鉆床液壓系統(tǒng)的設(shè)計(jì)含開題及4張CAD圖
鉆床液壓系統(tǒng)的設(shè)計(jì)含開題及4張CAD圖,鉆床,液壓,系統(tǒng),設(shè)計(jì),開題,cad
附錄A1
液力傳動(dòng)鉆機(jī)驅(qū)動(dòng)分析
[摘要]液力傳動(dòng)鉆機(jī)采用液力機(jī)械變速箱, 傳動(dòng),以適應(yīng)變化的負(fù)載能力,可實(shí)現(xiàn)連續(xù)可變扭矩和反轉(zhuǎn)制動(dòng)。 現(xiàn)場(chǎng)試驗(yàn)表明,鉆機(jī)功率利用率,高吊裝速度; 相反的制動(dòng)性能,減少剎車帶負(fù)荷; 時(shí)刻變化的特點(diǎn),加強(qiáng)事件處理能力。 通過變矩器驅(qū)動(dòng)鉆井泵可同時(shí)保護(hù)原動(dòng)機(jī)和工作; 保持額定轉(zhuǎn)速柴油機(jī)的條件下,泵壓可以控制整個(gè)過程。熱反應(yīng),倒擋離合器和過濾器等方面暴露的問題提出了改進(jìn)。
使用了2000米深的鉆井液力傳動(dòng)鉆機(jī)。臺(tái)鉆機(jī)部分由美國(guó)紐約內(nèi)燃發(fā)動(dòng)機(jī)和英國(guó)石油廠研制的電源設(shè)備,傳輸設(shè)備和系統(tǒng)平臺(tái)。目前,已通過測(cè)試,并使用這種鉆機(jī)表現(xiàn)出了良好的性能, 特別是在電力驅(qū)動(dòng)時(shí)更加突出的特點(diǎn),但也暴露出一些問題。據(jù)筆者驅(qū)動(dòng)程式和現(xiàn)場(chǎng)試驗(yàn)結(jié)果,分析了驅(qū)動(dòng)鉆機(jī)的特點(diǎn), 并針對(duì)這些問題提出改進(jìn)意見。
驅(qū)動(dòng)程序
目前, 使用中型鉆機(jī)(可鉆深1500 ~2500 )用交流電動(dòng)機(jī)或柴油機(jī)為原動(dòng)機(jī)由一個(gè)單獨(dú)變速機(jī)械變速箱,而撥號(hào)驅(qū)動(dòng)絞車。鉆井泵用的是單發(fā)動(dòng)機(jī)直接驅(qū)動(dòng)。鉆機(jī)液壓傳動(dòng)普通機(jī)械變速箱設(shè)定變矩器,液壓機(jī)械傳動(dòng)耦合于一體的液壓機(jī)械變速箱,鉆井泵是通過驅(qū)動(dòng)的變矩器。巖芯組成的液壓變速箱, 這是一個(gè)類似加拿大鉀650鉆機(jī)和美國(guó)威爾遜鉆機(jī)65B。對(duì)艾里遜變速箱, 其結(jié)構(gòu)及工作原理如圖1 。
圖1液壓變速箱圖
1激活液力變矩器; 2-泵; 3,6-泵; 4輸入軸; 5反向齒輪摩擦離合器; 7冷卻風(fēng)扇; 8塊高速耦合; 9 -輸出軸; 10 , 中速座液力偶合器
液壓變速箱有3座水力機(jī)械及反向齒輪. 各檔的電力線如下.
Ⅰ擋:輸入軸→Z1→Z2→啟動(dòng)液力變矩器→Z6→Z5→輸出軸;
Ⅱ擋:輸入軸→Z1→Z2→中速擋液力偶合器→Z6→Z5→輸出軸;
Ⅲ擋:輸入軸→Z1→Z3→高速擋液力偶合器→Z7→Z5→輸出軸;
倒擋:輸入軸→Z9→Z10→Z11→倒擋摩擦離合器→Z7→Z5→輸出軸。
操作特征
1 . 泵及驅(qū)動(dòng)特性
如圖2所示,泵Ⅰ檔的操作特性, 柴油和變矩器,其輸出特性的聯(lián)合工作(渦輪軸力矩MW、泵輪軸力矩MB、變矩器效率η與渦輪軸轉(zhuǎn)速nw的關(guān)系)的內(nèi)容。其優(yōu)勢(shì)主要表現(xiàn)在三個(gè)方面:第一,根據(jù)負(fù)載的變化,自動(dòng)和無級(jí)變速扭矩。從主體開始鉆探,可提高功率效率 從而提高鉆機(jī)的工效。第二,無論怎樣的負(fù)荷變化,柴油機(jī)在最佳的營(yíng)運(yùn)狀態(tài), 這是規(guī)模較大的負(fù)荷變化泵I組表現(xiàn)更為突出。第三,是變矩器能力改變適應(yīng)機(jī)組負(fù)荷變化的能力大大加強(qiáng), 起重事故,并承載能力強(qiáng)。
圖2柴油變矩器聯(lián)合工作的輸出特性
2 . 二檔和三檔的操作性
圖3所示,在二檔和三檔驅(qū)動(dòng)的特性,即柴油和耦合聯(lián)合工作輸出特性(渦輪軸力矩MW、偶合器效率η與渦輪軸轉(zhuǎn)速nw的關(guān)系)。理論上,渦輪,可任意轉(zhuǎn)速運(yùn)行,甚至停轉(zhuǎn), 泵輪的速度取決于柴油發(fā)動(dòng)機(jī)轉(zhuǎn)速允許范圍內(nèi)。但這個(gè)速度,以擴(kuò)大有關(guān)的功率損耗為代價(jià), 為確保傳動(dòng)效率高,一般不應(yīng)作為耦合限速裝置。
