西北工業(yè)大學(xué)彈性力學(xué)課件第二章.pps
《西北工業(yè)大學(xué)彈性力學(xué)課件第二章.pps》由會(huì)員分享,可在線閱讀,更多相關(guān)《西北工業(yè)大學(xué)彈性力學(xué)課件第二章.pps(32頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第二章應(yīng)力狀態(tài) 研究對(duì)象 三維彈性體微分單元體入手超靜定問(wèn)題靜力平衡 幾何變形和本構(gòu)關(guān)系等三方面的條件本章從靜力學(xué)觀點(diǎn)出發(fā) 討論一點(diǎn)的應(yīng)力狀態(tài) 建立平衡微分方程和邊界條件 目錄 2 1體力和面力 2 2應(yīng)力與應(yīng)力張量 2 3二維應(yīng)力狀態(tài)與平衡微分方程 2 4應(yīng)力狀態(tài)的描述 2 5邊界條件 2 6主應(yīng)力與應(yīng)力主方向 2 7應(yīng)力球張量和球應(yīng)力偏張量 2 1體力和面力 物體外力 分為兩類(lèi)體力面力體力和面力分別為物體單位體積或者單位面積的載荷 2 2應(yīng)力與應(yīng)力張量 內(nèi)力 外界因素作用下 物體內(nèi)部各個(gè)部分之間的相互作用力 附加內(nèi)力應(yīng)力應(yīng)力矢量pn隨截面的法線方向n的方向改變而變化 應(yīng)力狀態(tài) 一點(diǎn)所有截面應(yīng)力矢量的集合 顯然 彈性體內(nèi)某確定點(diǎn)各個(gè)截面的應(yīng)力 應(yīng)力狀態(tài)必然存在一定的關(guān)系 應(yīng)力狀態(tài)分析 討論一點(diǎn)截面方位改變引起的應(yīng)力變化趨勢(shì) 應(yīng)力狀態(tài)對(duì)于結(jié)構(gòu)強(qiáng)度是十分重要的 準(zhǔn)確描述應(yīng)力狀態(tài) 合理的應(yīng)力參數(shù) 為了探討各個(gè)截面應(yīng)力的變化趨勢(shì) 確定可以描述應(yīng)力狀態(tài)的參數(shù) 通常將應(yīng)力矢量分解 2 2應(yīng)力2 應(yīng)力矢量沿坐標(biāo)分解 沒(méi)有工程意義正應(yīng)力和切應(yīng)力正應(yīng)力sn與切應(yīng)力tn與結(jié)構(gòu)強(qiáng)度關(guān)系密切根據(jù)截面方位不能完全確定切應(yīng)力應(yīng)力分量 應(yīng)力張量應(yīng)力張量可以描述一點(diǎn)應(yīng)力狀態(tài) 2 2應(yīng)力3 應(yīng)力張量 應(yīng)該注意 應(yīng)力分量是標(biāo)量箭頭僅是說(shuō)明方向 2 2應(yīng)力4 2 3平衡微分方程 平衡物體整體平衡 內(nèi)部任何部分也是平衡的 對(duì)于彈性體 必須討論一點(diǎn)的平衡 微分平行六面體單元 平衡微分方程 切應(yīng)力互等定理 2 5平衡方程2 2 4應(yīng)力狀態(tài) 如果應(yīng)力張量能夠描述一點(diǎn)的應(yīng)力狀態(tài) 則應(yīng)力張量可以描述其它應(yīng)力參數(shù) 坐標(biāo)變換與應(yīng)力張量關(guān)系 最大應(yīng)力及其方位的確定 公式表明 已知應(yīng)力張量 可以確定任意方位微分面的應(yīng)力矢量 當(dāng)然可以確定正應(yīng)力sn與切應(yīng)力tn 應(yīng)力矢量與應(yīng)力分量的關(guān)系 