高層建筑外墻清洗機升降機部分的設計.doc
《高層建筑外墻清洗機升降機部分的設計.doc》由會員分享,可在線閱讀,更多相關《高層建筑外墻清洗機升降機部分的設計.doc(27頁珍藏版)》請在裝配圖網上搜索。
高層建筑外墻清洗機---升降機部分的設計 摘 要:高層建筑外墻清洗機是一種投資小,成本低,安全可靠,工作效率高的機器。該機器分為兩部分,一部分是在大樓頂上的清洗機升降機,清洗機升降機通過鋼絲繩,吊鉤帶動另一部分,即清洗機附在高層建筑外墻壁上進行清洗工作。高層建筑外墻清洗機工作時,升降機的雙速電機啟動,通過鋼繩帶動機架迅速上升,上升到預定位置,雙速電機停止并制動,調整好清洗機的位置后,解除制動,雙速電機反向啟動,機架則緩慢向下移動,與此同時,機架頂部的噴淋水嘴噴水,各導軌上的刷具在各電機的帶動下沿各自的導軌往復移動的同時作旋轉運動,洗清外墻上的污漬,使外墻干凈潔白美觀。 關鍵詞: 高層建筑外墻清洗機; 清洗機升降機; 清洗機 The external walls of high-rise building washing machine ---part of the design lifts Abstract: The external walls of high-rise building cleaning machine is a small investment, low cost, safe, reliable, efficient machines. The machine is divided into two parts, is part of the building on top of the washing machine lifts, washing machines through the lift rope, hook driven another part, that is, washing machine attached to the external walls of high-rise building cleaning work. The external walls of high-rise building cleaning machines work, lift the two-speed motor launch, led by wire rope rack rising rapidly, up to the scheduled location, two-speed motor and braking to stop, adjust the location of washing machines, lifting brake, Reverse two-speed motor launch, the rack is slowly moving down at the same time, Shuizui rack at the top of the water spray, brush with the rails in the motor driven along the rails of their respective reciprocating At the same time moving to rotate, cleared on the external walls of the stains, clean the external walls of white beauty. Key words: the external walls of high-rise building cleaning machine; washing machine lifts; washing machine. 第一章 序言 1.1 清洗建筑表面的意義 隨著人類社會的不斷發(fā)展進步,城市規(guī)模不斷擴大,城市建筑更加規(guī)范,完美。千姿百態(tài)的各式建筑,尤其是高層建筑外墻都用各種建筑材料進行裝飾,如粘帖各色墻磚,瓷磚,馬賽克,或涂上涂料,但是,自然界的風吹雨打,日光輻射,塵埃污染,以及一些人為或偶然事故等原因,一段時間過后,建筑表面都將不同程度地變得污濁灰暗,破舊不堪,在環(huán)境差的地區(qū),污染或損壞還相當嚴重。建筑表面就像人身上的外衣,要保持清潔,就需要經常清洗,整理。為此,世界發(fā)達國家和地區(qū),對保持建筑表面的清潔非常重視,并以法律的形式明確規(guī)定,每年必須定期清洗,否則將受到處罰。近年來,我國各級政府部門的環(huán)境保護意識已發(fā)生了很大改變,國內一些大,中城市,特別是旅游,開放城市,旅游景點,為保持建筑表面清潔,也制定出臺了相應的法規(guī),全國范圍的衛(wèi)生評比活動,把保持建筑表面清潔列為考核的重要指標之一,其中高層建筑的外墻,醒目,突出,自然也就成為檢查的重中之重。 有信息表明,十五期間國家用于環(huán)境保護的投資將由九五期間國民生產總值的1.5%翻倍增加至4%,同時還伴隨以產業(yè)政策的優(yōu)惠。所以,隨著我國改革開放的不斷深入,政府,公民的環(huán)保意識的不斷加強,建筑表面清潔問題必將引起各方面的高度重視,建筑清洗行業(yè)必然具有廣泛的發(fā)展前景,將產生巨大的經濟效益和社會效益. 建筑表面清洗主要包括外墻清洗和中央空調風管的清洗,目前外墻清洗是采用傳統(tǒng)的“蜘蛛人”清洗,這是以犧牲生命為代價的非人工作,部分城市頒布了建筑表面清洗條例; 由于非典事件,公共衛(wèi)生得到了高度的重視,特別是中央空調風管的清洗,最近有關中央空調的清洗條例很快出臺;因此對于建筑表面清洗提供一個完備的解決方案,必然打破一個傳統(tǒng)的產業(yè)格局,改變了人們的工作方式,用機器人清洗代替?zhèn)鹘y(tǒng)的人工清洗或無法清洗,是必然的發(fā)展趨勢。 