圖3柴油耦合聯(lián)合工作輸出特性
3 .鉆機(jī)的提升特性
根據(jù)柴油機(jī)和柴油耦合的聯(lián)合工作特性曲線, 以及鉆機(jī)的具體性能參數(shù)。可以得到液力傳動(dòng)鉆機(jī)性能提升特性(見圖4 )。整個(gè)提升曲線abcdef。理論上, Ⅰ擋、Ⅱ擋和Ⅲ擋的工作范圍分別為EF段、CDE段和ABC段。事實(shí)上,為了保證高耦合效率的工作, 最佳工作狀態(tài), 實(shí)際上,為了保證偶合器有較高的工作效率,最好讓Ⅰ擋工作在D′EF段,Ⅱ擋工作在B′CD段,Ⅲ擋工作在AB段。
圖4鉆機(jī)性能提升特性
4 . 液力變矩器逆向制動(dòng)性能
在下鉆和套管過程中, 鉆機(jī)掛合液力Ⅰ擋,此時(shí)變矩器處于反轉(zhuǎn)制動(dòng)工況,柴油機(jī)帶動(dòng)泵輪正轉(zhuǎn),鉆具或套管柱帶動(dòng)渦輪反轉(zhuǎn)。變矩器內(nèi)的液體作用于渦輪的力矩方向與渦輪轉(zhuǎn)向相反,這種力矩起阻止渦輪反轉(zhuǎn)的作用。這樣利用變矩器的反轉(zhuǎn)制動(dòng)特性就起到了等同于鉆機(jī)輔助剎車(如水剎車)的作用,減小了帶剎車的載荷。反轉(zhuǎn)制動(dòng)力的大小與充油量成正比,通過控制進(jìn)入Ⅰ擋變矩器的充油量,可以控制制動(dòng)力的大小。適當(dāng)提高柴油機(jī)的轉(zhuǎn)速,使泵輪的轉(zhuǎn)速提高,也可使反轉(zhuǎn)制動(dòng)力增大。再輔以帶剎車,即可根據(jù)鉤載的大小,隨意調(diào)節(jié)制動(dòng)力的大小,從而獲得滿意的下放速度。
總之,液壓傳動(dòng)的三個(gè)鉆機(jī)是全液壓傳動(dòng)的電力傳輸, 可以吸收和降低發(fā)動(dòng)機(jī)和工作機(jī)的振動(dòng),沖擊,驅(qū)動(dòng)等。提高柴油發(fā)動(dòng)機(jī),傳動(dòng)部分機(jī)器的效率和壽命。
現(xiàn)場(chǎng)試驗(yàn)結(jié)果
液力傳動(dòng)鉆機(jī)現(xiàn)場(chǎng)試驗(yàn)
現(xiàn)場(chǎng)測(cè)試深度1950m試驗(yàn)井。現(xiàn)場(chǎng)試驗(yàn)表明,鉆機(jī)液壓驅(qū)動(dòng)鉆機(jī)有以下優(yōu)點(diǎn)。
( 1 )起升一檔的無級(jí)變速特性,功率利用率將提高到90% ,確保更高的啟動(dòng)速度. 比傳統(tǒng)的機(jī)械傳動(dòng)鉆機(jī)時(shí)間減少在20%~23% 。
( 2 )鉆頭變矩器用反向制動(dòng)的特點(diǎn),在鉆井中未經(jīng)任何處理的制動(dòng)能充分實(shí)現(xiàn)速度控制,操作簡(jiǎn)單, 減少制動(dòng)輪制動(dòng)摩擦片的磨損。
( 3 )作為一個(gè)大變矩器有著較大的變矩系數(shù),在處理鉆井事故電力設(shè)備有充足的電力, 傳輸設(shè)備驅(qū)動(dòng)力矩大。
( 4 )消除貓頭,井口,以加強(qiáng)利用機(jī)械化設(shè)備,運(yùn)行安全情況已經(jīng)有所改善。
( 5 )變速傳動(dòng)裝置的噪音,在一定程度上降低了,可以操作的過程中的轉(zhuǎn)向. 簡(jiǎn)化換擋操作。
鉆機(jī)在試驗(yàn)過程中也暴露出以下幾個(gè)問題。
( 1 )用一檔傳輸變矩器,液壓齒輪箱傳動(dòng)油溫度上升較快, 一般溫度迅速達(dá)到90℃,然后冷卻裝置,以保持恒溫. 這表明變矩器效率不高,部分動(dòng)能變成熱能。
( 2 ) 傳動(dòng)油的散熱裝置設(shè)計(jì)不合理,造成液力傳動(dòng)箱體積過于龐大,而且風(fēng)扇及電動(dòng)機(jī)不便于現(xiàn)場(chǎng)維修更換。
( 3 ) 機(jī)械式倒擋離合器不能滿足處理井下事故或復(fù)雜的工藝要求,摩擦片極易變形而失效。
( 4 )變速器的過濾器的位置不太合理, 尤其是泵和過濾器清洗拆裝現(xiàn)場(chǎng)是很難的。
( 5 )液壓齒輪箱,齒輪反向運(yùn)動(dòng)之間的相互干擾的問題,也就是, 他們座之間缺乏聯(lián)鎖裝置。
2 . 液壓泵測(cè)
在整個(gè)鉆井過程中,通過變矩器泵機(jī)組進(jìn)行了現(xiàn)場(chǎng)測(cè)試。鉆井深718.36米,在發(fā)動(dòng)機(jī)轉(zhuǎn)速一直穩(wěn)定在1200r/min , 泵時(shí)間約為106分鐘1 ,隨著鉆井深度,泵5 MPa的壓力逐漸上升,至12兆帕之后,以較低的發(fā)動(dòng)機(jī)轉(zhuǎn)速,泵壓穩(wěn)定在10℃, 20℃。在157小時(shí)連續(xù)運(yùn)行,除在第一軸變矩器漏油,其他一切正常。
