《霍爾傳感器測(cè)速原理》由會(huì)員分享,可在線閱讀,更多相關(guān)《霍爾傳感器測(cè)速原理(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、霍爾傳感器測(cè)速原理:
電流的測(cè)量采用磁平衡式霍爾電流傳感器 傳感器可測(cè)量從直流到100kHz的交流量在自動(dòng)測(cè)控系統(tǒng)中,常需要測(cè)量和顯示有關(guān)電參量。目前大多數(shù)測(cè)量系統(tǒng)仍采用變壓器式電壓、電流互感器,由于互感器的非理想性,使得變比和相位測(cè)量都存在較大的誤差,常需要采用硬件或軟件的方法補(bǔ)償,從而增加了系統(tǒng)的復(fù)雜性。
采用霍爾檢測(cè)技術(shù),可以克服互感器這些缺點(diǎn),能測(cè)量從直流到上百千赫茲的各種形狀的交流信號(hào),并且達(dá)到原副邊不失真?zhèn)鬟f,同時(shí)又能實(shí)現(xiàn)主電路回路和電子控制電路的隔離,霍爾傳感器的輸出可直接與單片機(jī)接口。
因此霍爾傳感器已廣泛應(yīng)用于微機(jī)測(cè)控系統(tǒng)及智能儀表中,是替代互感器的新一代產(chǎn)品
2、。在此提出了利用霍爾傳感器對(duì)電參量特別是對(duì)高電壓、大電流的參數(shù)的測(cè)量。
l測(cè)量原理
1霍爾效應(yīng)原理 如圖1所示,一個(gè)N型半導(dǎo)體薄片,長(zhǎng)度為L(zhǎng),寬度為S,厚度為d,在垂直于該半導(dǎo)體薄片平面的方向上,施加磁感應(yīng)強(qiáng)度為B的磁場(chǎng),若在長(zhǎng)度方向通以電流Ic則運(yùn)動(dòng)電荷受到洛倫茲力的作用,正負(fù)電荷將分別沿垂直于磁場(chǎng)和電流的方向向?qū)w兩端移動(dòng),并在導(dǎo)體兩端形成一個(gè)穩(wěn)定的電動(dòng)勢(shì)UH,這就是霍爾電動(dòng)勢(shì)(或稱之為霍爾電壓),這種現(xiàn)象稱為霍爾效應(yīng)?;魻栯妷旱拇笮H=RIB/d=KHICB,其中R為霍爾常數(shù);KH為霍爾元件的乘積靈敏度。
2用霍爾傳感器測(cè)量電參量的原理 由霍爾電壓公式可知:對(duì)于
3、一個(gè)成型的霍爾傳感器,乘積靈敏度KH是一恒定值,則UH∝ICB,只要通過測(cè)量電路測(cè)出UH的大小,在B和IC兩個(gè)參數(shù)中,已知一個(gè),就可求出另一個(gè),因而任何可轉(zhuǎn)換成B或J的未知量均可利用霍爾元件來測(cè)量,任何轉(zhuǎn)換成B和I乘積的未知量亦可進(jìn)行測(cè)量。電參量的測(cè)量就是根據(jù)這一原理實(shí)現(xiàn)的。
若控制電流IC為常數(shù),磁感應(yīng)強(qiáng)度B與被測(cè)電流成正比,就可以做成霍爾電流傳感器測(cè)電流,若磁感應(yīng)強(qiáng)度B為常數(shù),IC與被測(cè)電壓成正比,可制成電壓傳感器測(cè)電壓,利用霍爾電壓、電流傳感器可測(cè)交流電的功率因數(shù)、電功率和交流電的頻率。
由UH=KICB可知:若IC為直流,產(chǎn)生磁場(chǎng)B的電流IO為交流時(shí),UH為交流;若IO亦為
4、直流,則輸出也為直流。當(dāng)IC為交流,IO亦為直流時(shí),輸出與IC同頻率的交流且其幅值與被測(cè)直流IO大小成正比,改變被測(cè)電流IO的方向,輸出電壓UH極性隨之改變。故利用霍爾傳感器,既可對(duì)直流量進(jìn)行測(cè)量,亦可對(duì)交流量進(jìn)行測(cè)量。