1.2 高層建筑外墻清洗方法介紹 保持城市建筑,尤其是高層建筑外墻清潔,必然要求開發(fā)新型的清洗機械,尤其是能取代人對高層建筑外墻進行自動清洗的機械,以適應新興行業(yè)的需要。 高層建筑物外墻的清洗是一項十分復雜的系統(tǒng)工程,為了清洗時有針對性和保護建筑物,首先要分析污垢的成份和結構及污染程度: 1 )高層建筑物外墻的污垢組成及建筑物的理化性質 外墻的污垢一般分為三級,一級比一級嚴重,一級是灰塵;二級是污漬;三級是污垢。通常所說的污垢是三者的總稱。 2)污漬 污漬由多種成分的灰塵和水的混和物,酸雨痕跡,菌類以及泥漿、染料等漬跡組成。在軟、硬表面上都粘染。建筑物是最大污漬粘染表面,故污漬一旦粘染不及時清除,就會常期頑固的留存,使建筑物表面受到嚴重的污染。 3)污垢 污垢有油基、水基之分。隨著人們生活水平的提高,工業(yè)迅速發(fā)展,污垢的種類越來越多,成分越來越復雜。污垢的質量遠遠高于灰塵和污漬。污垢不及時清洗干凈就會在建筑物表面留下永存印跡而且失去光采。除以上三種污垢外,對于金屬建材而言還有另外一種污垢形式,就是變色。這是金屬與水、空氣中的某些物質發(fā)生化學反應造成的如鐵銹、銅綠、金、銀、鋁的表面氧化變暗等??傊?,建筑物所存在的位置、環(huán)境不同,污垢的成分和污染程度亦有所不同,有的光滑(如釉面磚)、有的粗糙(如水涮石)、有的易被酸堿腐蝕(如鋁合金門窗)、有的易被溶劑溶解(如丙酮可溶解化工涂料)。由于外墻的介質有所不同,所以在清洗外墻前要分析外墻的成分和理化性質及污染程度。 對此社會大多出現了人工、物理和化學的方法,分作簡要介紹如下: 1)人工清洗 當代大廈多為高層建筑,外墻面多用各種材質的面磚裝飾。為保持大廈外表的清潔、美觀,應定期對外墻進行清洗。高層大廈玻璃幕墻和玻璃窗的外面,容易附著灰塵,需要經常擦拭,以保持大廈美潔和室內明亮。清洗大廈外墻和玻璃的外面,需要經常擦拭,以保持大廈美潔和室內明亮。清洗大廈外墻和玻璃的外面,需要在室外和高空中作業(yè)。高空玻璃擦拭法的工作大體如下: (1) 首先查看作業(yè)現場,確定作業(yè)方案。重點查看屋頂狀況,確認能否安裝吊籃、吊板;吊籃、吊板在屋頂移動有無障礙;霓虹燈、廣告字牌等是否防礙作業(yè)等。(2)安裝運載工具——吊籃或吊板。如大廈已安裝擦窗機,則按規(guī)范進行操作前的檢測。(3) 準備擦拭工具,包括水桶、清潔劑、毛滾、膠刮、毛巾以及備用輔助工具鏟刀、刮刀、溶劑等。(4) 作業(yè)人員攜帶工具上吊籃或吊板。有些工具應用松緊繩栓在吊籃或吊板上,以防一旦失手從高空落下傷人。在地面上設攔護繩和安全告示牌。(5) 作業(yè)方式為從上到下。每擦拭完一溜,整理工具、加清潔劑、橫向移動吊籃或吊板,再繼續(xù)第二溜作業(yè)。(6) 擦拭玻璃方法:檢查玻璃上有無粘著物等污跡,如有,先用刮刀等相應輔助工具和溶劑除去。將毛滾浸入桶中,待清潔劑充分吸入后,用手輕輕捋一下(以不入下滴水為宜),均勻涂抹在玻璃上。涂抹時,一般為由上往下滾,橫向移動,每趟滾跡要交叉相壓,以防漏涂。用膠刮將涂抹在玻璃上的清潔劑刮凈,操作時應稍用力,將膠刮均勻按壓在玻璃上,由上至下慢慢刮動,一次刮凈一溜,用濕毛巾擦凈膠刮后,再橫向移動刮另一溜。玻璃刮凈后,用毛巾將窗擦凈。確認一次應作業(yè)范圍的玻璃已擦拭完畢,滑動吊籃或吊板,繼續(xù)往下作業(yè)。(7) 全部作業(yè)完成后,收拾整理工具,撤去地面攔護繩和告示牌。并用步話機保持聯(lián)系。弄清屋頂狀況。確定水源、電源。 由上可知此清洗方法為危險作業(yè),勞動強度極大,而且所需大量勞動人員,效率低。 2)物理清洗法 主要是通過外力使污垢脫離建筑物的外墻,具體方法是用超聲波或水沖洗(或水噴淋),使污垢疏軟、剝離、融化,最后再用水沖洗干凈。該清洗方法對環(huán)境污染大,成本高,浪費大量能源和資源。 3)化學清洗法 化學清洗法是利用化學試劑對污垢進行溶解、分離、降解等化學反應,使外墻去污。此清洗方法對環(huán)境污染程度高,對人的身體健康損傷大。 針對以上三個清洗方法的缺點與不足,我們設計了一種投資小,成本低,安全可靠,工作效率高的全自動高層建筑外墻清機來解決以往的清洗常用用高空吊籃、吊板、升降臺等運載工具,作業(yè)難度大,危險性大。操作人員須經嚴格體檢,嚴格培訓,嚴格遵守操作規(guī)范和安全規(guī)范,作業(yè)時,屋頂和地面都要有人監(jiān)護,而且難免工作人失手,從高空落下傷人。避免人員勞動強度大,作業(yè)安全保證性低,成本和代價花費大。杜絕物理化學方法,污染嚴重,浪費資源。 發(fā)達國家,對建筑表面保持清潔重視較早,對高層建筑外墻的清洗,已淘汰了用提升設備載人進行的方法,開發(fā)出許多代替清洗工人擦洗的機器人。中央電視臺曾在新聞聯(lián)播中報道了日本在這一領域的最新成果,是利用遙控熱氣球懸吊擦洗機械來清洗高層建筑的外墻。 用機械代替人工清洗高側建筑外墻面,一方面不用工人高空作業(yè),安全可靠:另一方面是原清潔工人簡單卻繁重的擦洗動作,改由機器完成,可大大提高清洗效率,降低清洗成本。先進的清洗技術,又進一步促進了城市清洗行業(yè)的發(fā)展,為保證城市優(yōu)美的環(huán)境提供了技術保障。由此可見,開發(fā)代替人高空作業(yè)的清洗機械,是我國清洗技術領域的發(fā)展方向。 1.3 高層外墻清洗機簡介 我們設計了一種投資小,成本低,安全可靠,工作效率高的全自動高層建筑外墻清機。該機器分兩部分,一部分是在大樓頂上的清洗機升降機,清洗機升降機通過鋼絲繩,吊鉤帶動另一部分,即清洗機附在高層建筑外墻壁上進行清洗工作。全自動高層建筑外墻清機工作時,升降機的雙速電機啟動,通過鋼繩帶動機架迅速上升,上升到預定位置,雙速電機停止并制動,調整好清洗機的位置后,解除制動,雙速電機反向啟動,機架則緩慢向下移動,與此同時,機架頂部的噴淋水嘴噴水,各導軌上的刷具在各電機的帶動下沿各自的導軌往復移動的同時作旋轉運動,洗清墻外上的污漬,使外墻干凈潔白美觀。 