測(cè)試結(jié)果顯示,液壓傳動(dòng)泵集團(tuán),具有以下的優(yōu)點(diǎn)。
( 1 ) 可有效保護(hù)原動(dòng)機(jī)。與泵及變矩器配套使用的12V190柴油機(jī),在通過調(diào)節(jié)充油閥給其加載時(shí),其載荷是緩慢均勻地增加的,避免了柴油機(jī)突然增加或減去很大載荷。據(jù)現(xiàn)場(chǎng)觀察,在使用調(diào)壓閥調(diào)節(jié)泵壓時(shí),柴油機(jī)的轉(zhuǎn)速、聲音及排煙情況均無明顯的變化。這樣可杜絕柴油機(jī)的“飛車”現(xiàn)象,延長(zhǎng)柴油機(jī)的使用壽命。
( 2 )建立有效的保障機(jī)制. 轉(zhuǎn)換后,輸出速度也逐漸增加,從零達(dá)到所需的速度(泵壓) , 避免工作,為鉆井泵的轉(zhuǎn)速突然上升速度的原始動(dòng)機(jī)轉(zhuǎn)速。
( 3 )避免了氣胎兒離合器裝置,提高了水泵工作的可靠性。氣輪胎摩擦系數(shù),摩擦輪傳動(dòng)皮帶和水泵工作是一個(gè)薄弱環(huán)節(jié), 容易發(fā)生故障和損壞,特殊氣體或冬季結(jié)冰時(shí)氣球往往造成事故的影響,鉆井, 生產(chǎn)連續(xù)性。采用液力變矩器來解決這個(gè)問題。據(jù)該變矩器傳動(dòng)特性, 我們可以擺脫膠帶輪采用直接傳輸,而且易于自動(dòng)化。
( 4 ) 速柴油機(jī)為了保持額定轉(zhuǎn)的條件下,泵壓可以控制整個(gè)過程, 鉆井技術(shù),以滿足復(fù)雜的要求下。
液壓泵驅(qū)動(dòng)的使用中也暴露出以下幾個(gè)問題。
( 1 )由于增加了變矩器,水泵和整體質(zhì)量的傳輸過程也相應(yīng)的增加了能耗。
( 2 ) 在現(xiàn)場(chǎng)環(huán)境惡劣,水泵,柴油驅(qū)動(dòng)的安裝調(diào)試更加困難,從而影響整個(gè)鉆機(jī)的使用。
( 3 )推廣使用的鉆機(jī),但配件供應(yīng)更加緊張。
4.變矩器的反轉(zhuǎn)制動(dòng)特性
在下鉆和下套管過程中,鉆機(jī)掛合液力Ⅰ擋,此時(shí)變矩器處于反轉(zhuǎn)制動(dòng)工況,柴油機(jī)帶動(dòng)泵輪正轉(zhuǎn),鉆具或套管柱帶動(dòng)渦輪反轉(zhuǎn)。變矩器內(nèi)的液體作用于渦輪的力矩方向與渦輪轉(zhuǎn)向相反,這種力矩起阻止渦輪反轉(zhuǎn)的作用。這樣利用變矩器的反轉(zhuǎn)制動(dòng)特性就起到了等同于鉆機(jī)輔助剎車(如水剎車)的作用,減小了帶剎車的載荷。反轉(zhuǎn)制動(dòng)力的大小與充油量成正比,通過控制進(jìn)入Ⅰ擋變矩器的充油量,可以控制制動(dòng)力的大小。適當(dāng)提高柴油機(jī)的轉(zhuǎn)速,使泵輪的轉(zhuǎn)速提高,也可使反轉(zhuǎn)制動(dòng)力增大。再輔以帶剎車,即可根據(jù)鉤載的大小,隨意調(diào)節(jié)制動(dòng)力的大小,從而獲得滿意的下放速度。
綜上所述,液力傳動(dòng)鉆機(jī)的3個(gè)正擋都以液力傳動(dòng)方式傳遞動(dòng)力,能吸收并減小來自發(fā)動(dòng)機(jī)和工作機(jī)的振動(dòng)和沖擊,使傳動(dòng)系統(tǒng)傳動(dòng)柔和,提高了柴油機(jī)、傳動(dòng)零部件以及工作機(jī)的使用壽命。
現(xiàn)場(chǎng)試驗(yàn)結(jié)果
1.液力傳動(dòng)鉆機(jī)現(xiàn)場(chǎng)試驗(yàn)
試驗(yàn)井井深1950m。現(xiàn)場(chǎng)試驗(yàn)表明,DQZJ—20Y型液力傳動(dòng)鉆機(jī)具有如下優(yōu)點(diǎn)。
(1)起升Ⅰ擋的無級(jí)變速特性,將功率利用率提高到90%左右,保證較高的起升速度,比傳統(tǒng)的機(jī)械傳動(dòng)鉆機(jī)節(jié)省起升時(shí)間20%~30%。
(2)下鉆時(shí)利用液力變矩器的反轉(zhuǎn)制動(dòng)特性,下鉆均勻,且不用剎把就可實(shí)現(xiàn)全程速度控制,操作簡(jiǎn)單,減小了剎車轂和剎帶摩擦塊的磨損。
(3)由于變矩器有較大的變矩系數(shù),在處理鉆井事故時(shí)動(dòng)力設(shè)備功率足,傳動(dòng)設(shè)備傳動(dòng)力矩大。
