0摘 要隨著當今工業(yè)設備對精密程度的要求越來越高,加工設備的機械加工設備的加工的精密程度也要求越來越高。而在中國的機械加工設備的車床中普通車床占了很大比例。這已經(jīng)越來越制約著當今工業(yè)的發(fā)展。而數(shù)控機床由于價格昂貴,且需要較高技術的加工工人。所以對機床進行自動化改造很是必要。本篇論文是在對普通臥式車床 CA6140 的基礎上對其進行機電一體化改造。作者在搜索、查閱研究大量有關資料的基礎上,對機床自動化改造技術進行了深入的研究和分析,并描述了機床控制系統(tǒng)的設計。整個改造過程主要對車床縱、橫向進給系統(tǒng)進行改造,絲杠選用摩擦損失小,效率高,精度高,壽命長的滾珠絲杠,電機選用步進電機,電動機與滾珠絲杠用齒輪減速;刀架改造成能自動換刀的回轉(zhuǎn)刀架,由脈沖發(fā)生器來加工所需要的螺紋;整個控制系統(tǒng)以 JKW-15T 型號的單片機為中心,通過編程對機床的驅(qū)動設備進行控制以達到所需要的加工程度。關鍵詞:機床改造; 自動化機床; 控制系統(tǒng)1ABSTRACTWith the development of industry equipment, the precision required of industry equipment is more and more high. The more and more precision of equipment which machined the industry equipment is required. But in China the common lathe have a very great comparison in the machined equipment, this already restrict the development of industrial nowadays. But the CN lathe is more expensive, and needed workers with higher technically. So it is a necessity very much to modify the common lathe to lathes automatic. This paper is in the foundation of the commonness horizontal lather CA6140 and modified it to Lathes automatic.The author has performed the further research and for the lathes automatic modification on the basis of the constant consultation of abundant relative documents, which focuses on describing the design of control of the machine. Screw on the choice of friction loss, high efficiency, high precision, long life of the ball screw, the electrical selected stepper motor, motor and the ball screw with gear deceleration.The main to modify the lathe is to modify the portrait, horizontal enter to the system in the Whole modification process and choose the automatic knife rest and be processed the thread need by pulser. The whole control system with the CPU of JKW-15T is to control the machine for center, through a plait distance drive tool machine an equipments to carry on control to attain need of process degree.Key words: Machinery Tool Reform; Lathes automatic; Servo system2目 錄第一章 緒 論 .11.1 機電一體化的發(fā)展 .11.1.1 機電一體化技術 .11.1.2 機電一體化發(fā)展概述 .21.2 機電一體化改造的必要性 .31.2.1 機床改造的意義 .31.2.2 機床改造的市場 .41.3 機電改造的內(nèi)容 .61.4 本文的選題及主要研究內(nèi)容 .81.4.1 本文的選題 .81.4.2 主要研究內(nèi)容 .81.5 車床總體改造方案 .91.5.1 設計基本思路 .91.5.2 設計要求 10第二章車床改造的機械部分設計 132.1 進給系統(tǒng)機械結(jié)構(gòu)改造設計 132.2 進給伺服系統(tǒng)機械部分的計算與選型 152.2.1 確定系統(tǒng)的脈沖當量 152.2.2 切削力計算 162.3 滾珠絲杠的設計計算與選用 172.3.1 滾珠絲杠簡介 172.3.2 縱向滾珠絲杠的設計與計算 182.3.3 橫向滾珠絲杠的設計與計算 262.3.4 滾珠絲杠的安裝與使用 332.4 電機與滾珠絲杠連接用減速齒輪的設計與校核 362.4.1 齒輪傳動 362.4.2 縱向減速齒輪的設計與校核 372.4.3 橫向減速齒輪的設計與校核 412.5 進給系統(tǒng)的步進電動機的計算與選擇 452.5.1 步進電動機 4532.5.2 縱向電機的計算與選擇 482.5.3 橫向電機的計算與選擇 512.6 電動刀架選擇與介紹 55第 3 章 主軸脈沖發(fā)生器介紹與選型 .583.1 光電編碼器原理 583.2 主軸脈沖發(fā)生器的安裝 603.3 主軸脈沖發(fā)生器的選擇 60第四章 控制裝置的選用 .634.1 JWK-15T 的簡介 634.2 功能分配 654.3 程序設計 67第五章 結(jié)論 78參考文獻 79英文原文 81中文譯文 90致 謝 97567840第一章 緒 論1.1 機電一體化的發(fā)展1.1.1 機電一體化技術機電一體化的實質(zhì)是機械工程技術與微電子技術的結(jié)合。機電一體化技術是一門跨學科的綜合性的復合技術,它隨機械工程技術、微電子技術、計算機技術、激光技術、材料工程技術的發(fā)展而進步。機電一體化的一些共性關鍵技術有:信息處理技術、檢測傳感技術、自動控制技術、伺服傳動技術、精密機械技術、系統(tǒng)總體技術等。把機電一體化技術應用于生產(chǎn)和生活所開發(fā)出來的新產(chǎn)品叫做機電一體化產(chǎn)品。數(shù)控機床、機器人、全自動智能洗衣機等是典型的機電一體化產(chǎn)品。在發(fā)達國家中,機床的數(shù)控化已達 25%以上,而我國還不到 1%。但是,隨著國民經(jīng)濟的發(fā)展,各行業(yè)對數(shù)控機床的需求量將增加。世界機器人的擁有量在未來 10 年將以 25%~30%的速度增長,將進入生產(chǎn)自動化、航天、深海以及軍事、農(nóng)業(yè)、辦公、醫(yī)院、家庭、社區(qū)等諸多領域。像全自動智能洗衣機這樣生活領域中的許許多多機電一體化產(chǎn)品已經(jīng)被人們所喜愛,還在被大量地開發(fā)出來。以信息為主要工作對象,既有控制功能的系統(tǒng)工程可稱為機電一體化系統(tǒng)。比如,CIMS 是比較大的機電一體化系統(tǒng)工程。它將制造系統(tǒng)、設計系統(tǒng)、經(jīng)營管理系統(tǒng)、信息數(shù)據(jù)系統(tǒng)通過計算機系統(tǒng)及通信網(wǎng)絡聯(lián)系起來。它是一個閉環(huán)反饋系統(tǒng),輸入的是關于產(chǎn)品的概念和需要,輸出的是經(jīng)檢驗合格可交付使用的產(chǎn)品,實現(xiàn)機械工廠綜合自動化。11.1.2 機電一體化發(fā)展概述人類用機器體系代替手工勞動生產(chǎn)是在 1785 年蒸汽機在紡織工廠的使用而開始的。1873 年出現(xiàn)的第一臺凸輪控制車床,開始了機械自動化的進程。1910~1920 年美國福特汽車公司通過設計制造大量專用機床,首先建立生產(chǎn)流水線,創(chuàng)造平均每分鐘生產(chǎn)一輛汽車的記錄,并使生產(chǎn)成本大大降低。20 世紀 40 年代后期,人們利用機器的、電氣的和液壓的自動化裝置,設計制造出各種高效的自動化機床,并用自動輸送帶將各個單獨的機床連接成自動生產(chǎn)線,從而使單一的品種大量生產(chǎn)為特征的剛性自動化生產(chǎn)達成成熟階段。自動化生產(chǎn)對提高勞動生產(chǎn)率、保證產(chǎn)品質(zhì)量,降低產(chǎn)品成本和推動社會進步起了不可估量的作用。20 世紀 40 年代世界上誕生了第一臺數(shù)字計算機,使數(shù)控技術(Numerical Control-NC)的出現(xiàn)成為可能,1952 年美國麻省理工學院首先研制成專用電子計算機控制的三坐標立式數(shù)控銑床,解決了單件小屁生產(chǎn)自動化問題,開創(chuàng)了將計算機應用于機械裝備自動控制的新時代。1958 年,第一臺具有自動換刀裝置和刀庫的數(shù)控機床即加工中心(Machining Center-MC)在美國研制成功,進一步提高了數(shù)控機床的自動化程度。第一臺工業(yè)機器人(Industrial Robot)于 1959 年出現(xiàn)于美國。最早的工業(yè)機器人是極坐標式的,它的出現(xiàn)對自動化制造技術具有很大的意義。