系統(tǒng)結(jié)構(gòu)簡(jiǎn)圖 檢測(cè)系統(tǒng)構(gòu)成如圖2,被測(cè)量經(jīng)霍爾傳感器轉(zhuǎn)換為電壓信號(hào),經(jīng)信號(hào)調(diào)理電路和多路轉(zhuǎn)換開關(guān)選擇,通過A/D轉(zhuǎn)換器送給單片機(jī),單片機(jī)采用89C51,是該系統(tǒng)的主控器,鍵盤選用24鍵盤,用于選擇被測(cè)量的種類,采用數(shù)碼管或液晶顯示被測(cè)量的大小。
電參量的測(cè)量方法 1電壓、電流信號(hào)的測(cè)量 電流的測(cè)量可采用磁平衡式霍爾電流傳感器(亦稱為零磁通式霍爾傳感器)
5、如圖3所示。
當(dāng)被測(cè)電流IIN流過原邊回路時(shí),在導(dǎo)線周圍產(chǎn)生磁場(chǎng)HIN這個(gè)磁場(chǎng)被聚磁環(huán),并感應(yīng)給霍爾器件,使其有一個(gè)信號(hào)UH輸出;這一信號(hào)經(jīng)放大器A 放大,輸人到功率放大器中Q1,Q2中,這時(shí)相應(yīng)的功率管導(dǎo)通,從而獲得一個(gè)補(bǔ)償電流IO;由于此電流通過多匝繞組所產(chǎn)生的磁場(chǎng)HO與原邊回路電流所產(chǎn)生的磁場(chǎng)HIN相反;因而補(bǔ)償了原來的磁場(chǎng),使霍爾器件的輸出電壓UH逐漸減小,最后當(dāng)IO與匝數(shù)相乘N2IO所產(chǎn)生的磁場(chǎng)與原邊N1IIN所產(chǎn)生的磁場(chǎng)相等時(shí),IO不再增加,這時(shí)霍爾器件就達(dá)到零磁通檢測(cè)作用。
這一平衡所建立的時(shí)間在1μs之內(nèi),這是一個(gè)動(dòng)態(tài)平衡過程,即原邊回路電流IIN的任何變化均會(huì)破壞
6、這一平衡的磁場(chǎng),一旦磁場(chǎng)失去平衡,就有信號(hào)輸出,經(jīng)過放大后,立即有相應(yīng)的電流流過副邊線圈進(jìn)行補(bǔ)償。因此從宏觀上看副邊補(bǔ)償電流的安匝數(shù)在任何時(shí)間都與原邊電流的安匝數(shù)保持相等,即 N1IIN=N2IO,所以IIN=N2I2/N1(IIN為被測(cè)電流,即磁芯中初級(jí)繞組中的電流,N1為初級(jí)繞組的匝數(shù);IO為補(bǔ)償繞組中的電流;N2 為補(bǔ)償繞組的匝數(shù))。
由原、副邊匝數(shù)可知,只要測(cè)得補(bǔ)償線圈的電流IO,即可知道原邊電流IIN,如原邊為導(dǎo)線穿心式,則N1=l,IIN=N2IO。利用同樣的原理可進(jìn)行電壓測(cè)量,只需在原邊線圈回路中串聯(lián)一個(gè)電阻R1,將原邊電流IIN轉(zhuǎn)換成被測(cè)電壓UIN。即UIN=(R1+RI
7、N)IIN= (R1+RIN)N2IO/N1,RIN為原邊繞阻的內(nèi)阻(一般很小不計(jì))。對(duì)特高壓交流電壓的測(cè)量,先經(jīng)隔離變壓器降壓后,對(duì)降壓后的電壓進(jìn)行測(cè)量,然后對(duì)測(cè)量數(shù)據(jù)乘以倍數(shù),即可得被測(cè)電壓的大小。
該測(cè)量輸出信號(hào)為電流形式IO。若在霍爾電流傳感器的輸出電路與電源零點(diǎn)之間串接恰當(dāng)?shù)碾娮鑂0,并在該電阻上取電壓,就構(gòu)成了電壓形式的輸出。輸出電壓經(jīng)電壓調(diào)整電路、線性放大電路、不等位補(bǔ)償電路、射集跟隨等獲得所需的電壓,便于測(cè)量與顯示。