(4)甩掉貓頭,強(qiáng)化井口機(jī)械化裝置的使用,使操作安全性得到提高。
(5)變速和傳動(dòng)裝置的噪音有一定程度的降低,且可以在運(yùn)轉(zhuǎn)過程中換擋,簡(jiǎn)化了換擋操作。
該型鉆機(jī)在試驗(yàn)過程中也暴露出如下問題。
(1)使用Ⅰ擋變矩器傳動(dòng)時(shí),液力傳動(dòng)箱的傳動(dòng)油溫度上升較快,一般溫升很快達(dá)到90°C,然后散熱裝置保持溫度基本恒定。這說明變矩器的使用效率不高,有部分動(dòng)能轉(zhuǎn)化為熱能。
(2)傳動(dòng)油的散熱裝置設(shè)計(jì)不合理,造成液力傳動(dòng)箱體積過于龐大,而且風(fēng)扇及電動(dòng)機(jī)不便于現(xiàn)場(chǎng)維修更換。
(3)機(jī)械式倒擋離合器不能滿足處理井下事故或復(fù)雜的工藝要求,摩擦片極易變形而失效。
(4)傳動(dòng)油過濾器位置及過濾方式不太合理,尤其是離心泵和過濾器的現(xiàn)場(chǎng)拆裝清洗十分困難。
(5)液力傳動(dòng)箱的正、倒擋之間存在運(yùn)動(dòng)的相互干擾問題,在正、倒擋之間缺乏互鎖裝置。
2.液力傳動(dòng)泵組試驗(yàn)
在整個(gè)鉆井過程中對(duì)通過液力變矩器傳動(dòng)的機(jī)泵組進(jìn)行了現(xiàn)場(chǎng)試驗(yàn)。鉆井深度在718.36m之前柴油機(jī)轉(zhuǎn)速一直穩(wěn)定在1200r/min,泵的沖次約為106min-1,隨著鉆井深度增加,泵壓從5MPa逐漸上升至12MPa。之后采取降低柴油機(jī)轉(zhuǎn)速的方法,使泵壓穩(wěn)定在10~11MPa。在157h的連續(xù)運(yùn)轉(zhuǎn)中,除液力變矩器軸頭發(fā)生漏油外,其它一切正常。試驗(yàn)表明,液力傳動(dòng)機(jī)泵組具有如下優(yōu)點(diǎn)。
(1)可有效保護(hù)原動(dòng)機(jī)。與泵及變矩器配套使用的12V190柴油機(jī),在通過調(diào)節(jié)充油閥給其加載時(shí),其載荷是緩慢均勻地增加的,避免了柴油機(jī)突然增加或減去很大載荷。據(jù)現(xiàn)場(chǎng)觀察,在使用調(diào)壓閥調(diào)節(jié)泵壓時(shí),柴油機(jī)的轉(zhuǎn)速、聲音及排煙情況均無明顯的變化。這樣可杜絕柴油機(jī)的“飛車”現(xiàn)象,延長(zhǎng)柴油機(jī)的使用壽命。
(2)可有效保護(hù)工作機(jī)。經(jīng)過變矩器輸出的轉(zhuǎn)速是從零開始逐步升高而達(dá)到工作需要的轉(zhuǎn)速(泵壓)的,避免了工作機(jī)鉆井泵的轉(zhuǎn)速突然增加到原動(dòng)機(jī)的轉(zhuǎn)速。
(3)省去了氣胎離合器裝置,提高了泵組工作的可靠性。氣胎、摩擦片、摩擦轂和傳動(dòng)膠帶是泵組工作的薄弱環(huán)節(jié),容易發(fā)生故障和損壞,特別是冬季氣路結(jié)冰常引起氣囊燒壞事故,影響鉆井生產(chǎn)的連續(xù)性。使用液力變矩器解決了這一問題。
(4)在保持柴油機(jī)的額定轉(zhuǎn)速條件下,可實(shí)現(xiàn)泵壓的全過程控制,滿足鉆井工藝在各種復(fù)雜情況下的要求,在復(fù)雜區(qū)塊將更能顯示其優(yōu)越性。
液力傳動(dòng)泵組在試驗(yàn)及現(xiàn)場(chǎng)使用過程中也暴露出如下問題。
(1)由于增加了液力變矩器,泵組的整體質(zhì)量及傳動(dòng)過程中的能耗也相應(yīng)增加。
(2)在現(xiàn)場(chǎng)條件較差時(shí),泵、柴油機(jī)傳動(dòng)裝置的安裝和校正較為困難,影響鉆機(jī)整拖時(shí)效。
(3)鉆機(jī)尚未推廣使用,配件供應(yīng)較為緊張。
附錄A2
注塑機(jī)液壓系統(tǒng)設(shè)計(jì)的方法和注意問題
液壓技術(shù)被引入工業(yè)領(lǐng)域已經(jīng)有一百多年的歷史了,隨著工業(yè)的迅猛發(fā)展,液壓技術(shù)更日新月異。伴隨著數(shù)學(xué)、控制理論、計(jì)算機(jī)、電子器件和液壓流體學(xué)的發(fā)展,出現(xiàn)了液壓伺服系統(tǒng),并作為一門應(yīng)用科學(xué)已經(jīng)發(fā)展成熟,形成自己的體系和一套行之有效的分析和設(shè)計(jì)方法。好了,不多說了,現(xiàn)在我和大家來說說液壓系統(tǒng)設(shè)計(jì)的方法和注意問題。舉個(gè)液壓系統(tǒng)在注塑機(jī)運(yùn)用的例子來和大家聊,并歡迎大家提出意見。