工業(yè)機器人可自動進程裝配、焊接、噴漆、熱處理、清砂、澆注鑄件以及在惡劣環(huán)境中工作等。1960 年,美國研制成功自適應控制機床(Adaptive Control Machine Tools) ,使機床具有一定的智能,可以有效提高加工質(zhì)量。 1962 年和 1963年又相繼在美國出現(xiàn)了圓柱坐標式工業(yè)機器人和計算機輔助設計及繪圖系統(tǒng)(Computer Aided Design-CAD) ,后者為自動化設計與制造之間的集成奠定了基礎。進入 20 世紀 70 年代以來,以大規(guī)模集成電路和微型電子計算機為代表2的微電子技術,迅速地被應用到機械工業(yè)中,促進了機械工業(yè)突飛猛進發(fā)展,出現(xiàn)了種類繁多的微電子技術控制的機械、儀器和軍械裝備,以及柔性制造線 FML、柔性制造系統(tǒng) FMS 和自動化制造系統(tǒng),這樣就大幅度地提高了產(chǎn)品質(zhì)量和勞動生產(chǎn)率,適應了市場對產(chǎn)品多樣化的要求,豐富了熱門類的物質(zhì)文明。今天,機械裝備的面貌已煥然一新,成為機與電高度融合的整體,不僅成為人類體力的延伸,而且成為人類智力的延伸。1.2 機電一體化改造的必要性1.2.1 機床改造的意義通常說“機床的真正價值在于使用” 。隨著科學技術的發(fā)展,即使原來屬于新穎,先進的機床也會逐漸變得陳舊,落后,滿足不了產(chǎn)品種類的日益增加,質(zhì)量不斷提高的需要,因此, “技術老化”是客觀規(guī)律。據(jù)有關資料報導,在一些工業(yè)發(fā)達國家里,設備的平均役齡控制在 10~20年之間,設備的“技術老化”期已短于 10 年,10 年役齡以內(nèi)的設備能夠達到設備總數(shù)的 50%左右。由此可見,設備速度相當快,一是用技術更為先進的新設備來代替技術性能“老化”了的舊設備;另一是進行有效的技術改進,使舊設備適應新的生產(chǎn)需要。例如,美國和西歐的一些工業(yè)先進國家,在鋼鐵企業(yè)中雖然早已實現(xiàn)了現(xiàn)代化,可是舊設備并沒有全部毀棄,而是通過技術改造的方法,使一些舊的設備能夠達到使用新技術,新工藝的需要,繼續(xù)生產(chǎn)出具有競爭能力的優(yōu)質(zhì)產(chǎn)品。目前,我國的工廠企業(yè),除了一些新建單位外,大多數(shù)都存在“技術老化”的問題設備役齡在 15 年以上的,所占比重相當大,面對這么多陳舊設備應該怎么辦?這是一個急待解決的大問題。為實現(xiàn)工業(yè)現(xiàn)代化,我們同樣要創(chuàng)造和引進新技術,新工藝,新設備,進行必要的設備更新。另一方面動員機械制造業(yè)的廣大職工,堅持自力更3生和勤儉本企業(yè)的方針,大搞技術革新,挖掘設備潛力,更具有現(xiàn)實意義。而改造機床是深受大家歡迎的一種革新形式,為滿足生產(chǎn)的需要已經(jīng)做出了重大的貢獻。例如,某機械廠生產(chǎn)的只要產(chǎn)品是板框壓濾機,生產(chǎn)批量很大,僅慮壓板每年需要兩萬多塊,總重量 2200 多噸。為了滿足生產(chǎn)的需要,如果設計制造一條新的加工作業(yè)線,需要投資 20 余萬元,便改裝成了專用加工作業(yè)線。此作業(yè)線自 1960 年投產(chǎn)以來,到現(xiàn)在已使用了 20 多年了,一直負擔者全部慮壓板的生產(chǎn)任務,并且加工質(zhì)量很穩(wěn)定。又如,這個廠利用一臺報廢了的皮帶傳動龍門刨的床身,改裝成了一臺行程 8 米的導軌磨,從 1972 年改裝成功到現(xiàn)在,共大修本廠機床 400 多臺次,協(xié)助兄弟廠大修床身百余臺,并且修磨精度高,光潔度好;然而改裝這臺機床只投資 5000 元,可是購買一臺新的導軌磨床卻要花費 10 幾萬元。改造機床的效益是多方面的,再從提高生產(chǎn)率看,假設改造機床 100 萬臺,每臺生產(chǎn)率提高 20%,這就等于多生產(chǎn) 20 萬臺新機床;反之,如果不對舊機床實行技術改造,當前生產(chǎn)的新機床在技術水平上或數(shù)量上又不能及時地滿足生產(chǎn)需要時,那就勢必會影響國民經(jīng)濟的高速發(fā)展。通過上述事例不難看出,機床改造不但是解決設備“技術老化”的重要途徑,能夠滿足生產(chǎn)發(fā)展的需要,而且可以獲得十分客觀的經(jīng)濟效果。1.2.2 機床改造的市場(1)機床數(shù)控化改造的市場我國目前機床總量 380 余萬臺,而其中數(shù)控機床總數(shù)只有 11.34 萬臺,即我國機床數(shù)控化率不到 3%。近 10 年來,我國數(shù)控機床年產(chǎn)量約為0.6~0.8 萬臺,年產(chǎn)值約為 18 億元。機床的年產(chǎn)量數(shù)控化率為 6%。我國機床役齡 10 年以上的占 60%以上;10 年以下的機床中,自動/半自動機床不到 20%,F(xiàn)MC/FMS 等自動化生產(chǎn)線更屈指可數(shù)(美國和日本自動和半4自動機床占 60%以上)??梢娢覀兊拇蠖鄶?shù)制造行業(yè)和企業(yè)的生產(chǎn)、加工裝備絕大數(shù)是傳統(tǒng)的機床,而且半數(shù)以上是役齡在 10 年以上的舊機床。用這種裝備加工出來的產(chǎn)品普遍存在質(zhì)量差、品種少、檔次低、成本高、供貨期長,從而在國際、國內(nèi)市場上缺乏競爭力,直接影響一個企業(yè)的產(chǎn)品、市場、效益,影響企業(yè)的生存和發(fā)展。所以必須大力提高機床的數(shù)控化率。(2)進口設備和生產(chǎn)線的數(shù)控化改造市場我國自改革開放以來,很多企業(yè)從國外引進技術、設備和生產(chǎn)線進行技術改造。據(jù)不完全統(tǒng)計,從 1979~1988 年 10 年間,全國引進技術改造項目就有 18446 項,大約 165.8 億美元。這些項目中,大部分項目為我國的經(jīng)濟建設發(fā)揮了應有的作用。但是有的引進項目由于種種原因,設備或生產(chǎn)線不能正常運轉(zhuǎn),甚至癱瘓,使企業(yè)的效益受到影響,嚴重的使企業(yè)陷入困境。一些設備、生產(chǎn)線從國外引進以后,有的消化吸收不好,備件不全,維護不當,結(jié)果運轉(zhuǎn)不良;有的引進時只注意引進設備、儀器、生產(chǎn)線,忽視軟件、工藝、管理等,造成項目不完整,設備潛力不能發(fā)揮;有的甚至不能啟動運行,沒有發(fā)揮應有的作用;有的生產(chǎn)線的產(chǎn)品銷路很好,但是因為設備故障不能達產(chǎn)達標;有的因為能耗高、產(chǎn)品合格率低而造成虧損;有的已引進較長時間,需要進行技術更新。種種原因使有的設備不僅沒有創(chuàng)造財富,反而消耗著財富。這些不能使用的設備、生產(chǎn)線是個包袱,也是一批很大的存量資產(chǎn),修好了就是財富。只要找出主要的技術難點,解決關鍵技術問題,就可以最小的投資盤活最大的存量資產(chǎn),爭取到最大的經(jīng)濟效益和社會效益。這也是一個極大的改造市場。51.3 機電改造的內(nèi)容一.控制部分目前,在機械加工工業(yè)中,絕大多數(shù)是舊式機床,如果改用微機控制、實現(xiàn)機電一體化的改造,會使機床適應小批量、多品種、復雜零件的加工,不但提高加工精度和生產(chǎn)率,而且成本低、周期短,適合我國國情。利用微機實現(xiàn)機床的機電一體化改造的方法有兩種,一種是以微機為中心設計控制部件;另一種是采用標準的步進電機數(shù)字控制系統(tǒng)作為主要控制裝置,前者需要重新設計控制系統(tǒng),比較復雜;后者選用國內(nèi)標準化的微機空控制系統(tǒng),比較簡單。這種標準的微機控制系統(tǒng)通常采用單板機、單片機、驅(qū)動電源、步進電機及專用控制程序組成的開環(huán)控制,如圖 1-1 所示,其結(jié)構(gòu)簡單、價格低廉。對機床的控制過程大多是用單片機單板機按照輸入的加工程序進行插補運算,產(chǎn)生進給,由軟件或硬件實現(xiàn)脈沖分配,輸出一系列脈沖,凈功率放大、驅(qū)動刀架、縱橫軸運動的步進電機,實現(xiàn)刀具按規(guī)定的輪廓線軌跡運動。微機進行插補運算的速度較快,可以讓單板機沒完成一次插補、進給,就執(zhí)行一次延時程序,由延時程序控制進給速度。二.機械部分機電一體化系統(tǒng)的機械系統(tǒng)與一般的機械系統(tǒng)相比,除要求具有較高的定位精度之外,還應有較好的動態(tài)響應特性,就是說相應要快、穩(wěn)定性要好。一個典型的機電一體化系統(tǒng),通常由控制部件、接口電路、功率放大電路、執(zhí)行元件、機械傳動部件、導向支承部件,以及檢測傳感部件等部分組成。為確保機械系統(tǒng)的傳動精度和工作穩(wěn)定性,在設計中,常提出無間隙、低摩擦、地慣量、高剛度、高諧振頻率、適當?shù)淖枘岜鹊纫?。為達到上述要求主要從一下幾個方面采取措施。(1) 采用低摩擦阻力的傳動部件和導向支承部件,如采用滾珠絲杠副、6滾動導向支承、動(靜)壓導向支承等。(2) 縮短傳動鏈,提高傳動與支承剛度,如用加預緊的方法提高滾珠絲杠副和滾珠導軌副的傳動與支承剛度;采用大扭矩、寬調(diào)速的直流或交流伺服電機直接與絲杠螺母副連接以減少中間傳動機構(gòu);絲杠的支承設計中采用兩端軸向預緊或拉伸支承機構(gòu)等。(3) 選用最佳傳動比,以達到提高系統(tǒng)分辨率、減少等效到執(zhí)行元件輸出軸上的等效轉(zhuǎn)動慣量,盡可能提高加速能力。(4) 縮小反向死區(qū)誤差,如采取消除傳動間隙、減少支承變形的措施。(5) 改進支承及架體的結(jié)構(gòu)設計以提高剛性、減少振動、降低噪聲。如選用復合材料等來提高剛度和強度,減輕重量、縮小體積使結(jié)構(gòu)緊密化,以確保系統(tǒng)的小型化、輕量化、高速化和高可靠性化。 