本設計產品改變了多年以來人工吊拉清洗或一根繩一塊板吊人清洗的高危作業(yè)現象,實現了機電一體化。結構簡單,操作方便,投資小,成本低,安全可靠,工作效率高。一小時大約可清洗墻面600~800m2。 由于能力有限,設計中的錯誤在所難免,請大家給予批評和指證,謝謝! 第二章 整機的工作原理和主要參數 2.1 工作原理 清洗機包括機架,裝在機架頂部的噴淋水嘴,橫置于機架上的三根導軌,分別通過傳動機構受減速電機帶動的能沿導軌往復移動的刷具。每根導軌上有通過位于導軌頂部的與導軌配合的導向輪沿導軌移動的支座,沿導軌底部有齒條,傳動機構中與減速電機輸出軸上的主動鏈輪,位于導軌底部與導軌上的齒條嚙合的齒輪軸,裝在齒輪軸伸出支座的一端的從動鏈輪通過鏈條受主動鏈輪帶動,刷具裝在刷具軸上,工作時,打開減速電機,刷具軸帶動刷具旋轉清洗墻面,與此同時,刷具軸上的主動鏈輪通過鏈條帶動從動鏈輪轉動,從而齒輪軸轉動,齒輪相對于導軌上的齒條轉動而帶動支座沿導軌往復移動。 上述的控制器中有設置在每根導軌兩端上的行程開關。 清洗機升降機則包括雙速電機,制動器,渦輪蝸桿減速器,卷筒,提升桿臂,等構件。工作開始前,提升機在地面,清洗機升降機在大樓頂上。首先調整好升降機的位置并用支撐桿支撐到位,然后將吊鉤釋放到地面與清洗機連接好,啟動雙速電機正轉,則清洗機快速上升到預定位置,停止雙速電機,制動器制動防止清洗機在重力作用下自行下降。通過雙螺母調整提升桿臂的位置,使得清洗機靠近墻面,達到清洗刷毛貼住墻壁,保持在清洗過程中清洗刷對墻壁有一定的壓力。 這時,將大樓的自來水通過水管接到清洗機的機架頂部,做好準備后就可以解除制動,反向啟動雙速電機了,同時打開水管。這樣,清洗機就開始慢速下降清洗墻面了。當清洗機走完一個上下來回時,停止雙速電機,則重新調整提升機的位置,接著清洗墻面。 2.2 主要參數 雙速電機額定功率: 2.4KW、 1.5KW; 雙速電機額定轉速: 1500r/min、 750/min; 減速器傳動比: 8 卷筒轉速約: 186 r/min、 93 r/min、 鋼絲繩上升速度約: 0.6m/s; 鋼絲繩下降速度約: 0.3m/s; 第三章 清洗機提升機的設計 3.1 鋼絲繩的選擇 由于有兩根鋼絲繩同時吊著清洗機,則我們在計算時取單根鋼絲所承受的最大拉力為總載荷的66%。 鋼絲繩的最小直徑: (d—鋼絲繩最小直徑,c—選擇系數,s—鋼絲繩的最大工作靜拉力)。 由文獻[2]8—12頁得:提升機構的工作級別為A8,則c=0.140,鋼絲繩的公稱抗拉強度為1550mpa. =0.140=5.28mm. 我們暫時取d=6mm.并選用鋼絲繩6NAT16 SF1470 Z17.5 12.4 GB/T8918.即公稱直徑為6mm,光面,合成纖維芯,公稱抗拉強度為1470MPa,右向捻,最小破斷力為17.5KN,12。4Kg/100的MGB/T8918類鋼絲。 鋼絲繩的安全系數,按文獻[2]中的第14式: Ks= ==8.9[Ks]=6 驗算所選的鋼絲繩合格 3.12 定位支撐桿的設計 定位支撐桿的作用是支撐起整個起升機構,因此它的要求比較高。我們在這里考慮選用帶有矩形螺紋的支撐,其螺紋牙型如下圖所示: 圖五:矩形螺紋牙型 初設小徑d=24mm,則大徑d=1.25d=30mm,螺距P=0.25d=6mm,實際牙型高h=0.5P+(0.1~0.2)=3.2mm,則小徑d=d-2h=23.6mm,牙底寬W=0.5P+(0.03~0.05)=3.03mm,頂寬f=P-W=2.97mm. 支撐桿的螺紋長度l=140mm,螺紋下面的非螺紋部分b=150mm, 螺紋上面的非螺紋部分c=10mm,頭部長度k=18.7mm.則總長L=l+b+c+k=318.7mm. 為了防止在支撐過程中打滑,則我們在支撐桿的下面裝上一個防滑套,其厚度m=10mm.這樣以來,可支撐的總高度H=l+b+m=300mm,比未支撐時的235mm高出65mm,滿足使用要求了。 3.13 控制電路的設計 1.電路原理圖如下 圖六:電器原理圖 2.電路原理圖說明 上面的電路原理圖是我們前面所選雙速電機的變速控制線路,如圖所示,通過轉換開關QB手動控制來選取所需的轉速。當吊鉤和清洗機連接好了以后,把QB扳到“2”的位置,再按下2SB,則2KM得電且自鎖,使電動機定子繞組連成“丫丫”型并接入電網高速運行。此時就是提升機提著清洗機以大概0.6m/s的速度快速上升;當清洗機上升到適當的位置時,按下停止按鈕SB停止上升。調整清洗機與墻壁的位置從而達到清洗機工作的位置。把QB扳到“1”的位置,再按下1SB,則1KM得電且自鎖,使電動機定子繞組連成“”型并接入電網低速運行。此時就是提升機提著清洗機以大概0.3m/s的速度慢速下降;此時為清洗機清洗墻面的工作時間,當清洗機下降到地面時,按下停止按鈕SB停止下降。調整升降機的位置,準備下一輪的清洗工作。在此電路圖中接觸器1KM與2KM(或3KM)互鎖,使二者不會同時得電,以避免電源短路等事故。 設計總結及展望 歷時兩個多月的努力,我的畢業(yè)設計終于接近尾聲,隨之而來的是大學生涯的滿結束。在這次設計過程中不僅把以前四年的知識鞏固復習了一下,還學到了一些新的東西,可以說既有喜悅又有辛酸,喜得是在工作之前能再有一次這樣的機會來把四年的理論知識運用到實際上,可以說這是走向社會的一次實戰(zhàn)模擬,能完成它就是對我四年學習的一種肯定。但單獨設計一個整體的、完整的、可以投產的機器,我們還是感到較大的難度的,因為它涉及知識面廣,工作量大,而且許多東西都是要按設計手冊規(guī)劃的,因此在設計中也感到任務的艱巨。 本次設計的內容是全自動高樓外墻清洗機的整體方案設計,具體設計包括清洗機的起升機構,自動控制方案的設計和電路圖的繪制。