設(shè)計(jì)注塑機(jī)液壓傳動(dòng)系統(tǒng)的依據(jù)
(1) 注塑機(jī)的總體布局和工藝要求,包括采用液壓傳動(dòng)所完成的注塑機(jī)運(yùn)動(dòng)種類、機(jī)械設(shè)計(jì)時(shí)提出可能用的液壓執(zhí)行元件的種類和型號(hào)、執(zhí)行元件的位置及其空間的尺寸范圍、要求的自動(dòng)化程度等。
(2) 注塑機(jī)的工作循環(huán)、執(zhí)行機(jī)構(gòu)的運(yùn)動(dòng)方式(移動(dòng)、轉(zhuǎn)動(dòng)或擺動(dòng)),以及完成的工作范圍。
(3) 液壓執(zhí)行元件的運(yùn)動(dòng)速度、調(diào)速范圍、工作行程、載荷性質(zhì)和變化范圍。
(4) 注塑機(jī)各部件的動(dòng)作順序和互鎖要求,以及各部件的工作環(huán)境與占地面積等。
(5) 液壓系統(tǒng)的工作性能,如工作平穩(wěn)性、可靠性、換向精度、停留時(shí)間和沖出量等方面的要求。
(6)其它要求,如污染、腐蝕性、易燃性以及液壓裝置的質(zhì)量、外形尺寸和經(jīng)濟(jì)性等。
設(shè)計(jì)液壓傳動(dòng)系統(tǒng)的步驟
(1) 明確對(duì)液壓傳動(dòng)系統(tǒng)的工作要求,是設(shè)計(jì)液壓傳動(dòng)系統(tǒng)的依據(jù),由使用部門以技術(shù)任務(wù)書的形式提出。
(2) 擬定液壓傳動(dòng)系統(tǒng)圖。a 根據(jù)工作部件的運(yùn)動(dòng)形式,合理地選擇液壓執(zhí)行元件;b 根據(jù)工作部件的性能要求和動(dòng)作順序,列出可能實(shí)現(xiàn)的各種基本回路。此時(shí)應(yīng)注意選擇合適的調(diào)速方案、速度換接方案,確定安全措施和卸荷措施,保證自動(dòng)工作循環(huán)的完成和順序動(dòng)作和可靠。
液壓傳動(dòng)方案擬定后,應(yīng)按國(guó)家標(biāo)準(zhǔn)規(guī)定的圖形符號(hào)繪制正式原理圖。圖中應(yīng)標(biāo)注出各液壓元件的型號(hào)規(guī)格,還應(yīng)有執(zhí)行元件的動(dòng)作循環(huán)圖和電氣元件的動(dòng)作循環(huán)表,同時(shí)要列出標(biāo)準(zhǔn)(或通用)元件及輔助元件一覽表。
(3) 計(jì)算液壓系統(tǒng)的主要參數(shù)和選擇液壓元件。a 計(jì)算液壓缸的主要參數(shù);b 計(jì)算液壓缸所需的流量并選用液壓泵;c 選用油管;d 選取元件規(guī)格;e 計(jì)算系統(tǒng)實(shí)際工作壓力;f 計(jì)算功率,選用電動(dòng)機(jī);g 發(fā)熱和油箱容積計(jì)算;
(4) 進(jìn)行必要的液壓系統(tǒng)驗(yàn)算。
(5) 液壓裝置的結(jié)構(gòu)設(shè)計(jì)。
(6) 繪制液壓系統(tǒng)工作圖,編制技術(shù)文件。
設(shè)計(jì)液壓傳動(dòng)系統(tǒng)時(shí)應(yīng)注意問題
(1) 在組合基本回路時(shí),要注意防止回路間相互干擾,保證正常的工作循環(huán)。
(2) 提高系統(tǒng)的工作效率,防止系統(tǒng)過熱。例如功率小,可用節(jié)流調(diào)速系統(tǒng);功率大,最好用容積調(diào)速系統(tǒng);經(jīng)常停車制動(dòng),應(yīng)使泵能夠及時(shí)地卸荷;在每一工作循環(huán)中耗油率差別很大的系統(tǒng),應(yīng)考慮用蓄能器或壓力補(bǔ)償變量泵等效率高的回路。
(3) 防止液壓沖擊,對(duì)于高壓大流量的系統(tǒng),應(yīng)考慮用液壓換向閥代替電磁換向閥,減慢換向速度;采用蓄能器或增設(shè)緩沖回路,消除液壓沖擊。
(4) 系統(tǒng)在滿足工作循環(huán)和生產(chǎn)率的前提下,應(yīng)力求簡(jiǎn)單,系統(tǒng)越復(fù)雜,產(chǎn)生故障的機(jī)會(huì)就越多。系統(tǒng)要安全可靠,對(duì)于做垂直運(yùn)動(dòng)提升重物的執(zhí)行元件應(yīng)設(shè)有平衡回路;對(duì)有嚴(yán)格順序動(dòng)作要求的執(zhí)行元件應(yīng)采用行程控制的順序動(dòng)作回路。此外,還應(yīng)具有互鎖裝置和一些安全措施。
(5) 盡量做到標(biāo)準(zhǔn)化、系列化設(shè)計(jì),減少專用件設(shè)計(jì)。
使用液壓系統(tǒng)要注意的問題