刀 架電 機刀 架 控 制 電 路繼 電 器回轉(zhuǎn)刀架 ( )車床縱橫等軸限位主軸脈沖發(fā)生器 光電隔離驅(qū)動器 功率放大電路/口擴展存儲器擴展微機 急 停 、清 零 等功 能 按 鈕 電機電機電機7圖 1-1 開環(huán)控制系統(tǒng)框圖1.4 本文的選題及主要研究內(nèi)容1.4.1 本文的選題目前,我國的工廠企業(yè),除了一些新建單位外,大多數(shù)都存在“技術老化”的問題設備役齡在 15 年以上的,所占比重相當大,面對這么多陳舊設備應該怎么辦?這是一個急待解決的大問題。用普通臥式車床去加工有時一個人加工的東西都會誤差很大,這樣給所造設備帶來很多的小問題。而如果要新買一臺新的數(shù)控車床,一是總體成本太高,因為性價比不是太高,容易浪費資源,二是工廠沒有工人精通數(shù)控車床,所以要培訓工人一定又要花費很多時間影響生產(chǎn)進度。所以設想決定對其數(shù)控改造,改造的同時讓操作人員一直在旁邊學習,學習怎么改裝,怎么安裝,并講解如何使用。把所要加工的零件程序輸入到存儲器中,用到時直接調(diào)用即可,這樣一個人即可操作兩臺機床,而且效率提高了好大,精度也會提高很高,會為廠帶來很大經(jīng)濟利益。1.4.2 主要研究內(nèi)容1. CA6140 車床數(shù)控化改造總體機械部件設計。2.進給系統(tǒng)的設計和選用。包括了進給滾珠絲杠的設計與選用,消隙8減速齒輪系的設計計算與校核,進給用步進電機的選擇與校核。3.主軸脈沖發(fā)生器的安裝4.刀架的選用5.數(shù)控系統(tǒng)的選擇1.5 車床總體改造方案1.5.1 設計基本思路普通車床(如 C616,C618,C620,CA6140,C630)等是金屬切削加工最常用的一類機床。Φ400㎜普通車床的布局如圖 1-2 所示。當工件隨主軸回轉(zhuǎn)時,通過刀架的縱向和橫向移動,能加工出內(nèi)外圓柱面、圓錐面、端面、螺紋面等。借助成形刀具,還能加工出各種成形回轉(zhuǎn)面。普通車床刀架的縱向和橫向進給運動是由主軸回轉(zhuǎn)運動經(jīng)掛輪傳遞而來,通過進給箱變速后,由光杠或絲杠帶動溜板箱、縱溜板、橫溜板移動。進給參數(shù)要靠手工預先調(diào)整好,改變參數(shù)時要停車進行操作。刀架的縱向進給和橫向進給不能聯(lián)動,切削次序也由人工控制。9圖 1-2 400mm 普通車床的結(jié)構(gòu)布局圖?對普通車床進行數(shù)控化改造,主要是將縱向和橫向進給系統(tǒng)改造成為微機控制的、能獨立運動的進給伺服系統(tǒng);刀架改造成能自動換刀的回轉(zhuǎn)刀架。這樣,利用數(shù)控裝置,車床就可以按預先輸入的加工指令進行切削加工。由于切削加工中的切削參數(shù),切削次序和刀具都會按程序自動進行調(diào)節(jié)和更換,再加上縱向和橫向進給聯(lián)動的功能,數(shù)控改裝后的車床就可以加工出各種形狀復雜的回轉(zhuǎn)零件,并能實現(xiàn)多工序自動車削,從而提高了生產(chǎn)率和加工精度,也能適應小批量多品種復雜零件的加工。1.5.2 設計要求1.總體設計要求總體方案設計應考慮機床數(shù)控系統(tǒng)的運動方式,伺服系統(tǒng)的類型,計10算機的選擇,以及傳動方式和執(zhí)行機構(gòu)的選擇。(1)普通車床數(shù)控化改造后應具有定位,縱向和橫向的直線插補,圓弧插補功能;還要求能暫停,進行循環(huán)加工和螺紋加工等,因此,數(shù)控系統(tǒng)選擇連續(xù)控制系統(tǒng)。(2)車床數(shù)控改裝設計后屬于經(jīng)濟型數(shù)控機床,再保證一定加工精度的前提下,應簡化結(jié)構(gòu),降低成本。因此,進給伺服系統(tǒng)采用步進電機開環(huán)控制系統(tǒng)。(3)根據(jù)普通車床最大的加工尺寸、加工精度、控制速度以及經(jīng)濟性要求,經(jīng)濟型數(shù)控機床一般采用 8 位微機。再 8 位微機中,MCS---51 系列單片機具有集成度高、可靠性好、功能強、速度快、抗干擾能力強,具有很高的性能價格比。因此,可選擇 MCS---51 系列單片機擴展系統(tǒng)。(4)根據(jù)系統(tǒng)的功能要求,微機數(shù)控系統(tǒng)中除了 CPU 外,還包括擴展程序存儲器、擴展數(shù)據(jù)存儲器、I/O 接口電路;包括能輸入加工程序和控制命令的鍵盤,能顯示加工數(shù)據(jù)和機床狀態(tài)信息的顯示器;包括光電隔離電路和步進電機驅(qū)動電路。此外,系統(tǒng)中還應包括螺紋加工用的光電脈沖發(fā)生器和其他輔助電路。(5)設計自動回轉(zhuǎn)刀架及其控制電路。(6)縱向和橫向進給是兩套獨立的傳動鏈,它們由步進電機、齒輪副、絲杠螺母副組成,其傳動比應滿足機床所要求的分辨率。(7)為了保證進給伺服系統(tǒng)的傳動精度和平穩(wěn)性,選用摩擦小、傳動效率高的滾珠絲杠螺母副,并應有預緊機構(gòu)。(8)采用貼塑導軌,以減小導軌的摩擦力。進給伺服系統(tǒng)總體方案方框圖如圖 1-3 所示11向向步 進電 機 床 鞍 及 拖 板中 拖 板步 進電 機功率放大功率放大光電隔離光電隔離微機圖 1-3 車床進給伺服系統(tǒng)總體方案框圖2.設計參數(shù)設計參數(shù)包括車床的部分技術參數(shù)和設計數(shù)控進給伺服系統(tǒng)所需要的參數(shù)。以 CA6140 改裝為例,設計參數(shù)如下:最大加工直徑 在床面上 400㎜在床鞍上 210 ㎜最大加工長度 1000㎜快進速度 縱向 2.4m/min橫向 1.2m/min溜板及刀架重力 縱向 800N橫向 600N主電動機功率 7.5kW代碼制 ISO脈沖分配方式 逐點比較法12輸入方式 增量值,絕對值通用控制坐標數(shù) 2最小指令值(脈沖當量) 縱向 0.01㎜/脈沖橫向 0.005㎜/脈沖機床定位精度 ±0.015㎜刀具補償量 0㎜~99.99㎜進給傳動鏈間隙補償量 縱向 0.15㎜橫向 0.075㎜自動升降速性能 有3.其他要求(1)原機床的主要結(jié)構(gòu)布局基本不變,盡量減少改動量,以降低成本,縮短改造周期。(2)機械結(jié)構(gòu)改裝部分應注意裝配的工藝性,考慮正確的裝配順序,保證安裝、調(diào)試、拆卸方便;需經(jīng)常調(diào)整的部位調(diào)整應方便第二章車床改造的機械部分設計2.1 進給系統(tǒng)機械結(jié)構(gòu)改造設計進給系統(tǒng)改裝設計需要改動的主要部件有掛輪架、進給箱、溜板箱、溜板、刀架等,改裝的方案不唯一的,一下以 C630 車床為例,介紹其中的一種方案。掛輪架系統(tǒng):全部拆除,在原掛輪主動軸處安裝光電脈沖發(fā)生器。13進給箱部分:全部拆除,在該處安裝縱向進給步進電動機與齒輪減速箱總成。絲杠、光杠和操作杠拆去,齒輪箱連接滾珠絲杠。滾珠絲杠的另一端支承座按章在車廠尾座端原來裝軸承座的部分。溜板箱部分:全部拆除,在原處安裝滾珠絲杠中間支撐架和螺母以及部分操作按鈕。溜板部分:將原橫(縱)溜板中的絲杠、螺母拆除,改裝橫(縱)向進給滾珠絲杠螺母副,橫(縱)向進給步進電機與齒輪減速器總成安裝在橫(縱)溜板后部并與滾珠絲杠相連。刀架:拆除原刀架,改裝自動回轉(zhuǎn)四方刀架總成。改裝后機床總體布局如圖 2-1 所示14螺釘 件螺釘 件 鍵6-1件鍵6-1件:11.5:急停拆去防護罩向旋轉(zhuǎn)徐繼敏徐海學院機自04-2學號:269圖 2-1 車床改裝總體布置圖152.2 進給伺服系統(tǒng)機械部分的計算與選型進給伺服系統(tǒng)機械部分的計算與選型內(nèi)容包括:確定脈沖當量,計算切削力,滾珠絲杠螺母副的設計、計算與選型,齒輪傳動計算,步進電機的計算與選型等。計算簡圖如圖 2-2 所示圖 2-2 進給系統(tǒng)計算簡圖(a)縱向進給 (b)橫向進給2.2.1 確定系統(tǒng)的脈沖當量脈沖當量是指一個進給脈沖使機床執(zhí)行部件產(chǎn)生的進給量,它是衡量數(shù)控機床加工精度的一個基本技術參數(shù)。因此,脈沖當量應根據(jù)機床精度的要求來確定。對經(jīng)濟型數(shù)控機床來說,常采用的脈沖當量為 0.01mm/脈沖~0.005mm/脈沖。前述 CA6140 的技術參數(shù)中,要求縱向脈沖當量為0.01mm/脈沖,橫向脈沖當量為 0.005mm/脈沖。2.2.2 切削力計算16在進給系統(tǒng)的傳動計算、選用步進電機時,都要用到切削力(機床的主要負載) ,切削力的分析和計算可以參考以下簡單而實用的經(jīng)驗公式??v切外圓時,車床的主切削力 Fz 可以用下式計算:N5.167.0??DFZ式中:D 為在車床床面上加工的最大直徑(mm) 。橫切斷面時,主切削力約為 。ZF21走刀方向的切削分力 和垂直走刀方向的切削分力 可按以下比例求出:X YF4.051:::: ?YXZF切削力的示意圖見圖 2-3橫 切 端 面縱 車 外 圓圖 2-3 縱車外圓及橫切端面切削力示意2.3 滾珠絲杠的設計計算與選用2.3.1 滾珠絲杠簡介滾珠絲杠是將回轉(zhuǎn)運動轉(zhuǎn)化為直線運動,或?qū)⒅本€運動轉(zhuǎn)化為回轉(zhuǎn)運動的理想的產(chǎn)品。17滾珠絲杠由螺桿、螺母和滾珠組成。它的功能是將旋轉(zhuǎn)運動轉(zhuǎn)化成直線運動,這是滾珠螺絲的進一步延伸和發(fā)展,這項發(fā)展的重要意義就是將軸承從滾動動作變成滑動動作。由于具有很小的摩擦阻力,滾珠絲杠被廣泛應用于各種工業(yè)設備和精密儀器。滾珠絲杠是工具機和精密機械上最常使用的傳動元件,其主要功能是將旋轉(zhuǎn)運動轉(zhuǎn)換成線性運動,或?qū)⑴ぞ剞D(zhuǎn)換成軸向反覆作用力,同時兼具高精度、可逆性和高效率的特點。 1)與滑動絲杠副相比驅(qū)動力矩為 1/3 由于滾珠絲杠副的絲杠軸與絲母之間有很多滾珠在做滾動運動,所以能得到較高的運動效率。與過去的滑動絲杠副相比驅(qū)動力矩達到 1/3 以下,即達到同樣運動結(jié)果所需的動力為使用滾動絲杠副的 1/3。在省電方面很有幫助。