2019-2020年九年級數(shù)學競賽輔導講座 第二十二講 園冪定理.doc
《2019-2020年九年級數(shù)學競賽輔導講座 第二十二講 園冪定理.doc》由會員分享,可在線閱讀,更多相關《2019-2020年九年級數(shù)學競賽輔導講座 第二十二講 園冪定理.doc(7頁珍藏版)》請在裝配圖網上搜索。
2019-2020年九年級數(shù)學競賽輔導講座 第二十二講 園冪定理 相交弦定理、切割線定理、割線定理統(tǒng)稱為圓冪定理.圓冪定理實質上是反映兩條相交直線與圓的位置關系的性質定理,其本質是與比例線段有關. 相交弦定理、切割線定理、割線定理有著密切的聯(lián)系,主要體現(xiàn)在: 1.用運動的觀點看,切割線定理、割線定理是相交弦定理另一種情形,即移動圓內兩條相交弦使其交點在圓外的情況; 2.從定理的證明方法看,都是由一對相似三角形得到的等積式. 熟悉以下基本圖形、基本結論: 【例題求解】 【例1】 如圖,PT切⊙O于點T,PA交⊙O于A、B兩點,且與直徑CT交于點D,CD=2,AD=3,BD=6,則PB= . 思路點撥 綜合運用圓冪定理、勾股定理求PB長. 注:比例線段是幾何之中一個重要問題,比例線段的學習是一個由一般到特殊、不斷深化的過程,大致經歷了四個階段: (1)平行線分線段對應成比例; (2)相似三角形對應邊成比例; (3)直角三角形中的比例線段可以用積的形式簡捷地表示出來; (4)圓中的比例線段通過圓冪定理明快地反映出來. 【例2】 如圖,在平行四邊形ABCD中,過A、B、C三點的圓交AD于點E,且與CD相切,若AB=4,BE=5,則DE的長為( ) A.3 B.4 C. D. 思路點撥 連AC,CE,由條件可得許多等線段,為切割線定理的運用創(chuàng)設條件. 注:圓中線段的算,常常需要綜合相似三角形、直角三角形、圓冪定理等知識,通過代數(shù)化獲解,加強對圖形的分解,注重信息的重組與整合是解圓中線段計算問題的關鍵. 【例3】 如圖,△ABC內接于⊙O,AB是∠O的直徑,PA是過A點的直線,∠PAC=∠B. (1)求證:PA是⊙O的切線; (2)如果弦CD交AB于E,CD的延長線交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的長和∠ECB的正切值. 思路點撥 直徑、切線對應著與圓相關的豐富知識.(1)問的證明為切割線定理的運用創(chuàng)造了條件;引入參數(shù)x、k處理(2)問中的比例式,把相應線段用是的代數(shù)式表示,并尋找x與k的關系,建立x或k的方程. 【例4】 如圖,P是平行四邊形AB的邊AB的延長線上一點,DP與AC、BC分別交于點E、E,EG是過B、F、P三點圓的切線,G為切點,求證:EG=DE 思路點撥 由切割線定理得EG2=EFEP,要證明EG=DE,只需證明DE2=EFEP,這樣通過圓冪定理把線段相等問題的證明轉化為線段等積式的證明. 注:圓中的許多問題,若圖形中有適用圓冪定理的條件,則能化解問題的難度,而圓中線段等積式是轉化問題的橋梁. 需要注意的是,圓冪定理的運用不僅局限于計算及比例線段的證明,可拓展到平面幾何各種類型的問題中. 【例5】 如圖,以正方形ABCD的AB邊為直徑,在正方形內部作半圓,圓心為O,DF切半圓于點E,交AB的延長線于點F,BF=4. 求:(1)cos∠F的值;(2)BE的長. 思路點撥 解決本例的基礎是:熟悉圓中常用輔助線的添法(連OE,AE);熟悉圓中重要性質定理及角與線段的轉化方法.對于(1),先求出EF,F(xiàn)O值;對于(2),從△BE F∽△EAF,Rt△AEB入手. 注:當直線形與圓結合時就產生錯綜復雜的圖形,善于分析圖形是解與圓相關綜合題的關鍵,分析圖形可從以下方面入手: (1)多視點觀察圖形.如本例從D點看可用切線長定理,從F點看可用切割線定理. (2)多元素分析圖形.圖中有沒有特殊點、特殊線、特殊三角形、特殊四邊形、全等三角形、相似三角形. (3)將以上分析組合,尋找聯(lián)系. 學力訓練 1.