(1) 使用者應(yīng)明白液壓系統(tǒng)的工作原理,熟悉各種操作和調(diào)整手柄的位置及旋向等。
(2) 開車前應(yīng)檢查系統(tǒng)上各調(diào)整手柄、手輪是否被無關(guān)人員動(dòng)過,電氣開關(guān)和行程開關(guān)的位置是否正常,主機(jī)上工具的安裝是否正確和牢固等,再對(duì)導(dǎo)軌和活塞桿的外露部分進(jìn)行擦拭,而后才可開車。
(3) 開車時(shí),首先啟動(dòng)控制油路的液壓泵,無專用的控制油路液壓泵時(shí),可直接啟動(dòng)主液壓泵。
(4) 液壓油要定期檢查更換,對(duì)于新投入使用的液壓設(shè)備,使用3?個(gè)月左右即應(yīng)清洗油箱,更換新油。以后每隔半年至1?年進(jìn)行清洗和換油一次。
(5) 工作中應(yīng)隨時(shí)注意油液,正常工作時(shí),油箱中油液溫度應(yīng)不超過60℃。油溫過高應(yīng)設(shè)法冷卻,并使用粘度較高的液壓油。溫度過低時(shí),應(yīng)進(jìn)行預(yù)熱,或在運(yùn)轉(zhuǎn)前進(jìn)行間歇運(yùn)轉(zhuǎn),使油溫逐步升高后,再進(jìn)入正式工作運(yùn)轉(zhuǎn)狀態(tài)。
(6) 檢查油面,保證系統(tǒng)有足夠的油量。
(7) 有排氣裝置的系統(tǒng)應(yīng)進(jìn)行排氣,無排氣裝置的系統(tǒng)應(yīng)往復(fù)運(yùn)轉(zhuǎn)多次,使之自然排出氣體。
(8) 油箱應(yīng)加蓋密封,油箱上面的通氣孔處應(yīng)設(shè)置空氣過濾器,防止污物和水分的侵入。加油時(shí)應(yīng)進(jìn)行過濾,使油液清潔。
(9) 系統(tǒng)中應(yīng)根據(jù)需要配置粗、精過濾器,對(duì)過濾器應(yīng)經(jīng)常地檢查、清洗和更換。
(10) 對(duì)壓力控制元件的調(diào)整,一般首先調(diào)整系統(tǒng)壓力控制閥----溢流閥,從壓力為零時(shí)開調(diào),逐步提高壓力,使之達(dá)到規(guī)定壓力值;然后依次調(diào)整各回路的壓力控制閥。主油路液壓泵的安全溢流閥的調(diào)整壓力一般要大于執(zhí)行元件所需工作壓力的10%--25%??焖龠\(yùn)動(dòng)液壓泵的壓力閥,其調(diào)整壓力一般大于所需壓力10%--20%。如果用卸荷壓力供給控制油路和潤(rùn)滑油路時(shí),壓力應(yīng)保持在0.3--0.6MPa范圍內(nèi)。壓力繼電器的調(diào)整壓力一般應(yīng)低于供油壓力0.3--0.5MPa。
(11) 流量控制閥要從小流量調(diào)到大流量,并且應(yīng)逐步調(diào)整。同步運(yùn)動(dòng)執(zhí)行元件的流量控制閥應(yīng)同時(shí)調(diào)整,要保證運(yùn)動(dòng)的平穩(wěn):①系統(tǒng)產(chǎn)生噪聲和振動(dòng);②運(yùn)動(dòng)部件爬行;?③系統(tǒng)中壓力不足;④運(yùn)動(dòng)部件速度不正常;⑤油溫太高;⑥換向或啟動(dòng)不正常;
工作部件產(chǎn)生爬行的原因及排除方法
(1) 因?yàn)榭諝獾膲嚎s性較大,當(dāng)含有氣泡的液體到達(dá)高壓區(qū)而受到劇烈壓縮時(shí),會(huì)使油液體積變小,使工作部件產(chǎn)生爬行。
采取措施:在系統(tǒng)回路的高處部位設(shè)置排氣裝置,將空氣排除。
(2) 由于相對(duì)運(yùn)動(dòng)部件間的磨擦阻力太大或磨擦阻力變化,致使工作部件在運(yùn)動(dòng)時(shí)產(chǎn)生爬行。
采取措施:對(duì)液壓缸、活塞和活塞桿等零件的形位公差和表面粗糙度有一定的要求;并應(yīng)保證液壓系統(tǒng)和液壓油的清潔,以免臟物夾入相對(duì)運(yùn)動(dòng)件的表面間,從而增大磨擦阻力。
(3) 運(yùn)動(dòng)件表面間潤(rùn)滑不良,形成干磨擦或半磨擦,也容易導(dǎo)致爬行。
采取措施:經(jīng)常檢查有相對(duì)運(yùn)動(dòng)零件的表面間潤(rùn)滑情況,使其保持良好。
(4) 若液壓缸的活塞和活塞桿的密封定心不良,也會(huì)出現(xiàn)爬行。
采取措施:應(yīng)卸除載荷,使液壓缸單獨(dú)動(dòng)作,測(cè)定出磨擦阻力后,校正定心。
(5) 因液壓缸泄漏嚴(yán)重,導(dǎo)致爬行。
采取措施:減少泄漏損失,或加大液壓泵容量。
附錄B1
Control By Jack L. Johnson, P. E.