2)高精度的保證滾珠絲杠副是用日本制造的世界最高水平的機械設備連貫生產(chǎn)出來的,特別是在研削、組裝、檢查各工序的工廠環(huán)境方面,對溫度·濕度進行了嚴格的控制,由于完善的品質(zhì)管理體制使精度得以充分保證。3)微進給可能滾珠絲杠副由于是利用滾珠運動,所以啟動力矩極小,不會出現(xiàn)滑動運動那樣的爬行現(xiàn)象,能保證實現(xiàn)精確的微進給。4)無側(cè)隙、剛性高滾珠絲杠副可以加予壓,由于予壓力可使軸向間隙達到負值,進而得到較高的剛性(滾珠絲杠內(nèi)通過給滾珠加予壓力,在實際用于機械裝置等時,由于滾珠的斥力可使絲母部的剛性增強)。5)高速進給可能滾珠絲杠由于運動效率高、發(fā)熱小、所以可實現(xiàn)高速進給(運動)。182.3.2 縱向滾珠絲杠的設計與計算以下公式參考自《實用機床設計手冊》已知條件:工作臺重量 =80KG=800N 工件及夾具最大重量 =200N 工作臺1W2W最大行程 =1000mm 工作臺導軌的摩擦系數(shù)為 u=0.05 快速進給速度LK=2.4m/min 定位精度為 15um/300mm,全行程 25um,重復定位精度為maxV10um 要求壽命為 10000 小時(單班制工作十年) 。絲杠螺母副材料硬度50-60HRC,工作溫度小于 100℃,溫升 =4℃,可靠性要求 96%,采用雙推t?-雙推(F-F)支承組合方式,運轉(zhuǎn)一般。各種切削方式的縱向切削力 Fa,速度 V 和時間比例 q 及其他見下表表一 各種切削方式的縱向切削力 Fa,速度 V 和時間比例 q切削方式縱向切削力Pxi(N)垂向切削力Pzi(N)進給速度Vi(m/min)工作時間百分比%絲杠軸向載荷(N)絲杠轉(zhuǎn)速r/min強力切削2000 1200 0.6 10 2200 60一般切削1000 500 0.8 30 1150 80精切削 500 200 1 50 620 100快速進給0 0 2.4 5 1000 37519FZD405-3P圖 2-4 進給用滾珠絲杠裝配圖(1)計算負荷與轉(zhuǎn)速導軌摩擦力: = =0.05(800+200)=50NfFW?不計重負荷引起的導軌摩擦力,絲杠軸向負荷分別為:強力切削:2050;一般切削:1050;精切削:550;快速進給:50伺服電機最高工作轉(zhuǎn)速: =1500r/minmaxn絲杠轉(zhuǎn)速: =600r/min5.210??S絲杠導程 : =4mm 表 3.7-21 得 5mmPh64Ph?絲杠轉(zhuǎn)速: Vinp由上表查的 =0.6m/min, =0.8m/min, =1m/min, =2.4m/min1v2v3v4v代入得 120r/min, 160r/min, 200r/min, 480r/min n?n?n?n?等效轉(zhuǎn)速: 10104321 ttttm????數(shù)據(jù)代入得 184r/minn?20等效載荷 3 434323211 1010100 ???????? mmmmm ntFntFntFntF帶入數(shù)據(jù)得 =984.5N(2)初選滾珠絲杠副由公式《實用機床設計手冊》 (3.7-24)知6 )(01wkahtmaKfFCnL???查《實用機床設計手冊》表(3.7-51)—表(3.7-54)得 tf=1, hf=1, af= 1, kf=0.53, wf=1.3, hL=10000h代入數(shù)據(jù)可求得 =11584.38N=11.6KNc初選絲杠為內(nèi)循環(huán),浮動反相器,雙螺母墊片預緊。公稱直徑 d0=40mm,基本導程 =5mm。滾珠直徑 =3.5,5 列。型號為 FFZD40*5-5,查《實用Ph?WD機床設計手冊》表 3.7-61 序號 8,額定動載荷 =22KN 大于算出的ac(11.6KN) ,預緊力 =0.25 =925N,大于最大軸得載荷 2050N 的acPFmax1/3,這種絲杠是可用的。絲杠的螺紋部分長度 ; 等于工作臺最大行程 (1000mm)加螺紋長ul LK度 L(110mm)加兩端導程 (20mm).eL=1000+110+2*20=1150mmul支承跨距 ,應大于 ,取 =1300mm1ul1絲杠全長 L=1400mmF-F 支承方式的絲杠一般不會受壓縮力作用,可不效和壓桿的穩(wěn)定性。絲杠彎曲振動臨界轉(zhuǎn)速 0英文原文LATHES & MILLINGA shop that is equipped with a milling machine and an engine lathe can machine almost any type of product of suitable size.The basic machines that are designed primarily to do turning,facing and boring are called lathes. Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathe can do boring, facing,drilling,and reaming in addition to turning,their versatility permits several operations to be performed with a single setup of the workpiece. These accounts for the fact that lathes of various types are more widely used in manufacturing than any other machine tool. Lathes in various forms have existed for more than two thousand years. Modern lathes date from about 1797,when Henry Maudsley developed one with a leadscrew. It provided controlled,mechanical feed of the tool. This ingenious Englishman also developed a change gear system that could connect the motions of the spindle and leadscrew and thus enable threads to be cut. Lathe Construction. The essential components of a lathe are depicted in the block diagram of picture. These are the bed,headstock assembly,tailstock assembly,carriage assembly,quick-change gearbox,and the leadscrew and feed rod. The bed is the back bone of a lathe. It usually is made of well-normalized or aged gray or nodular cast iron and provides a heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel,longitudinal ways, inner and outer,are contained on the bed,usually on the upper side. 1Some makers use an inverted V-shape for all four ways,whereas others utilize one inverted V and one flat way in one or both sets. Because several other components are mounted and/or move on the ways they must be made with precision to assure accuracy of alignment. Similarly,proper precaution should betaken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed. The ways on most modern lathes are surface hardened to offer greater resistance to wear and abrasion. The headstock is mounted in a fixed position on the inner ways at one end of the lathe bed. It provides a powered means of rotating the work at various speeds. It consists, essentially,of a hollow spindle,mounted in accurate bearings,and a set of transmission gears——similar to a truck transmission——through which the spindle can be rotated at a number of speeds. Most lathes provide from eight to eighteen speeds,usually in a geometric ratio,and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives. Because the accuracy of a lathe is greatly dependent on the spindle,it is of heavy construction and