雖然在設計過程中遇到很多困難,但畢竟給我們帶來了很多有價值的東西,這套機器的整體不僅僅光是機械部分的,它是需要采用電器控制來完成、實現動作的,通過設計翻閱大量資料,對力學、材料及電器控制方面的知識有了更進一步的理解,培養(yǎng)了團結合作的意識,鍛煉了運用資料及查閱文獻和設計手冊的能力,這些也就是此次設計的最大收獲。 畢業(yè)設計是我在大學學習階段的最后一個環(huán)節(jié),是對所學基礎知識和專業(yè)知識的一種綜合應用,是一種綜合的再學習、再提高的過程,這一過程有助于培養(yǎng)自己的學習能力和獨立工作能力。 通過本次畢業(yè)設計,我感到自己應用基礎知識及專業(yè)知識解決問題的能力有了很大的提高,因此,是在我即將工作之前,它是一次重要演練。我想,通過這次畢業(yè)設計,到了工作單位后,我將能夠更快的適應工作崗位和工作要求。我對自己充滿信心。 畢業(yè)設計是大學里最后一次真正學習的機會。在設計中幾乎用到了大學里所有的基礎知識。最后感謝何睿同學與我合作及其幫助,特別感謝趙又紅老師及楊世平老師對我孜孜不倦的指導和教誨。 參 考 文 獻 [1] 成大先主編.機械設計手冊.減(變)速器電機與電器.北京:化學工業(yè)出版社.2004 [2] 成大先主編.機械設計手冊.單行本彈簧起重運輸件,五金件.北京:化學工業(yè)出版社.2004 [3] 成大先主編.機械設計手冊.單行本機械傳動.北京:化學工業(yè)出版社.2004 [4] 成大先主編.機械設計手冊單行本機械制圖極限與配合.北京:化學工業(yè)出版社.2004 [5] 席偉光,楊光,李波主編.機械設計課程設計.北京:高等教育出版社.2003 [6] 符偉主編.機構設計學.長沙:湖南大學出版社.2000 [7] 孫開元,李長娜主編.北京:化學工業(yè)出版社.2006 [8] 紀名剛主編.機械設計(第七版).北京:高等教育出版社.2001 [9] 崔洪斌,高偉,王瑜主編.AutoCAD 2005機械圖形設計.北京:清華大學出版社.1985 [10] 高為國主編.機械工程材料基礎.長沙:中南大學出版社.2004 [11] 成大先主編.機械設計手冊單行本聯(lián)接與緊固.北京:化學工業(yè)出版 翻譯部分 中文譯文 關于二柱掩護式支架與頂板之間相互作用的研究 二柱掩護式支架如圖1所示。為了評定支架的適應性,通常有兩個特性要考慮: 頂板控制影響 顯然,掩護式支架更容易阻止冒落矸石掉在工作面上,但是它更難阻止冒落矸石掉在遮蓬區(qū)。根據來自陽泉和翟梨的資料顯示,下落時間導致停止生產,歸因于下落頂板在遮蓬區(qū)大約是40%~60%的下落時間在工作區(qū)。頂板沿著朝向倒塌。就是說,在一個裝有二柱掩護式支架的面上更多關注的是頂板及時控制問題,特別是面向遮蓬區(qū)。 在頂板壓力作用下對支護結構的作用 近期來自煤礦的報道證明,二柱掩護式支架已經在頂板壓力作用下破壞,特別是遮蓬和穩(wěn)定柱面連接處。明顯的是這種支架的支護空間被認為對一些頂板條件不夠,并且必須改進。 二柱掩護式支架加載條件分析 作用在二柱掩護式遮蓬上的壓力:頂板壓力,來自立柱的力,撞擊,遮蓬和洞穴保護的銷軸,頂梁和頂板的破碎表面。 假設表面破碎和作用在掩護梁上的力不考慮,可以得到下面的公式: 上式中符號的意思表達在圖4a中。 假設 然后我們可以得到下面的公式。 可以看出,當P增大到屈服載荷P+,力因此在撞擊中形成象在圖4b中曲線Z所描述的。事實上撞擊的推拉力有一個屈服載荷。例如,對于掩護式支架W.S.1.7,屈服力是推力67.7t和拉力62.4t。因此,撞擊力的曲線如圖4b所示。那么總的載荷Ps整個的支架給出如下: 假設W=0,那么 因此,根據頂板作用在頂梁上的壓力的位置和支架支護的表現,我們可以遮蓬劃分為3個工作區(qū),即,II-BC區(qū),立柱的載荷P等于P+,Ⅱ-BC區(qū),立柱載荷P等于P+和Ⅲ-CD區(qū),和撞擊的載荷力等于-Z(撞擊的屈服力是拉力)。 支撐立柱承受力的特性和每個遮蓬區(qū)上的沖擊顯示如下: Ⅰ區(qū) Z=+Z ; Ⅱ區(qū) P=P+ Ⅲ區(qū) Z=-Z- 顯然,作用在Ⅰ和Ⅲ區(qū)遮蓬上的反作用力是由沖擊的屈服載荷產生的。例如,如果Z等于0,在Ⅰ和Ⅲ區(qū)支護本身的反作用力將失去和反作用力丟失和只有當來自相應區(qū)域的一些附加力存在時反作用力將產生。在Ⅰ或Ⅲ區(qū),存在由頂板產生的平衡力。如果沖擊的屈服載荷產生了,顯然,Ⅱ區(qū)的距離將變的更寬,并且Ⅰ或Ⅲ區(qū)上的反作用力將由此增加。這些如圖5所示。 頂板壓力和支護反作用力的相互作用 眾所周知,作用在支護頂梁上的頂板壓力可以分成兩個部分,它們是:由及時頂梁產生的Q1,由主頂梁產生的Q2,顯示在圖6中。 作為通用法則,作為一個不連續(xù)的媒體被考慮和存在一個沿著洞穴的自由面。載荷Q1固定作用在支護上,載荷分布在遮蓬區(qū)可以認為是均布的。來自主頂梁的載荷Q2被作為一個集中載荷考慮,作用在及時頂梁和支護保護?;陧敯鍦y量顯示,發(fā)現主頂梁過度層可以作為由大量的巖石連續(xù)互鎖形成的一種結構。當煤高度提高,每一石塊滑向另一石塊。主頂梁在圖7中顯示。 顯然,來自主頂梁的載荷作用位置首先依靠石塊在主頂梁上的穩(wěn)定條件。Q2可以作用在掩護區(qū)的前部和尾部。其次,依靠及時頂梁下落的位置。Q2。如果條件反向,那么力作用在前部遮蓬的位置。 結果,頂梁壓力Q作用在遮蓬上因此可以從Q1和Q2連接起來。 當頂梁壓力Q作用在I區(qū)和Q>Ps,將首先減輕沖擊的影響。那么遮蓬前部將向下轉和平衡力Q3將在遮蓬尾部產生。顯然,在這種情況下,在遮蓬尾部以上的頂板保持完整或者不能剪斷。聯(lián)合作用(Q+Q3)的作用點移向Ⅱ區(qū)直到聯(lián)合作用(Q+Q3)等于支護的反作用力Ps。在相反條件下,平衡作用Q3將在Ⅰ區(qū)產生。 從這我們能看出這類支架的反作用力因此能形成在當平衡力Q3產生和作用在遮蓬的條件下。就是說,及時頂梁不能完全剪斷。 