Pump control vs valve control:
Efficiency or performance?
DQZJ - 20Y hydrodynamic drive rig driven analysis
[Abstract] papers DQZJ - 20Y hydrodynamic drive rigs used hydraulic mechanical gearbox, transmission soft, adapt to the changes in the load capacity can be achieved continuously variable torque and braking inversion. Field test showed that the rig power utilization, and high hoisting speed; Conversely braking characteristics reduce the belt brake load; Moments change the characteristics of strengthening the ability to handle incidents. Through the torque converter drive drilling pump can simultaneously protecting the original motivation and work; Maintain the rated speed of the diesel engine conditions, pump pressure can be controlled throughout the entire process. Thermal response, reverse gear clutch and filters, etc. exposed to the issues raised improvements.
The use of a 2000 m deep drilling of new DQZJ - 20Y hydrodynamic drive rig, Taiwan drilling rigs in part by the United States Diesel plant New York Institute of the Ministry of Internal Combustion Engines and British Petroleum plant developed by the power equipment, transmission equipment and rig system. Currently, through testing, and use of this rig shown a good performance, particularly in the power driven more prominent characteristics, but also exposed some problems. According to the author-driven programs and on-site test results, analysis of the rig driven characteristics, and to address the problems and propose improvements.
Driver program
At present, the use of medium-sized rig (available drilling deep 1500 ~ 2500) the use of AC motors or diesel engine as the original motivated by a separate variable speed mechanical gearbox, and dial-driven winch. Drilling pump is used single-engine direct drive. DQZJ - 20Y rig hydraulic transmission of ordinary mechanical gearbox to set torque converter, hydraulic and mechanical coupling drive in the integrated hydraulic mechanical gearbox, drilling pump is driven through the torque converter. Drill core components of the hydraulic gearbox, it is similar to the Canadian K-650 rigs and the United States Wilson-65B rig on the Allison Transmission, its structure and working principle as shown in figure 1.
Figure 1 hydraulic gearbox Map 1-activated hydraulic torque converter; 2-Pump; 3,6-pumps; 4-input shaft; 5-reverse gear friction clutch; 7-cooling fans; 8-block high-speed fluid coupling; 9-output shaft; 10-, medium-speed block hydraulic coupler
Hydraulic gearbox with three block hydraulic machinery and a reverse gear. Block the transmission of the power line is as follows.
I block : input → axis Z1 Z2 → → start torque converter → Possible → di → output shaft;
II block : input shaft → → Z1 Z2 → medium speed hydraulic coupling block → Possible → di → output shaft;
Ⅲ block : → input shaft Z1 → Z3 → block high-speed fluid coupling → Portrait → di → output shaft;
Reverse Gear : input shaft → Z3 → Z10 → screening of resistance → reverse gear friction clutch → Portrait → di → output shaft.
Driving Characteristics
1. I block pumps and the driving characteristics
Is shown in Figure 2 and Pump Ⅰ block the driving characteristics, Diesel is actually torque converter and the output characteristics of the joint work (MW turbine shaft torque, torque pump axle MB, η converter efficiency turbine shaft speed and the relationship between J). Its main advantages of performance in three areas : First, according to the load changes automatically and continuously variable torque. I used to block the main starting drilling, which can increase the power efficiency, thereby enhancing the rig with or ergonomics. Second, regardless of how the load changes, the diesel engine has the best operating point operations, This is of the larger load changes Pump Group I show more prominent. Three of the torque converter is the ability to change pitch adaptation unit load change capacity greatly strengthened, lifting accident and started carrying capacity.
Figure 2 Diesel-converter output characteristics of the Joint Working
2. Block II and III block Driving Characteristics
Figure 3 is shown in block II and III block-driven characteristics, that is, diesel and coupling joint work output characteristics (MW turbine shaft torque. coupling efficiency η turbine shaft speed and the relationship between J). Its main advantage is the speed turbine pump round scope than a lot of the expansion. In theory, the turbine can be arbitrary speed operation, or even halt, Pump round depends on the speed of the diesel engine speed range allowed. But this speed to expand the scope of the power loss at the cost, to ensure a higher transmission efficiency, general should not be coupling as a speed device.
Figure 3 Diesel-coupling joint work output characteristics
3. Characteristics of the rig upgrade
According Diesel-converter and diesel-coupling of the Joint Working characteristic curve, and the rig specific performance parameters. can be DQZJ - 20Y hydrodynamic drive drilling rig upgrade properties (shown in Figure 4). Upgrade the entire curve ABCDEF. Theoretically, the block I, II and III block retaining the scope of work for EF, CDE and of the ABC. In fact, in order to guarantee a high coupling efficiency of the work, the best block I work for the D'EF, II block in B'CD, III block in the work of AB.