mounted in heavy bearings, usually preloaded tapered roller or ball types. A long- itudinal hole extends through the spindle so that long bar stock can be fed through it. The size of this hole is an important size dimension of a lathe because it determines the maximum size of bar stock that can be machined when the material must be fed through the spindle. The inner end of the spindle protrudes from the gear box and contains a means for mounting various types of chucks,face plates,and dog plates on it. 2Whereas small lathes often employ a threaded section to which the chucks are screwed,most large lathes utilize either cam-lock or key-drive taper noses. These provide a large-diameter taper that assures the accurate alignment of the chuck,and a mechanism that permits the chuck or face plate to be locked or unlocked in position without the necessity of having to rotate these heavy attachments.Power is supplied to the spindle by means of an electric motor through a V-belt or silent-chain drive. Most modern lathes have motors of from 5 to15 horsepower to provide adequate power for carbide and ceramic tools at their high cutting speeds.The tailstock assembly consists,essentially,of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon,with a means for clamping the entire assembly in any desired location. An upper casting fits on the lower one and can be moved transversely upon it on some type of keyed ways. This transverse motion permits aligning the tailstock and headstock spindles and provides a method of turning tapers. The third major component of the assembly is the tailstock quill. This is a hollow steel cylinder,usually about2 to3 inches in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a hand wheel and screw. The open end of the quill hole terminates in a Morse taper in which a lathe center, or various tools such as drills,can be held. A graduated scale, several inches in length,usually is engraved on the outside of the quill to aid in controlling its motion in and out of the upper casting. A locking device permits clamping the quill in any desired position. The carriage assembly provides the means for mounting and moving cutting tools. The carriage is a relatively flat H-shaped casting that rests and moves on 3the outer set of ways on the bed. The transverse bar of the carriage contains ways on which the cross slide is mounted and can be moved by means of a feed screw that is controlled by a small hand wheel and a graduated dial. Through the cross slide a means is provided for moving the lathe tool in the direction normal to the axis of rotation of the work.On most lathes the tool post actually is mounted on a compound rest. This consists of abase,which is mounted on the cross slide so that it can be pivoted about a vertical axis,and an upper casting. The upper casting is mounted on ways on this base so that it can be moved back and forth and controlled by means of a short lead screw operated by a hand wheel and a calibrated dial. Manual and powered motion for the carriage,and powered motion for the cross slide,is provided by mechanisms within the apron,attached to the front of the carriage. Manual movement of the carriage along the bed is effected by turning a hand wheel on the front of the apron,which is geared to a pinion on the back side. This pinion engages a rack that is attached beneath the upper front edge of the bed in an inverted position.To impart powered movement to the carriage and cross slide,a rotating feed rod is provided. The feed rod,which contains a keyway through out most of its length,passes through the two reversing bevel pinions and is keyed to them . Either pinion cam be brought into mesh with a mating bevel gear by means of the reversing lever on the front of the apron and thus provide “forward” or “reverse” power to the carriage. Suitable clutches connect either the rack pinion or the cross-slide screw to provide longitudinal motion of the carriage or transverse motion of cross slide.For cutting threads,a second means of longitudinal drive is provided by a lead screw. Whereas motion of the carriage when driven by the feed-rod 4mechanism takes place through a friction clutch in which slippage is possible,motion through the lead screw is by a direct,mechanical connection between the apron and the lead screw. This is achieved by a split nut. By means of a clamping lever on the