2.3醫(yī)用高等數(shù)學(xué)

上傳人:豆****2 文檔編號:128115003 上傳時(shí)間:2022-07-31 格式:PPT 頁數(shù):17 大小:1.11MB
收藏 版權(quán)申訴 舉報(bào) 下載
2.3醫(yī)用高等數(shù)學(xué)_第1頁
第1頁 / 共17頁
2.3醫(yī)用高等數(shù)學(xué)_第2頁
第2頁 / 共17頁
2.3醫(yī)用高等數(shù)學(xué)_第3頁
第3頁 / 共17頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《2.3醫(yī)用高等數(shù)學(xué)》由會員分享,可在線閱讀,更多相關(guān)《2.3醫(yī)用高等數(shù)學(xué)(17頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、一、微分的概念一、微分的概念1面積改變量的大小面積改變量的大小 一塊正方形金屬薄片受溫度變化的影響時(shí)一塊正方形金屬薄片受溫度變化的影響時(shí),其邊長由其邊長由 變化到變化到 ,問此薄片的面積改變了多少問此薄片的面積改變了多少?0 xxx02xS xxx x 2)(x xxxx22)(xxxS2)(2xxx)1()2(;,的的主主要要部部分分且且為為的的線線性性函函數(shù)數(shù)Sx.,很很小小時(shí)時(shí)可可忽忽略略當(dāng)當(dāng)?shù)牡母吒唠A階無無窮窮小小xx:)1(:)2(2.自由落體運(yùn)動路程的改變量自由落體運(yùn)動路程的改變量自由落體路程自由落體路程 與時(shí)間與時(shí)間 的關(guān)系是的關(guān)系是st221gts 當(dāng)時(shí)間由當(dāng)時(shí)間由 變到時(shí)變到

2、時(shí) ,路程路程 有相應(yīng)的改變量有相應(yīng)的改變量0ttt0s202021)(21gtttgs20)(21tgtgt)1()2(;,的主要部分的主要部分且為且為的線性函數(shù)的線性函數(shù)st.,很很小小時(shí)時(shí)可可忽忽略略當(dāng)當(dāng)?shù)牡母吒唠A階無無窮窮小小tt:)1(:)2(tgts0 xxS2面積改變量面積改變量路程改變量路程改變量共性共性 函數(shù)改變量函數(shù)改變量)(xoxAy)1()2(;,的的主主要要部部分分且且為為的的線線性性函函數(shù)數(shù)yx.,很很小小時(shí)時(shí)可可忽忽略略當(dāng)當(dāng)?shù)牡母吒唠A階無無窮窮小小xx:)1(:)2(xAy 問題問題:這個(gè)線性函數(shù)這個(gè)線性函數(shù)(改變量的主要部分改變量的主要部分)是否所有函是否所有函

3、數(shù)的改變量都有數(shù)的改變量都有?它是什么它是什么?如何求如何求?既容易計(jì)算既容易計(jì)算又是較好的又是較好的近似值近似值 定義定義2-2 設(shè)函數(shù)設(shè)函數(shù) 在某區(qū)間內(nèi)有定義在某區(qū)間內(nèi)有定義,及及 在這區(qū)間內(nèi)在這區(qū)間內(nèi),如果函數(shù)的增量可表示為如果函數(shù)的增量可表示為)(xfy 0 xxx0)(xoxAyxAdyxx0其其 是不依賴于是不依賴于 的常數(shù)的常數(shù),而而 是比是比 高階的無窮小高階的無窮小,那么稱函數(shù)那么稱函數(shù) 在點(diǎn)在點(diǎn) 是可微的是可微的,叫做函數(shù)叫做函數(shù) 在點(diǎn)在點(diǎn) 相應(yīng)于自變量增量相應(yīng)于自變量增量 的微分的微分,記作記作 ,即即Ax)(xo x)(xfy 0 xxA)(xfy0 xx0 xxdy

4、函數(shù)函數(shù) 在任意點(diǎn)在任意點(diǎn) 處的微分處的微分,稱為函數(shù)的微分稱為函數(shù)的微分,記為記為 或或)(xfy xdy)(xdfxAdy由定義知由定義知:;)1(的線性函數(shù)的線性函數(shù)是自變量的改變量是自變量的改變量 xdy;)()2(高高階階無無窮窮小小是是比比 xxodyy;,0)3(是是等等價(jià)價(jià)無無窮窮小小與與時(shí)時(shí)當(dāng)當(dāng)ydyA dyyxAxo)(1).0(1x;)(,)4(0有有關(guān)關(guān)和和但但與與無無關(guān)關(guān)的的常常數(shù)數(shù)是是與與xxfxA).(,)5(線性主部線性主部很小時(shí)很小時(shí)當(dāng)當(dāng)dyyx)(xfy 0 xMNTdyy)(xo )xyo x.,的增量的增量縱坐標(biāo)對應(yīng)縱坐標(biāo)對應(yīng)就是切線就是切線標(biāo)增量時(shí)標(biāo)增

