào).1999 .31(3) 16 王欣.三坐標(biāo)測(cè)量?jī)x動(dòng)態(tài)誤差分析D.西安理工大學(xué).2007 35