根據以上提到的分析,現在考慮在下列不同的條件下:頂梁未知和支護阻力Ps的反作用力等于P+(立柱的屈服載荷)。那么支護的反作用力可以按下式表達: Q+Q3=Ps 假設Ps=P+,那么 那么X在連接作用的位置(Q+Q3)的作用將變?yōu)? x=P+(1-A)z/B 假設頂板作用力Q作用在x1的位置,平衡作用力x3(原因是在于連接點),然后可以得到下式: Qx1+Q3x3=(Q+Q3)(p+(1-A)z/B) 和Q3等于: 頂板壓力Q的支護反作用力等于: 采用來代表支護作用,這有下面因素的聯(lián)系:幾何參數的支持,也就是參數p,A,B,和z;頂板壓力的作用位置x1;及時支護的平衡力作用位置x3。很明顯,越近,x1的值靠近Ⅱ區(qū),支護效率就越高。有時,x3的值作為遮蓬和及時頂梁之間相互關系的順序。當Q作用位置平衡力Q3等于0,支護效率,等于1。 圖8顯示,當變量頂板壓力Q作用在3個不同的位置,遮蓬Ⅰ區(qū)的位置x1和Ⅲ區(qū)不同順序x3,為了反抗頂梁壓力(Q),相應的平衡力Q3,和在Ⅲ區(qū)必須給出的不同的值。例如,當頂板壓力作用在遮蓬尖端和等于80t如果x3>37cm,那么沒有遮蓬作用力在遮蓬尾部形成。 因為頂板下落發(fā)生在面向遮蓬區(qū)變得不規(guī)則,因此為了遮蓬轉動遮蓬有3種操作條件:向下(<0○)向上(>10○)和從0○到10○不同的角度。根據翟梨煤礦收集的統(tǒng)計數據,遮蓬旋轉的操作條件,<0○說明3.5%和>15○,對應11%。 由于,頂板對頂板的作用位置是不同的,頂梁和掩護梁的角度是變化的。通過表1,我們可以看到方向變化的百分數占44.8%,意味著頂板壓力Q首先作用在Ⅰ區(qū)和平衡力Q3形成在Ⅲ區(qū);最后,合力(Q+Q3)作用位置將轉向Ⅱ區(qū)。在表1中負變量百分數占19.4%。 相似的結果也可以從翟梨煤礦的No.322工作面區(qū)域測量得出,在表2和圖9中的顯示。 顯然,頂板壓力作用在Ⅰ區(qū)或遮蓬的Ⅲ區(qū),如果合力作用(Q+Q3)位置移動到Ⅱ區(qū)。支架的操作條件是正常的。但是如果合力作用位置移到Ⅱ區(qū),和繼續(xù)向前或向后移動,支架將工作在非正常條件下。 英文原文 A STUDY OF THE INTERACTION BETWEEN THE 2-LEG SHIELD SUPPORT AND THE ROOF STRATA INTRODUCTION The 2-leg shield powered support is shown in Fig.1. It is known that in order to asses the adaptability of a powered support normally there are two principles to be considered: Fig.1 2-leg shield support EFFECTIVENESS OF ROOF CONTROL Obviously, shield support is much easier to prevent the broken rocks from falling into the working space, but it is much harder to prevent the broken rocks from falling into the face-to-canopy area. On the basis of the statistical data obtained from the Collieries Yang-Quan and Zhai-Li, the down-time leads to stop production due to falling roof in the face-to-canopy area is about 40-60% of the total down-time in the working face. Collapse of roof strata along the faceline is shown in Fig.2. That is to say, in a face installed with 2-leg shield powered support much more attention must be paid to the problem of immediate roof control, especially in the face-to-canopy area. EFFECT ON SUPPORT STRUCTURE UNDER THE ACTION OF ROOF PRESSURE Recent reports from some collieries reveal that 2-leg shield support has been broken under the action of roof pressure, especially at the joint of the canopy and the stabilizing cylinder as shown in Fig.3. It is evident that the supporting capacity of this type of support could not be considered as adequate to some such kind of roof conditions and must be improved. Fig.2 Collapse of a longwall face at the faceline Fig.3 Damage at the joint of the stabilizing cylinder and the canopy ANALYSIS