front of the apron,the split nut can be closed around the lead screw. With the split nut closed,the carriage is moved along the lead screw by direct drive without possibility of slippage.Modern lathes have a quick-change gear box. The input end of this gearbox is driven from the lathe spindle by means of suitable gearing. The out put end of the gear box is connected to the feed rod and lead screw. Thus,through this gear train, leading from the spindle to the quick-change gearbox,thence to the lead screw and feed rod,and then to the carriage,the cutting tool can be made to move a specific distance,either longitudinally or transversely,for each revolution of the spindle. A typical lathe provides,through the feed rod,forty-eight feeds ranging from 0.002 inch to0.118 inch per revolution of the spindle,and, through the lead screw,leads for cutting forty-eight different threads from 1.5 to 92perinch.On some older and some cheaper lathes,one or two gears in the gear train between the spindle and the change gear box must be changed in order to obtain a full range of threads and feeds.Milling is a basic machining process in which the surface is generated by the progressive formation and removal of chips of material from the workpiece as it is fed to a rotating cutter in a direction perpendicular to the axis of the cutter. .In some cases the workpiece is stationary and the cutter is fed to the work. In most instances a multiple-tooth cutter is used so that the metal removal rate is high,and frequently the desired surface is obtained in a single pass of the work.The tool used in milling is known as a milling cutter. It usually consists of a cylindrical body which rotates on its axis and contains equally spaced peripheral 5teeth that intermittently engage and cut the workpiece. In some cases the teeth extend part way across one or both ends of the cylinder. Because the milling principle provides rapid metal removal and can produce good surface finish,it is particularly well-suited for mass-production work, and excellent milling machines have been developed for this purpose. However,very accurate and versatile milling machines of a general-purpose nature also have been developed that are widely used in job-shop and tool and die work. A shop that is equipped with a milling machine and an engine lathe can machine almost any type of product of suitable size.Types of Milling Operations. Milling operations can be classified into two broad categories,each of which has several variations:1.In peripheral milling a surface is generated by teeth located in the periphery of the cutter body;the surface is parallel with the axis of rotation of the cutter. Both flat and formed surfaces can be produced by this method. The cross section of the resulting surface corresponds to the axial contour of the cutter. This procedure often is called slab milling.1. In face milling the generated flat surface is at right angles to the cutter axis and is the combined result of the actions of the portions of the teeth located on both the periphery and the with the face portions providing a finishing action.The basic concepts of peripheral and face milling are illustrated in Fig. Peripheral milling operations usually are performed on machines having horizontal spindles,whereas face milling is done on both horizontal-and vertical-spindle machines.Surface Generation in Milling. Surfaces can be generated in milling by two distinctly different methods depicted in Fig. Note that in up milling the cutter 6rotates against the direction of feed the workpiece,whereas in down milling the rotation is in the same direction as the feed .As shown in Fig., the method of chip formation is quite different in the two cases. In up milling the c hip is very thin at the beginning, where the tooth first contacts the work,and increases in thickness, be-coming a maximum where the tooth leaves the work. The cutter tends to push the work along and lift it upward from the table. This action tends to eliminate any effect of looseness in the feed screw and nut of the milling machine table and results in a smooth cut. However, the action also tends to loosen the work from the clamping device so that greater clamping forcers must be employed. In addition, the smoothness of the generated surface depends greatly on the sharpness of the cutting edges.In down milling,maximum chip thickness