2 4應(yīng)力狀態(tài)2 應(yīng)力不僅隨位置改變而變化 而且隨截面方位改變而變化 同一點(diǎn)由于截面的法線方向不同 截面上的應(yīng)力也不同 討論應(yīng)力分量在坐標(biāo)變換時(shí)的變化規(guī)律 2 4應(yīng)力狀態(tài)3 任意斜截面的應(yīng)力轉(zhuǎn)軸公式 應(yīng)力分量滿足張量變化規(guī)則應(yīng)力張量為二階對(duì)稱張量轉(zhuǎn)軸公式表明 新坐標(biāo)系下的六個(gè)應(yīng)力分量可通過(guò)原坐標(biāo)系的應(yīng)力分量確定 應(yīng)力張量可以確定一點(diǎn)的應(yīng)力狀態(tài) 坐標(biāo)軸轉(zhuǎn)軸后 應(yīng)力分量發(fā)生改變 但是作為整體所描述的應(yīng)力狀態(tài)沒(méi)有變化 2 4應(yīng)力狀態(tài)4 平面應(yīng)力狀態(tài)轉(zhuǎn)軸公式 彈性力學(xué)以坐標(biāo)系定義應(yīng)力分量 材料力學(xué)以變形效應(yīng)定義應(yīng)力分量 正應(yīng)力二者定義沒(méi)有差異而切應(yīng)力定義方向不同 2 4應(yīng)力狀態(tài)5 2 5邊界條件 彈性體的表面 應(yīng)力分量必須與表面力滿足面力邊界條件 維持彈性體表面的平衡 邊界面力已知 面力邊界Ss 面力邊界條件 確定的是彈性體表面外力與彈性體內(nèi)部趨近于邊界的應(yīng)力分量的關(guān)系 2 5邊界條件2 面力邊界條件描述彈性體表面的平衡 平衡微分方程描述彈性體內(nèi)部的平衡 這種平衡只是靜力學(xué)可能的平衡 真正處于平衡狀態(tài)的彈性體 還必須滿足變形連續(xù)條件 2 5邊界條件3 位移邊界條件邊界位移已知 位移邊界Su位移邊界條件就是彈性體表面的變形協(xié)調(diào)彈性體臨近表面的位移與已知邊界位移相等 2 5邊界條件4 混合邊界條件彈性體邊界S Ss Su部分邊界位移已知 位移邊界Su部分邊界面力已知 面力邊界Ss不論是面力邊界條件 位移邊界條件 還是混合邊界條件 任意邊界的邊界條件數(shù)必須等于3個(gè) 2 6主應(yīng)力與應(yīng)力主方向 轉(zhuǎn)軸公式描述了應(yīng)力隨坐標(biāo)轉(zhuǎn)動(dòng)的變化規(guī)律結(jié)構(gòu)強(qiáng)度分析需要簡(jiǎn)化和有效的參數(shù) 最大正應(yīng)力 最大切應(yīng)力以及方位主應(yīng)力和主平面 應(yīng)力狀態(tài)分析重要參數(shù)應(yīng)力不變量 進(jìn)一步探討應(yīng)力狀態(tài) 主應(yīng)力和主平面主應(yīng)力分析 關(guān)于l m n的齊次線性方程組 非零解的條件為方程組的系數(shù)行列式等于零 即 2 6主應(yīng)力2 展開(kāi) 其中 主元之和 代數(shù)主子式之和 應(yīng)力張量元素構(gòu)成的行列式 主應(yīng)力特征方程 2 6主應(yīng)力3 應(yīng)力狀態(tài)特征方程 確定彈性體內(nèi)部任意一點(diǎn)主應(yīng)力和應(yīng)力主軸方向 主應(yīng)力和應(yīng)力主軸方向取決于載荷 形狀和邊界條件等 與坐標(biāo)軸的選取無(wú)關(guān) 因此 特征方程的根是確定的 即I1 I2 I3的值是不隨坐標(biāo)軸的改變而變化的 I1 I2 I3分別稱為應(yīng)力張量的第一 第二和第三不變量 2 6主應(yīng)力4 