OF LOADING CONDITION OF 2-LEG SHIELD SUPPOIRT The forces acting on the canopy of 2-leg shield support are: the roof pressure, the forces from the support legs, ram, hinge pin of the canopy and the caving shield, the surface friction between the canopy and the roof strata. Assuming that the surface friction and the force acting on the caving shield are not taken into account, the following formula can be obtained: The meanings of all the symbols used in this formula are illustrated in Fig.4a. Assuming that then we can obtain the following formula. It can be seen that When P is increased to the yield load P+, the force thus in the ram would be distributed as shown in curve Z in the Fig.4b. In fact the ram has a yield load in push and pull. For example, for the shield support W.S.1.7,the yield load in push is equal to 67.7t and in pull 62.4t. So the curve of the force from the ram would be redistributed in the face as curve Z+, and the curve of force for the support legs would be redistributed as carve P shown in Fig.4b. Then the total load Ps for the whole support can be given as follows: , Assuming that W=0, then: Thus, according to the position where the roof pressure acts on the canopy and refer the support performance to the load of the ram Z is equal to +Z, (the yield load of the leg ) and Ⅲ-CD zone, on which the load of ram is equal to –Z (the yield load of the ram in pull ). The load bearing characteristics of the support legs and the each zone of the canopy are shown as follows: Fig.4 Three working zones of support canopy Ⅰ zone Z=Z+. . Ⅱ zone P=P+ . Ⅲ zone Z=-Z- Obviously, the resistances of Ⅰ zone and Ⅲ zone on the canopy are produced by the yield load of the ram. For example, if Z is equal to zero, the resistance of the support itself in zones Ⅰ and Ⅲ would loss and the resistance can be produced only when there exists some additional forces from the corresponding zones. In zone Ⅲ or Ⅰ. There exists a balance force produced by the roof strata. If the yield load of the ram is increased, obviously, the interval of the Ⅱ zone would become much wider, and the resistance on the zones Ⅰ and Ⅲ will be increased accordingly. There are shown in Fig.5. Fig.5 Resistance Curve of different yield load of ram INTERACTION BETWEEN ROOF PRESSURE AND SUPPORT RESISTANCE It is well- known that the roof pressure acting on the canopy of the support can be divided into two components, they are: Q1 produced by the immediate roof and Q2 by the main roof, as shown in Fig.6. As a general