occurs close to the point at which the tooth contacts the work. Because the relative motion tends to pull the workpiece into the cutter,all possibility of looseness in the table feed screw must be eliminated if down milling is to be used. It should never be attempted on machines that are not designed for this type of milling. In as mush as the material yields in approximately a tangential direction at the end of the tooth engagement,there is much less tendency for the machined surface to show tooth marks than when up milling is used. Another consider able advantage of down milling is that the cutting force tends to hold the work against the machine table,permitting lower clamping force to be employed. This is particularly advantageous when milling thin workpiece or when taking heavy cuts.Sometimes a disadvantage of down milling is that the cutter teeth strike against the surface of the work at the beginning of each chip. When the workpiece has a hard surface,such as castings do, this may cause the teeth to dull rapidly.7Milling Cutters. Milling cutters can be classified several ways. One method is to group them into two broad classes,based on tooth relief,as follows:1. Profile-cutters have relief provided on each tooth by grinding a small land back of the cutting edge. The cutting edge may be straight or curved.2.In form or cam-relieved cutters the cross section of each tooth is an eccentric curve behind the cutting edge,thus providing relief. All sections of the eccentric relief,parallel with the cutting edge,must have the same contour as the cutting edge. Cutters of this type are sharpened by grinding only the face of the teeth,with the contour of the cutting edge thus remaining unchanged. Another useful method of classification is according to the method of mounting the cutter. Arbor cutters are those that have a center hole so they can be mounted on an arbor. Shank cutters have either tapered or straight integral shank. Those with tapered shanks can be mounted directly in the milling machine spindle,whereas straight-shank cutters are held in a chuck. Facing cutters usually are bolted to the end of a stub arbor.Types of Milling Cutters. Plain milling cutters are cylindrical or disk-shaped,having straight or helical teeth on the periphery. They are used for milling flat surfaces. This type of operation is called plain or slab milling. Each tooth in a helical cutter engages the work gradually,and usually more than one tooth cuts at a given time. This reduces shock and chattering tendencies and promotes a smoother surface. Consequently,this type of cutter usually is preferred over one with straight teeth. Side milling cutters are similar to plain milling cutters except that the teeth extend radially part way across one or both ends of the cylinder toward the center. The teeth may be either straight or helical. Frequently these cutters are relatively narrow,being disklike in shape. Two or more side milling cutters often are spaced on an arbor to make 8simultaneous,parallel cuts,in an operation called straddle milling. Interlocking slotting cutters consist of two cutters similar to side mills,but made to operate as a unit for milling slots. The two cutters are adjusted to the desired width by inserting shims between them. Staggered-tooth milling cutters are narrow cylindrical cutters having staggered teeth,and with alternate teeth having opposite helix angles. They are ground to cut only on the periphery,but each tooth also has chip clearance ground on the protruding side. These cutters have a free cutting action that makes them particularly effective in milling deep slots. Metal-slitting saws are thin,plain milling cutters,usually from 1/32 to 3/16 inch thick,which have their sides slightly“dished”to provide clearance and prevent binding. They usually have more teeth per inch of diameter than ordinary plain milling cutters and are used for milling deep,narrow slots and for cutting-off operations.9中文譯文車 床 和 銑 床車間里擁有一臺車床和一臺普通銑床就能加工出具有適合尺寸的各種產(chǎn)品。用于車外圓、端面和鏜孔等加工的機床稱作車床。車削很少在其他種類的機床上進行,因為其他機床都不能像車床那樣方便地進行車削加工。由于車床除了用于車外圓外還能用于鏜孔、車端面、鉆孔和鉸孔,車床的多功能性可以使工件在一次定位安裝中完成多種加工。這就是在生產(chǎn)中普遍使用各種車床比其他種類的機床都要多的原因。兩千多年前就已經(jīng)有了車床。現(xiàn)代車床可以追溯到大約 1797 年,那時亨利 ·莫德斯利發(fā)明了一種具有絲杠的車床。這種車床可以控制工具的機械進給。這位聰明的英國人還發(fā)明了一種把主軸和絲杠相連接的變速裝置,這樣就可以切削螺紋。圖中標出了車床的主要部件:床身、主軸箱組件、尾架組件、拖板組件、變速齒輪箱、絲杠和光杠。床身是車床的基礎件。