Figure 4 rigs to upgrade properties
4. The torque converter reverse braking characteristics
Under the next drilling and casing process, hydraulic drilling rig Kakeya I resisted and torque converter at this time to start anti-conversion status, Diesel pump driven round was changing, drilling or driven turbine casing reversal. Converter role of the liquid in the direction of the turbine and turbine torque to the contrary, this moment onwards turbine stop the role reversal. Such a use of the reverse braking torque converter character played in the same rig auxiliary braking (braking water), reduce the load with the brakes. Anti-conversion engine of the size and volume of oil-filled proportional, I entered through the control of the oil-filled block converter volume can control the size of the braking force. Increase the engine speed so that the pump wheel speed increase, but also enable the anti-conversion augmented. Conjunction with the brakes, the hook can be set according to the size, adjustable braking force to the size, and be satisfied with the pace of decentralization.
In summary, hydraulic transmission of the three rigs are to block all hydraulic drive power transmission, can absorb and reduce engine from the plane and the vibration, and shock, the Drive soft, raising the diesel engine, Transmission parts of the machine work and life.
Field test results
1.Hydraulic drive rigs field test depth of 1950m test wells.
Field tests show that, DQZJ - 20Y-hydraulic drive rig with the following advantages.
(1) or I block the CVT characteristics, power utilization will be raised to 90%, ensuring higher starting speed. than the traditional mechanical transmission rig time saved up or 20% ~ 30%.
(2) drilling torque converter used by the reverse braking characteristics, drilling under uniform, without any brake handle can achieve full speed control, simple operation, reducing the brake wheel and brake friction with pieces of wear and tear.
(3) As a larger torque converter change pitch coefficient, in dealing with drilling accidents power equipment adequate power, Transmission Equipment drive torque.
(4) Eliminating cat, wellhead to strengthen the use of mechanized equipment, operational safety has been improved.
(5) variable transmission device and the noise to a certain extent reduced, and can operate in the process of shifting. simplified shift operation.
The rig in the testing process has also revealed the following issues.
(1) I use block transmission torque converter, hydraulic gear box drive oil temperature rise faster, General temperature quickly reached 90 ° C and then cooling devices to maintain constant temperature. This shows the torque converter efficiency is not high, some of the kinetic energy into thermal energy.
(2) transmission oil cooling device unreasonable, causing hydraulic transmission box size is too big, but fans and electrical maintenance is not easy for replacement.
(3) mechanical clutch reverse gear can accommodate underground accident or complex process requirements of extreme friction film deformation invalidated.
(4) Transmission oil filters and filter position is not reasonable, In particular pump and filter cleaning Dismounting the scene is very difficult.
(5) hydraulic gear box is, reverse gear movement between the mutual interference problem, is, they do block between lack of interlocking device.
2. Hydraulic Pump Test Drive
Throughout the process of drilling through the transmission torque converter Pump Unit conducted an on-site test. Drilling depth of 718.36 m in before the engine speed has been stable at 1200r/min, Pump-time is about 106 min-1, with increased drilling depth, Pump 5 MPa pressure from rising gradually to 12 MPa. After taking the lower the engine speed, the pump pressure stabilized at 10 ~ ,20. In 157 h of continuous operation, in addition to the first axis torque converter spill, all other normal. Test showed that the hydraulic transmission Pump Group has the following advantages.
(1) can effectively protect the primary motive. Converter with matching pumps and the use of V190 Diesel 12, by adjusting the valve to its oil-filled loading, its load is slow to increase the uniformity and avoid a sudden increase in diesel or minus big load. Field observations, the use of pump pressure relief valve adjustment, the engine speed, sound and smoke of no obvious changes. This will eliminate the Diesel "slide" phenomenon, extending engine life.
(2) effective protection mechanism. After converter output speed is gradually increased from zero to achieve the required speed (pump pressure), avoid working for the drilling pump speed suddenly increased the speed of the original motives.
(3) avoid the fetal clutch gas installations, improve the reliability of the pumps work. Gas tire friction unit, friction wheel drive belt and pumps work is a weak link, prone to breakdowns and damage, Special winter gas balloon Icing often caused the accidents, the impact of drilling, production continuity. The use of hydraulic torque converter to solve the problem. According to the torque converter transmission characteristics, we can get rid of belt round and the use of direct transmission, but also easy to automate.
(4) to maintain the rated speed diesel engine conditions, the pump pressure can be controlled throughout the entire process, drilling technology to meet the complex requirements under the circumstances, the block will be more complicated to demonstrate its superiority.
Hydraulic Pump drive of the trial process and the use of the scene were also exposed the following questions.
(1) due to the increase in the torque converter, pumps and the overall quality of the transmission process has been a corresponding increase in energy consumption.
(2) poor conditions at the scene, pumps, diesel drive of the installation and calibration more difficulties affecting the whole trailer rig spent.
(3) to promote the use of rigs yet, accessories supply more tension.
附錄B2
Injection molding machine hydraulic system design methods and attention to the problem
Hydraulic technology has been the introduction of an industrial area have 100 years of history, with the rapid industrial development, Hydraulic technology more with each passing day. Along with mathematics, control theory, computer, electronic components and hydraulic fluid sciences, a hydraulic servo system, and as an application of science has been developed, develop its own system, and a set of effective analysis and design methods. Well, not that, and now I say all of the hydraulic system design methods and attention to the issue. For hydraulic systems used in the injection molding machine examples to chat with everyone, and welcome comments.
Design injection molding machine hydraulic system on the basis
(1) injection molding machine and the overall layout process requirements, including the use of hy
收藏