5、量時(shí)曲線的縱坐曲線的縱坐是是當(dāng)當(dāng)dyyxx0 P.,MNMPMx可可近近似似代代替替曲曲線線段段切切線線段段的的附附近近在在點(diǎn)點(diǎn)很很小小時(shí)時(shí)當(dāng)當(dāng) 微分的幾何意義微分的幾何意義).(,)()(000 xfAxxfxxf且且可可導(dǎo)導(dǎo)處處在在點(diǎn)點(diǎn)數(shù)數(shù)可可微微的的充充要要條條件件是是函函在在點(diǎn)點(diǎn)函函數(shù)數(shù)證明證明(1)必要性必要性可可微微在在點(diǎn)點(diǎn)0)(xxf)(xoxAyxxoAxy)(xxoAxyxx)(limlim00則則A).(,)(00 xfAxxf且且可可導(dǎo)導(dǎo)在在點(diǎn)點(diǎn)即即函函數(shù)數(shù)).(.0 xfA 可可微微可可導(dǎo)導(dǎo)即即:二、微分與導(dǎo)數(shù)的關(guān)系二、微分與導(dǎo)數(shù)的關(guān)系(2)充分性充分性),()(0 x

6、xxfy從而從而可導(dǎo)可導(dǎo)在點(diǎn)在點(diǎn)函數(shù)函數(shù)0)(xxf)(lim00 xfxyx)0(0 x)()(0 xoxxf.)(,)(00Axfxxf且且可可微微在在點(diǎn)點(diǎn)函函數(shù)數(shù)xxfxAdy)()(0 xfxy即即.,xdxdxxx即即記記作作稱稱為為自自變變量量的的微微分分的的增增量量通通常常把把自自變變量量dxxfdy)()(xfdxdy.微微商商導(dǎo)導(dǎo)數(shù)數(shù)也也叫叫的的導(dǎo)導(dǎo)數(shù)數(shù)之之商商等等于于該該函函數(shù)數(shù)與與自自變變量量的的微微分分即即函函數(shù)數(shù)的的微微分分dxdy解解xxdy)(3xx 2302.02202.023xxxxxxdy24.0.02.0,23時(shí)的微分時(shí)的微分當(dāng)當(dāng)求函數(shù)求函數(shù)xxxy例例2

7、-292-29基本初等函數(shù)的微分公式基本初等函數(shù)的微分公式xdxxxdxdxxxdxdxxdxdxxdxdxxdxdxxddxxxdCdcotcsc)(csctansec)(seccsc)(cotsec)(tansin)(coscos)(sin)(0)(221三、三、微分的基本公式與法則微分的基本公式與法則dxxxddxxxddxxxddxaxxddxeedadxaadaxxxx2211)(arccos11)(arcsin1)(lnln1)(log)(ln)(函數(shù)和、差、積、商的微分法則函數(shù)和、差、積、商的微分法則2)()()()(vudvvduvududvvduuvdCduCuddvduvu

8、ddxxxarcddxxxd2211)cot(11)(arctan解解2221xxexxeydxexxedyxx2221解解)(cos)(cos3131xdeedxdyxxxxeexxsin)(cos 3)(3131dxxedxexdyxx)sin()3(cos3131dxxxex)sincos3(31.),ln(2dyexyx求求設(shè)設(shè)例例2-302-30.,cos31dyxeyx求求設(shè)設(shè)例例2-312-31;)(,)1(dxxfdyx是是自自變變量量時(shí)時(shí)若若則則的的可可微微函函數(shù)數(shù)即即另另一一變變量量是是中中間間變變量量時(shí)時(shí)若若),(,)2(txtx)()(xfxfy有有導(dǎo)導(dǎo)數(shù)數(shù)設(shè)設(shè)函函數(shù)數(shù)

9、dttxfdy)()(dxdtt)(.)(dxxfdy結(jié)論結(jié)論:的的微微分分形形式式總總是是函函數(shù)數(shù)是是自自變變量量還還是是中中間間變變量量無無論論)(,xfyx微分形式的不變性微分形式的不變性dxxfdy)(四、一階微分形式不變性四、一階微分形式不變性解解2 bxaxueyuduedyu)()(2bxaxdeu.,2dyeybxax求求設(shè)設(shè)例例2-322-32dxbxaebxax)2()(2.),2ln(2dyxxy求求設(shè)設(shè)例例2-332-33)2(2122xxdxxdy解解dxxxx2122主要內(nèi)容主要內(nèi)容微分的定義微分的定義微分的幾何意義微分的幾何意義:切線縱坐標(biāo)的改變量切線縱坐標(biāo)的改變量可導(dǎo)與可微的關(guān)系可導(dǎo)與可微的關(guān)系:可導(dǎo)可導(dǎo) 可微可微微分公式微分公式一階微分形式不變性一階微分形式不變性的微分形式總是的微分形式總是函數(shù)函數(shù)是自變量還是中間變量是自變量還是中間變量無論無論)(,xfyxdxxfdy)(

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!