2功率及功率因數(shù)、頻率等電參數(shù)的測(cè)量 由正弦交流電有功功率的定義P=UIcosψ可知,只要準(zhǔn)確測(cè)量出U,I及電流與電壓相位差ψ,就可算出P與cos
8、ψ。采用傳統(tǒng)的電磁式電壓、電流互感器進(jìn)行測(cè)量,由于互感器的非理想性,除存在變比誤差外,更主要的是存在較大的相位誤差,這就使測(cè)得的ψ值不能真實(shí)地反映負(fù)載的性質(zhì)。若采用霍爾電壓、電流傳感器及真有效值轉(zhuǎn)換器(如AD637)等,可以使功率及功率因數(shù)的測(cè)量精度大大提高。
此外,霍爾傳感器還可以測(cè)量從直流到100kHz的任意波形的交流量,從而克服了電磁式互感器有特定的額定頻率的弊端。真有效值轉(zhuǎn)換器可以將正弦波形或任意波形的交流量轉(zhuǎn)換為直流量,輸出直流的大小正比于交流量的有效值,且轉(zhuǎn)換精度高,因而測(cè)量相對(duì)準(zhǔn)確。
測(cè)量原理如圖4所示,交直流電壓、電流經(jīng)霍爾電流傳感器、霍爾電壓傳感器隔離、轉(zhuǎn)換后,得
9、到與之對(duì)應(yīng)的電壓信號(hào),再經(jīng)真有效值轉(zhuǎn)換器轉(zhuǎn)換為直流(直流電不需轉(zhuǎn)換),其大小正比于交流電的有效值,直流(或轉(zhuǎn)換后的直流)電壓經(jīng)A/D變換后送入單片機(jī),這就采集到了U,I的大小。
另外將傳感器副邊輸出的電信號(hào) U1,U2分別經(jīng)過零電平比較器1和2,當(dāng)信號(hào)由負(fù)變正,通過零點(diǎn)時(shí)產(chǎn)生一個(gè)脈沖,加到門控電路輸入端。設(shè)U1超前于U2,則前者作開啟信號(hào),后者作關(guān)閉信號(hào)。門控電路產(chǎn)生一個(gè)脈沖寬度對(duì)應(yīng)于兩個(gè)信號(hào)相位差的矩形脈沖,該脈沖一路送單片機(jī)的定時(shí)/計(jì)數(shù)器T1口,單片機(jī)測(cè)出相鄰兩個(gè)矩形脈沖前沿之間的時(shí)間間隔t,即為被測(cè)信號(hào)的周期Tx(頻率fx=1/Tx)。
另一路送至與門電路,打開計(jì)數(shù)與門,在此
10、期間,時(shí)標(biāo)信號(hào)Ts經(jīng)由與門至單片機(jī)的定時(shí)/計(jì)數(shù)器TO口計(jì)數(shù),設(shè)計(jì)數(shù)值為N,則U1與U2相位差為 △ψ=Ts/TxN360。經(jīng)單片機(jī)計(jì)算出功率因數(shù)cosψ,進(jìn)一步計(jì)算出有功功率P=UIcosψ,并將測(cè)得參數(shù)U,I,P,cosψ,ψx等送顯示電路顯示。如要測(cè)三相電路的總功率,則分別測(cè)得每一相的功率,然后三相功率相加即可。此外,該系統(tǒng)也可測(cè)量無功功率和視在功率等電參數(shù)。
基于霍爾傳感器的電參量檢測(cè)系統(tǒng)具有很好的線性度、精確度和良好的反應(yīng)時(shí)間。溫度漂移小,霍爾元件在-40~+45℃的溫度范圍內(nèi),霍爾電壓的溫度系數(shù)僅為0.03%~O.04%。
這里所介紹的測(cè)量方法達(dá)到了對(duì)電參量進(jìn)行高精度的隔離傳輸和精確檢測(cè)的目的,特別適合高電壓、大電流電參量的測(cè)量。這為研制一種新的電參量測(cè)量?jī)x器打下了一個(gè)良好的基礎(chǔ),在工程上具有一定的應(yīng)用價(jià)值。不足之處,霍爾元件存在不等位的電勢(shì)的影響,需加補(bǔ)償電路修正。