rule, the immediate roof can be considered as a discontinuous media (like a loose body) and there is a free face along the caving line. Load Q1 acts steadily on the supports. Load distribution on the canopy may be considered as uniform. Load Q2 from the main roof may be considered as a concentrated load which acts on the immediate roof and then acts on the canopy of the support. Based on the displacement measurement of roof strata it has been found that the main roof of the overlying strata can be considered as a structure formed by layers of rock blocks interlocking with one another, when the coal face advances, each block becomes to move forming a turning block. The displacement of the main roof is shown in Fig.7. Obviously, the acting position of the load from the main roof firstly depends on the stability condition of the blocks in the main roof. Q2 can act either in front or in the rear of the canopy. Secondly, it depends on the position where the immediate roof falls. If the front section of the immediate roof is fractured and falls into the working space, then the force from the main roof would act on the canopy. If the condition is opposite to this, then the force would act on the position in front of the canopy. Consequently, the roof pressure Q acting on the canopy can thus can be combined from those of Q1 and Q2. Fig.6 Roof Pressure Produced by the main roof and the immediate roof Fig.7 Displacement of the main roof When the pressure Q acts on zone Ⅰ and Q>Ps, the relief valve of the ram would firstly open ,then the front part of the canopy would turn downwards and the balance force Q3 would be produced in the rear part of the canopy must be kept intact or must not cave equal to the resistance force (Ps) of the support. In the opposite condition the balance force Q3 would be produced in zone Ⅰ. From this we can see that the resistance of this type support can thus be formed in the condition when the balance force Q3 occurs on the canopy. That is to say, the immediate roof must not cave at all. According to the analysis mentioned above, now consider that is under the different conditions: The roof is unbroken and the resistance of the support Ps is equal to P+ (the yield load of the legs). Then the resistance of the support can be expressed as follows: Q+Q3=Ps Assume Ps=P+, so that Then the acting position where the roof pressure Q acts would become x=P+(1-A)z/B Assume that the acting position where the roof pressure Q acts is at x1, and the balance force Q3 is x3 (the origin is in the hinge pin point), then the following formula is obtained: Qx1+Q3x3=(Q+Q3)(p+(1-A)z/B) The roof pressure Q which the support can resist is equal to: The roof pressure Q which the support can resist is equal to: Take to stand for the efficiency of the support, obviously, this has relation with the following factors: the geometrical parameters of the support, i.e. parameters of the balance force (reaction) of the immediate roof x3. It is obvious that the nearer the value x1 approaches to zone Ⅱ, the higher the efficiency of the support would be. Something the value x3 can be represented as an index to stand for the interactive relation between the canopy and the immediate roof. When Q acts in the position , the balance force is equal to zero, and the efficiency of support , is equal to 1. Fig.8 shows that when a variable roof pressure (Q) acts in three different positions (x1) in the zone Ⅰ of the canopy and with different index x3 in zone Ⅲ, in order to resist the roof pressure (Q), a corresponding balance reaction force Q3 with different values must be given in zone Ⅲ. For example, when the roof pressure is acting on the tip of the canopy and is equal to 80t if x3>37cm. then there would be no such balance force formed in the rear part of the canopy. Because roof fall occurs in the face-to-canopy area where the roof would become irregular, thus the canopy would have three kinds of operating condition for the canopy to swing: downwards (<0○) upwards (>10○) and at an angle from 0○ to 10○. According to statistical data collected from Zhai-Li Colliery, the percentage of the operating of the operating conditions of the canopy swinging canopy in <0○ accounts for 3.5% and that of in >15○, for 11%. Due to the fact that the acting position of the roof pressure on the canopy is different, the angle between the canopy and the caving shield may be variable. Table1 shows the variation accounts for 44.8%, which means that the canopy and the caving shield may be variable. Table1 shows the variation of this angle in each operation cycle. From Table1, we can see that the percentage of positive variation accounts for 44.8%, which means that the roof pressure (Q) firstly acts on zone Ⅰ and than the balance force (reaction) (Q3) is formed on zone Ⅲ;finally, the acting position of the combined force (Q+Q3) would move t- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 高層建筑 外墻 清洗 升降機 部分 設計
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.zhongcaozhi.com.cn/p-8135228.html