《2019-2020年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第七章 不等式章末檢測 理 新人教A版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第七章 不等式章末檢測 理 新人教A版.doc(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)專題復(fù)習(xí)導(dǎo)練測 第七章 不等式章末檢測 理 新人教A版
一、選擇題(本大題共12小題,每小題5分,共60分)
1.(xx山東)設(shè)集合M={x|x2+x-6<0},N={x|1≤x≤3},則M∩N等于( )
A.[1,2) B.[1,2]
C.(2,3] D.[2,3]
2.(xx商丘月考)下列命題中為真命題的是( )
A.若a>b,c>d,則ac>bd
B.若|a|>b,則a2>b2
C.若a>b,則a2>b2
D.若a>|b|,則a2>b2
3.若實數(shù)a、b滿足a+b=2,則3a+3b的最小值是( )
A.18 B.6 C.2 D.2
4.不等式y(tǒng)≥|x|表示的平面區(qū)域是( )
5.(xx北京)如果x
n)都成立的是( )
A.|an-am|<
B.|an-am|>
C.|an-am|<
D.|an-am|>
9.今有一臺壞天平,兩臂長不等,其余均精確,有人要用它稱物體的重量,他將物體放在左右托盤各稱一次,取兩次稱量結(jié)果分別為a、b.設(shè)物體的真實重量為G,則( )
A.=G B.≤G C.>G D.0的解集是{x|x<-1或x>4},則實數(shù)a、b的值分別為________.
14.(xx陜西)如圖,點(x,y)在四邊形ABCD內(nèi)部和邊界上運動,那么2x-y的最小值為________.
15.(xx湯陰模擬)已知正數(shù)a、b滿足ab=a+b+3,則ab的取值范圍為____________,a+b的取值范圍是____________.
16.(xx山東)設(shè)函數(shù)f(x)=(x>0),觀察:
f1(x)=f(x)=,
f2(x)=f(f1(x))=,
f3(x)=f(f2(x))=,
f4(x)=f(f3(x))=,
……
根據(jù)以上事實,由歸納推理可得:
當(dāng)n∈N*且n≥2時,fn(x)=f(fn-1(x))=________.
三、解答題(本大題共6小題,共70分)
17.(10分)解關(guān)于x的不等式≤(其中a>0且a≠1).
18.(12分)(xx惠州月考)函數(shù)f(x)對一切實數(shù)x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(1)求f(0);
(2)求f(x);
(3)當(dāng)0ax-5恒成立,求a的取值范圍.
19.(12分)(xx汕頭月考)設(shè)數(shù)列{an}是公比為q的等比數(shù)列,Sn是它的前n項和.
(1)求證:數(shù)列{Sn}不是等比數(shù)列;
(2)數(shù)列{Sn}是等差數(shù)列嗎?為什么?
20.(12分)(xx嘉興月考)某投資人打算投資甲、乙兩個項目,根據(jù)預(yù)測,甲、乙項目可能的最大盈利率分別為100%和50%,可能的最大虧損率分別為30%和10%,投資人計劃投資金額不超過10萬元,要求確保可能的資金虧損不超過1.8萬元,問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?
21.(12分)先閱讀下列不等式的證法,再解決后面的問題:
已知a1,a2∈R,a1+a2=1,求證:a+a≥.
證明:構(gòu)造函數(shù)f(x)=(x-a1)2+(x-a2)2,
f(x)=2x2-2(a1+a2)x+a+a=2x2-2x+a+a.
因為對一切x∈R,恒有f(x)≥0,所以Δ=4-8(a+a)≤0,從而得a+a≥.
(1)若a1,a2,…,an∈R,a1+a2+…+an=1,請寫出上述問題的推廣式;
(2)參考上述證法,對你推廣的問題加以證明.
22.(12分)(xx山東)等比數(shù)列{an}的前n項和為Sn,已知對任意的n∈N*,點(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上.
(1)求r的值;
(2)當(dāng)b=2時,記bn=2(log2an+1)(n∈N*),
證明:對任意的n∈N*,不等式…>成立.
第七章 章末檢測
1.A [∵x2+x-6<0,∴-3=G.]
10.D [∵M(jìn)=(-1)(-1)(-1)
=≥=8,
當(dāng)且僅當(dāng)a=b=c=時,等號成立.
∴M≥8.]
11.A [當(dāng)x=0時,對任意實數(shù)a,不等式都成立;
當(dāng)x≠0時,a≥-=-=f(x),
問題等價于a≥f(x)max,∵f(x)max=-2,故a≥-2.
綜上可知,a的取值范圍是[-2,+∞).]
12.B [x2+2y2=(x2+2y2)1=(x2+2y2)=1+++2≥3+2
=3+2,當(dāng)且僅當(dāng)=時等號成立.]
13.-4,1
解析 由題意知,-1、4為方程x2+(a+1)x+ab=0的兩根,∴a+1=-3,ab=-4.∴a=-4,b=1.
14.1
解析 令b=2x-y,則y=2x-b,
如圖所示,作斜率為2的平行線y=2x-b,
當(dāng)經(jīng)過點A時,直線在y軸上的截距最大,為-b,此時b=2x-y取得最小值,為b=21-1=1.
15.[9,+∞) [6,+∞)
解析 ∵a+b≥2,∴ab-3≥2.
解得,≥3或≤-1(舍),∴ab≥9,
a+b=ab-3≥6.
16.
解析 依題意,先求函數(shù)結(jié)果的分母中x項系數(shù)所組成數(shù)列的通項公式,由1,3,7,15,…,可推知該數(shù)列的通項公式為an=2n-1.又函數(shù)結(jié)果的分母中常數(shù)項依次為2,4,8,16,…,故其通項公式為bn=2n.
所以當(dāng)n≥2時,fn(x)=f(fn-1(x))=.
17.解?、佼?dāng)a>1時,有x-+1≤-1,
∴x-+2≤0,∴≤0.
∴≤0,∴x≤-3或01時,x∈(-∞,-3]∪(0,1];
當(dāng)0ax-5化為x2+x-2>ax-5,ax0且b≠1,
所以n≥2時,{an}是以b為公比的等比數(shù)列.
又a1=b+r,a2=b(b-1),
所以=b,所以r=-1.(5分)
(2)證明 由(1)知an=2n-1,因此bn=2n(n∈N*),
所證不等式為…>.
(6分)
①當(dāng)n=1時,左式=,右式=.
左式>右式,所以結(jié)論成立,(7分)
②假設(shè)n=k(k∈N*)時結(jié)論成立,即…>,則當(dāng)n=k+1時,
…>
=要證當(dāng)n=k+1時結(jié)論成立,
只需證≥,
即證≥,
由均值不等式=≥成立,
所以,當(dāng)n=k+1時,結(jié)論成立.(11分)
由①②可知,n∈N*時,不等式…>成立.(12分)
鏈接地址:http://www.zhongcaozhi.com.cn/p-2723139.html