特征方程有三個(gè)實(shí)數(shù)根s1 s2 s3分別表示這三個(gè)根 代表某點(diǎn)三個(gè)主應(yīng)力 對(duì)于應(yīng)力主方向 將s1 s2 s3分別代入 和l2 m2 n2 1則可求應(yīng)力主方向 2 6主應(yīng)力5 主應(yīng)力和應(yīng)力主方向取決于結(jié)構(gòu)外力和約束條件 與坐標(biāo)系無(wú)關(guān) 因此特征方程的三個(gè)根是確定的 特征方程的三個(gè)根 即一點(diǎn)的三個(gè)主應(yīng)力均為實(shí)數(shù) 根據(jù)三次方程性質(zhì)可以證明 任意一點(diǎn)三個(gè)應(yīng)力主方向是相互垂直的 三個(gè)應(yīng)力主軸正交的 應(yīng)力不變量性質(zhì) 坐標(biāo)系的改變導(dǎo)致應(yīng)力張量各分量變化 但應(yīng)力狀態(tài)不變 應(yīng)力不變量正是對(duì)應(yīng)力狀態(tài)性質(zhì)的描述 2 6主應(yīng)力6 不變性實(shí)數(shù)性正交性 主應(yīng)力正交性證明 下面證明下述結(jié)論 1 若s1 s2 s3 特征方程無(wú)重根 應(yīng)力主軸必然相互垂直 2 若s1 s2 s3 特征方程有兩重根 s1和s2的方向必然垂直于s3的方向 而s1和s2的方向可以是垂直的 也可以不垂直 3 若s1 s2 s3 特征方程有三重根 三個(gè)應(yīng)力主軸可以垂直 也可以不垂直 任何方向都是應(yīng)力主軸 2 6主應(yīng)力7 設(shè)s1 s2 s3的方向分別為 l1 m1 n1 l2 m2 n2 和 l3 m3 n3 則 分別乘以l2 m2 n2 分別乘以 l1 m1 n1 六式相加 可得 2 6主應(yīng)力8 如果s1 s2 s3 3個(gè)應(yīng)力主方向相互垂直 如果s1 s2 s3 可以等于零 也可以不等于零 s3與s1和s2的方向垂直 而s1和s2的方向可以垂直或不垂直 s3的垂直方向都是s1和s2的應(yīng)力主向 2 6主應(yīng)力9 如果s1 s2 s3 則l1l2 m1m2 n1n2l2l3 m2m3 n2n3l1l3 m1m3 n1n3均可為零或者不為零 任何方向都是應(yīng)力主方向 因此問(wèn)題可證 1 若s1 s2 s3 應(yīng)力主軸必然相互垂直 2 若s1 s2 s3 s1和s2必然垂直于s3 而s1和s2可以是垂直的 也可以不垂直 3 若s1 s2 s3 任何方向都是應(yīng)力主軸 2 6主應(yīng)力10 主應(yīng)力是一點(diǎn)所有微分面上最大或最小的正應(yīng)力 主應(yīng)力和主平面分析確定最大正應(yīng)力及其作用方位 最大切應(yīng)力的確定 討論任意截面正應(yīng)力和切應(yīng)力的變化趨勢(shì) 應(yīng)力圓 最大切應(yīng)力以及方位的確定 2 6主應(yīng)力11 正應(yīng)力和切應(yīng)力分析123應(yīng)力圓最大切應(yīng)力方位 2 6主應(yīng)力12 2 7應(yīng)力球張量和應(yīng)力偏張量 應(yīng)力張量的分解應(yīng)力球量改變單元體體積 應(yīng)力偏量改變單元體形狀 八面體單元 2 7應(yīng)力分解2- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 西北工業(yè)大學(xué) 彈性 力學(xué) 課件 第二
鏈接地址:http://www.zhongcaozhi.com.cn/p-7235412.html