《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 指導(dǎo)二 透視高考解題模板示范規(guī)范拿高分 模板5 函數(shù)與導(dǎo)數(shù)問題學(xué)案》由會(huì)員分享,可在線閱讀,更多相關(guān)《(浙江專用)2019高考數(shù)學(xué)二輪復(fù)習(xí) 指導(dǎo)二 透視高考解題模板示范規(guī)范拿高分 模板5 函數(shù)與導(dǎo)數(shù)問題學(xué)案(4頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、模板5 函數(shù)與導(dǎo)數(shù)問題
(滿分15分)設(shè)函數(shù)f(x)=emx+x2-mx.
(1)證明:f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;
(2)若對于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范圍.
滿分解答
得分說明
解題模板
(1)證明 f′(x)=m(emx-1)+2x.
(1分)
若m≥0,則當(dāng)x∈(-∞,0)時(shí),emx-1≤0,f′(x)<0;
當(dāng)x∈(0,+∞)時(shí),emx-1≥0,f′(x)>0. (3分)
若m<0,則當(dāng)x∈(-∞,0)時(shí),emx-1>0,f′(x)<0;
2、
當(dāng)x∈(0,+∞)時(shí),emx-1<0,f′(x)>0.(5分)
所以,f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.
(6分)
①求導(dǎo)正確得1分;
②分兩種情況討論正確各得2分;
③得出結(jié)論得1分;
第一步 求導(dǎo)數(shù):一般先確定函數(shù)的定義域,再求f′(x).
第二步 定區(qū)間:根據(jù)f′(x)的符號(hào)確定函數(shù)的單調(diào)區(qū)間.
第三步 尋條件:一般將恒成立問題轉(zhuǎn)化為函數(shù)的最值問題.
第四步 寫步驟:通過函數(shù)單調(diào)性探求函數(shù)最值,對于最值可能在兩點(diǎn)取到的恒成立問題,可轉(zhuǎn)化為不等式組恒成立.
第五步 再反思:查看是否注意定義域,區(qū)間的寫法
3、、最值點(diǎn)的探求是否合理等.
(2)解 由(1)知,對于任意的m,f(x)在[-1,0]上單調(diào)遞減,在[0,1]上單調(diào)遞增,故f(x)在x=0處取得最小值.所以對于任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1的充要條件是
即① (9分)
設(shè)函數(shù)g(t)=et-t-e+1,
則g′(t)=et-1.
當(dāng)t<0時(shí),g′(t)<0;當(dāng)t>0時(shí),g′(t)>0.
故g(t)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增.
又g(1)=0,g(-1)=e-1+2-e<0,
故當(dāng)t∈[-1,1]時(shí),g(t)≤0.
(12分)
當(dāng)m∈[-1,1]時(shí),
4、g(m)≤0,g(-m)≤0,即①式成立;
當(dāng)m>1時(shí),由g(t)的單調(diào)性知,g(m)>0,即em-m>e-1;
當(dāng)m<-1時(shí),g(-m)>0,
即e-m+m>e-1.
綜上,m的取值范圍是[-1,1].
(15分)
④找出充要條件得3分;
⑤構(gòu)造函數(shù),求出“t∈
[-1,1]時(shí),g(t)≤0”得3分;
⑥通過分類討論,得出結(jié)果得3分.
【訓(xùn)練5】 設(shè)函數(shù)f(x)=ln x+,m∈R.
(1)當(dāng)m=e(e為自然對數(shù)的底數(shù))時(shí),求f(x)的極小值;
(2)討論函數(shù)g(x)=f′(x)-零點(diǎn)的個(gè)數(shù).
解 (1)由題設(shè),當(dāng)m=e時(shí),f(x)=ln x+,
則f′(
5、x)=,
∴當(dāng)x∈(0,e),f′(x)<0,f(x)在(0,e)上單調(diào)遞減,
當(dāng)x∈(e,+∞),f′(x)>0,f(x)在(e,+∞)上單調(diào)遞增,
∴x=e時(shí),f(x)取得極小值f(e)=ln e+=2,
∴f(x)的極小值為2.
(2)由題設(shè)g(x)=f′(x)-=--(x>0),
令g(x)=0,得m=-x3+x(x>0).
設(shè)φ(x)=-x3+x(x≥0),
則φ′(x)=-x2+1=-(x-1)(x+1),
當(dāng)x∈(0,1)時(shí),φ′(x)>0,φ(x)在(0,1)上單調(diào)遞增;
當(dāng)x∈(1,+∞)時(shí),φ′(x)<0,φ(x)在(1,+∞)上單調(diào)遞減.
∴x=1是φ(x)的唯一極值點(diǎn),且是極大值點(diǎn),
因此x=1也是φ(x)的最大值點(diǎn).
∴φ(x)的最大值為φ(1)=.
又φ(0)=0,結(jié)合y=φ(x)的圖象(如圖),
可知
①當(dāng)m>時(shí),函數(shù)g(x)無零點(diǎn);
②當(dāng)m=時(shí),函數(shù)g(x)有且只有一個(gè)零點(diǎn);
③當(dāng)0<m<時(shí),函數(shù)g(x)有兩個(gè)零點(diǎn);
④當(dāng)m≤0時(shí),函數(shù)g(x)有且只有一個(gè)零點(diǎn).
綜上所述,當(dāng)m>時(shí),函數(shù)g(x)無零點(diǎn);
當(dāng)m=或m≤0時(shí),函數(shù)g(x)有且只有一個(gè)零點(diǎn);
當(dāng)0<m<時(shí),函數(shù)g(x)有兩個(gè)零點(diǎn).
4