如圖,PT是⊙O的切線,T為切點,PB是⊙O的割線,交⊙O于A、B兩點,交弦CD于點M,已知CM=10,MD=2,PA=MB=4,則PT的長為 . 2.如圖,PAB、PCD為⊙O的兩條割線,若PA=5,AB=7,CD=11,則AC:BD= . 3.如圖,AB是⊙O的直徑,C是AB延長線上的一點,CD是⊙O的切線,D為切點,過點B作⊙O的切線交CD于點F,若AB=CD=2,則CE= . 4.如圖,在△ABC中,∠C=90,AB=10,AC=6,以AC為直徑作圓與斜邊交于點P,則BP的長為( ) A.6.4 B.3.2 C .3.6 D.8 5.如圖,⊙O的弦AB平分半徑OC,交OC于P點,已知PA、PB的長分別為方程的兩根,則此圓的直徑為( ) A. B. C. D. ⌒ ⌒ ⌒ 6.如圖,⊙O的直徑Ab垂直于弦CD,垂足為H,點P是AC上一點(點P不與A、C兩點重合),連結PC、PD、PA、AD,點E在AP的延長線上,PD與AB交于點F,給出下列四個結論:①CH2=AHBH;②AD=AC:③AD2=DFDP;④∠EPC=∠APD,其中正確的個數(shù)是( ) A.1 B.2 C.3 D.4 7.如圖,BC是半圓的直徑,O為圓心,P是BC延長線上一點,PA切半圓于點A,AD⊥BC于點D. (1)若∠B=30,問AB與AP是否相等?請說明理由; (2)求證:PDPO=PCPB; (3)若BD:DC=4:l,且BC=10,求PC的長. 8.如圖,已知PA切⊙O于點A,割線PBC交⊙O于點B、C,PD⊥AB于點D,PD、AO的延長線相交于點E,連CE并延長交⊙O于點F,連AF. (1)求證:△PBD∽△PEC; (2)若AB=12,tan∠EAF=,求⊙O的半徑的長. 9.如圖,已知AB是⊙O的直徑,PB切⊙O于點B,PA交⊙O于點C,PF分別交AB、BC于E、D,交⊙O于F、G,且BE、BD恰哈好是關于x的方程 (其中為實數(shù))的兩根. (1)求證:BE=BD;(2)若GEEF=,求∠A的度數(shù). 10.如圖,△ABC中,∠C=90,O為AB上一點,以O為圓心,OB為半徑的圓與AB相交于點E,與AC相切于點D,已知AD=2,AE=1,那么BC= . 11.如圖,已知A、B、C、D在同一個圓上,BC=CD,AC與BD交于E,若AC=8,CD=4,且線段BE、ED為正整數(shù),則BD= . 12.如圖,P是半圓O的直徑BC延長線上一點,PA切半圓于點A,AH⊥BC于H,若PA=1,PB+PC=(>2),則PH=( ) A. B. C. D. 13.如圖,△ABC是⊙O的內接正三角形,弦EF經過BC的中點D,且EF∥AB,若AB=2,則DE的長為( ) A. B. C. D.1 14.如圖,已知AB為⊙O的直徑,C為⊙O上一點,延長BC至D,使CD=BC,CE⊥AD于E,B E交⊙O于F,AF交CE于P,求證:PE=PC. 15.已知:如圖,ABCD為正方形,以D點為圓心,AD為半徑的圓弧與以BC為直徑的⊙O相交于P、C兩點,連結AC、AP、CP,并延長CP、AP分別交AB、BC、⊙O于E、H、F三點,連結OF. (1)求證:△AEP∽△CEA;(2)判斷線段AB與OF的位置關系,并證明你的結論; (3)求BH:HC 16.如圖,PA、PB是⊙O的兩條切線,PEC是一條割線,D是AB與PC的交點,若PE=2,CD=1,求DE的長. 17.如圖,⊙O的直徑的長是關于x的二次方程(是整數(shù))的最大整數(shù)根,P是⊙O外一點,過點P作⊙O 的切線PA和割線PBC,其中A為切點,點B、C是直線PBC與⊙O的交點,若PA、PB、PC的長都是正整數(shù),且PB的長不是合數(shù),求PA+PB+PC 的值. 參考答案- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年九年級數(shù)學競賽輔導講座 第二十二講 園冪定理 2019 2020 九年級 數(shù)學 競賽 輔導 講座 第二十二 定理
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.zhongcaozhi.com.cn/p-3297435.html