它通常是由經(jīng)過充分正火或時效處理的灰鑄鐵或者球墨鑄鐵制成,它是一個堅固的剛性框架,所有其他主要部件都安裝在床身上。通常在床身上面有內(nèi)外兩組平行的導軌。一些制造廠生產(chǎn)的四個條導軌都采用倒“V ”形,而另一些制造廠則將倒“ V ”形導軌和平面導軌相結(jié)合。由于其他的部件要安裝在導軌上并(或)在導軌上移動,導軌要經(jīng)過精密加工,以保證其裝配精度。同樣地,在操作中應該小心,以避免損傷導軌。導軌上的任何誤差,常常會使整個機床的精度遭到破壞。大多數(shù)現(xiàn)代車床的導軌要進行表面淬火處理,以減小磨損和擦傷,具有更大的耐磨性。主軸箱安裝在床身一端內(nèi)導軌的固定位置上。它提供動力,使工件在各種速度下旋轉(zhuǎn)。它基本上由一個安裝在精密軸承中的空心主軸和一系列變速齒輪———類似于卡車變速箱所組成,通過變速齒輪,主軸可以在許多種轉(zhuǎn)速下旋轉(zhuǎn)。大多數(shù)車床有 8--18 種轉(zhuǎn)速,10一般按等比級數(shù)排列。在現(xiàn)代車床上只需扳動 2--4 個手柄,就能得到全部擋位的轉(zhuǎn)速。目前發(fā)展的趨勢是通過電氣的或機械的裝置進行無級變速。由于車床的精度在很大程度上取決于主軸,因此主軸的結(jié)構(gòu)尺寸較大,通常安裝在緊密配合的重型圓錐滾子軸承或球軸承中。主軸中有一個貫穿全長的通孔,長棒料可以通過該孔送料。主軸孔的大小是車床的一個重要尺寸,因為當工件必須通過主軸孔供料時,它確定了能夠加工棒料毛坯的最大外徑尺寸。主軸的內(nèi)端從主軸箱中凸出,其上可以安裝多種卡盤、花盤和擋塊。而小型的車床常帶有螺紋截面供安裝卡盤之用。很多大車床使用偏心夾或鍵動圓錐軸頭。這些附件組成了一個大直徑的圓錐體,以保證對卡盤進行精確地裝配,并且不用旋轉(zhuǎn)這些笨重的附件就可以鎖定或松開卡盤或花盤。主軸由電動機經(jīng) V 帶或無聲鏈裝置提供動力。大多數(shù)現(xiàn)代車床都裝有 5--15 馬力的電動機,為硬質(zhì)合金和金屬陶瓷合金刀具提供足夠的動力,進行高速切削。尾座組件主要由三部分組成。底座與床身的內(nèi)側(cè)導軌配合,并可以在導軌上做縱向移動,底座上有一個可以使整個尾座組件夾緊在任意位置上的裝置。尾座安裝在底座上,可以沿鍵槽在底座上橫向移動,使尾座與主軸箱中的主軸對中并為切削圓錐體提供方便。尾座組件的第三部分是尾座套筒,它是一個直徑通常在 2--3 英寸之間的鋼制空心圓柱軸。通過手輪和螺桿,尾座套筒可以在尾座體中縱向移入和移出幾英寸?;顒犹淄驳拈_口一端具有莫氏錐度,可以用于安裝頂尖或諸如鉆頭之類的各種刀具。通常在活動套筒的外表面刻有幾英寸長的刻度,以控制尾座的前后移動。鎖定裝置可以使套筒在所需要的位置上夾緊。拖板組件用于安裝和移動切削工具。拖板是一個相對平滑的 H 形鑄件,安裝在床身外側(cè)導軌上,并可在上面移動。大拖板上有橫向?qū)к墸箼M向拖板可以安裝在上面,并通過絲杠使其運動,絲杠由一個小手柄和刻度盤控制。橫拖板可以帶動刀具垂直于工件的旋轉(zhuǎn)軸線切削。大多數(shù)車床的刀架安裝在復式刀座上,刀座上11有底座,底座安裝在橫拖板上,可繞垂直軸和上刀架轉(zhuǎn)動。上刀架安裝在底座上,可用手輪和刻度盤控制一個短絲杠使其前后移動。溜板箱裝在大拖板前面,通過溜板箱內(nèi)的機械裝置可以手動和動力驅(qū)動大拖板以及動力驅(qū)動橫拖板。通過轉(zhuǎn)動溜板箱前的手輪,可以手動操作拖板沿床身移動。手輪的另一端與溜板箱背面的小齒輪連接,小齒輪與齒條嚙合,齒條倒裝在床身前上邊緣的下面。利用光杠可以將動力傳遞給大拖板和橫拖板。光杠上有一個幾乎貫穿于整個光杠的鍵槽,光杠通過兩個轉(zhuǎn)向相反并用鍵連接的錐齒輪傳遞動力。通過溜板箱前的換向手柄可使嚙合齒輪與其中的一個錐齒輪嚙合,為大拖板提供“向前”或“向后”的動力。適當?shù)碾x合器或者與齒條小齒輪連接或者與橫拖板的螺桿連接,使拖板縱向移動或使橫拖板橫向移動。對于螺紋加工,絲杠提供了第二種縱向移動的方法。光杠通過摩擦離合器驅(qū)動拖板移動,離合器可能會產(chǎn)生打滑現(xiàn)象。而絲杠產(chǎn)生的運動是通過溜板箱與絲杠之間的直接機械連接來實現(xiàn)的,對開螺母可以實現(xiàn)這種連接。通過溜板箱前面的夾緊手柄可以使對開螺母緊緊包合絲杠。當對開螺母閉合時,可以沿絲杠直接驅(qū)動拖板,而不會出現(xiàn)打滑的可能性?,F(xiàn)代車床有一個變速齒輪箱,齒輪箱的輸入端由車床主軸通過合適的齒輪傳動來驅(qū)動。齒輪箱的輸出端與光杠和絲杠連接。主軸就是這樣通過齒輪傳動鏈驅(qū)動變速齒輪箱,再帶動絲杠和光杠,然后帶動拖板,刀具就可以按主軸的轉(zhuǎn)數(shù)縱向地或橫向地精確移動。一臺典型的車床的主軸每旋轉(zhuǎn)一圈,通過光杠可以獲得從 0.002 到 0.118 英寸尺寸范圍內(nèi)的 48 種進給量;而使用絲杠可以車削從 1.5 到 92 牙 /英寸范圍內(nèi)的 48 種不同螺紋。一些老式的或價廉的車床為了能夠得到所有的進給量和加工出所有螺紋,必須更換主軸和變速齒輪箱之間的齒輪系中的一個或兩個齒輪。銑削是機械加工的一個基礎方法。在這一加工過程中,當工件沿垂直于旋轉(zhuǎn)刀具軸線方向進給時,在工件上形成并去除切屑從而逐漸地銑出表面。12有時候,工件是固定的,而刀具處于進給狀態(tài)。在大多數(shù)情況下,使用多齒刀具,金屬切削量大,只需一次銑削就可以獲得所期望的表面。在銑削加工中使用的刀具稱做銑刀。它通常是一個繞其軸線旋轉(zhuǎn)并且周邊帶有同間距齒的圓柱體,銑刀齒間歇性接觸并切削工件。在某些情況下,銑刀上的刀齒會高出圓柱體的一端或兩端。由于銑削切削金屬速度很快,并且能產(chǎn)生良好的表面光潔度,故特別適合大規(guī)模生產(chǎn)加工。為了實現(xiàn)這一目的,已經(jīng)制造出了質(zhì)量一流的銑床。然而在機修車間和工具模具加工中也已經(jīng)廣泛地使用了非常精確的多功能通用的銑床。車間里擁有一臺銑床和一臺普通車床就能加工出具有適合尺寸的各種產(chǎn)品。銑削操作類型:銑削操作可以分成兩大種類,每一類又有多種類型。1.圓周銑削在圓周銑削中,使用的銑刀刀齒固定在刀體的圓周面上,工件銑削表面與旋轉(zhuǎn)刀具軸線平行,從而加工表面。使用這種方法可以加工出平面和成型表面,加工中表面橫截面與刀具的軸向外輪廓相一致。這種加工過程常被稱為平面銑削。2.端面銑削銑削平面與刀具的軸線垂直,被加工平面是刀具位于周邊和端面的齒綜合作用形成的。刀具周邊齒完成銑削的主要任務,而端面齒用于精銑。圓周銑削和端面銑削的基本概念,圓周銑削通常使用臥式銑床,而端銑削則既可在臥式銑床又可以在立式銑床上進行。銑削面的形成:銑削時可以采用兩種完全不同的方法。應注意,在逆銑時,銑刀旋轉(zhuǎn)方向與工件進給方向相反,而在順銑時銑刀旋轉(zhuǎn)與工件進給方向相同。在逆銑過程中,當銑刀齒剛切入工件時,切屑是非常薄的,然后漸漸增厚,在刀齒離開工件的地方,切屑最厚。在兩種銑削方法中,切屑的形成是不同的,逆銑過程中,刀具有推動工件并使工件從工作臺上提升的趨勢,這種作用有助于消除銑床工作臺進給螺桿和螺母間的間隙,從而形成平穩(wěn)的切削。然而,這種作用也有造成工件與夾緊裝置之間的松動的趨勢,這時應施加更大的夾緊力。此外,銑削表面的平整度主要取決于切削刃的鋒利程度。順銑時,13最大切屑厚度產(chǎn)生于靠近刀具與工件接觸點處。由于相對運動趨于把工件拉向銑刀,如果采用順銑法,要消除工作臺進給螺桿可能產(chǎn)生的松動。因此,對于不能用于順銑的銑床,不要采用順銑方法。因為在銑刀結(jié)束切削時,處于切線方向的被切材料發(fā)生屈服,所以與逆銑相比,順銑的被加工表面沒有什么切痕。順銑的另一個優(yōu)勢是切削力趨于將工件壓緊在工作臺上,因此對工件的夾緊力可以小于逆銑。這一優(yōu)勢可以用于銑削較薄的工件或進行強力切削。順銑的弱點是銑刀齒剛一切削每片鐵屑時,刀齒會撞擊工件的表面。如果工件表面堅硬,像鑄件,就會使刀齒迅速地變鈍。銑刀分類有多種方法,一種方法是根據(jù)刀具后角將銑刀分為兩大類:1.仿形銑刀 每個刀齒在切削刃的背面磨了一個很小的棱面形成后角,切削刃可以是直線或曲線的。2.成形或凸輪形后角銑刀 每個齒的橫截面在切削刃的背面呈偏心曲線狀,以產(chǎn)生后角。偏心后角的各面與切削刃平行,具有切削刃的相同形狀。這種類型的銑刀僅需磨削齒的前刀面就可以變得鋒利,只要切削刃的外形保持不變。銑刀的另一種分類方法是根據(jù)銑刀安裝的方法進行分類。心軸銑刀帶有一個中心孔以使銑刀安裝在心軸上。帶柄銑刀有一錐柄或直柄軸,含錐形軸柄的銑刀可以直接安裝在銑床的主軸上,而直柄軸的銑刀則是夾持在卡盤里。平面銑刀通常用螺栓固定在刀軸的末端上。根據(jù)這種分類方法,通用型的銑刀可分類如下:心軸銑刀:圓柱形銑刀,角度銑刀,側(cè)刃銑刀,嵌齒銑刀,錯齒銑刀,成形銑刀 ,開槽銑刀,高速切削刀。帶柄銑刀:端面銑刀,T 形槽銑刀,整體式銑刀,半圓鍵座銑刀,套式銑刀,高速切削刀,空心銑刀。銑刀的類型圓柱形銑刀是在圓周上有直的或螺旋形的齒的圓柱形或盤形銑刀。它們可以用來銑削平面,這種銑削稱做平面銑削。螺旋形的銑刀上的每個齒是逐漸地接觸工件,在給定的時間內(nèi),一般有多齒進行銑削,這樣可以減少震動,獲得一個較平滑的表面。因此,與直齒銑刀相比,這種類型的銑刀,通常使用得更多。側(cè)刃銑刀的齒除了在圓柱刀體的一端或兩端向徑向延伸之外,與圓柱形銑14刀是相似的。側(cè)刃銑刀的刀齒既可以是直線的,也可以是螺旋形的,這種銑刀一般較窄小,具有盤形的形狀。在跨式銑削加工中,常常將兩個或更多的側(cè)刃銑刀同時相間地安裝在一個刀桿上同步并行切削。雙聯(lián)槽銑刀是由兩個側(cè)刃銑刀組成,但是在銑槽時,作為一組銑刀進行操作。在兩個銑刀之間添加一些薄墊片,以調(diào)整之間的間距。錯齒銑刀是較薄的圓柱形銑刀,刀上有相互交錯的刀齒,相鄰刀齒具有相反的螺旋角。這種銑刀經(jīng)研磨后僅用于周銑,在每個齒突出的一邊,留有供切屑排出的縫隙。這種類型的銑刀可用于高速切削,在銑削深槽時可以發(fā)揮獨特的作用。開槽銑刀是一種薄型的圓柱形銑刀