2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 課時提升練56 排列與組合 理 新人教版.doc
《2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 課時提升練56 排列與組合 理 新人教版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 課時提升練56 排列與組合 理 新人教版.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 課時提升練56 排列與組合 理 新人教版 一、選擇題 1.(xx石家莊模擬)某中學(xué)從4名男生和3名女生中推薦4人參加某高校自主招生考試,若這4人中必須既有男生又有女生,則不同選法的種數(shù)為( ) A.140 B.120 C.35 D.34 【解析】 從7人中選4人,共有C=35種方法.又4名全是男生,共有C=1種方法.故選4人既有男生又有女生的選法種數(shù)為35-1=34. 【答案】 D 2.(xx四川高考)六個人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ) A.192種 B.216種 C.240種 D.288種 【解析】 第一類:甲在左端,有A=54321=120(種)方法; 第二類:乙在最左端,有4A=44321=96(種)方法. 所以共有120+96=216(種)方法. 【答案】 B 3.將甲、乙、丙、丁四名學(xué)生分到三個不同的班,每個班至少分到一名學(xué)生,且甲、乙兩名學(xué)生不能分到同一個班,則不同分法的種數(shù)為( ) A.18 B.24 C.30 D.36 【解析】 四名學(xué)生中有兩名學(xué)生恰好分在一個班,共有CA種分法,而甲、乙被分在同一個班的有A種,所以不同的分法種數(shù)有CA-A=30種. 【答案】 C 4.在航天員進行的一項太空實驗中,要先后實施6個程序,其中程序A只能出現(xiàn)在第一或最后一步,程序B和C在實施時必須相鄰,問實驗順序的編排方法共有( ) A.34種 B.48種 C.96種 D.144種 【解析】 程序A有A=2種結(jié)果,將程序B和C看作元素集團與除A外的元素排列有AA=48種,∴由分步乘法計數(shù)原理,實驗編排共有248=96種方法. 【答案】 C 5.(xx山東高考)用0,1,…,9十個數(shù)字,可以組成有重復(fù)數(shù)字的三位數(shù)的個數(shù)為( ) A.243 B.252 C.261 D.279 【解析】 0,1,2,…,9共能組成91010=900(個)三位數(shù),其中無重復(fù)數(shù)字的三位數(shù)有998=648(個), ∴有重復(fù)數(shù)字的三位數(shù)有900-648=252(個). 【答案】 B 6.(xx冀州模擬)現(xiàn)安排甲、乙、丙、丁、戊5名同學(xué)參加某志愿者服務(wù)活動,每人從事翻譯、導(dǎo)游、禮儀、司機四項工作之一,每項工作至少有一人參加.甲、乙不會開車但能從事其他三項工作,丙、丁、戊都能勝任四項工作,則不同安排方案的種數(shù)是( ) A.54 B.90 C.126 D.152 【解析】 由于五個人從事四項工作,而每項工作至少一人,那么每項工作至多兩人,因為甲、乙不會開車,所以只能先安排司機,分兩類:(1)先從丙、丁、戊三人中任選一人開車;再從其余四人中任選兩人作為一個元素同其他兩人從事其他三項工作,共有CCA種方案.(2)先從丙、丁、戊三人中任選兩人開車;其余三人從事其他三項工作,共有CA種方案.所以,不同安排方案的種數(shù)是CCA+CA=126種. 【答案】 C 7.在小語種提前招生考試中,某學(xué)校獲得5個推薦名額,其中俄語2名,日語2名,西班牙語1名,并且日語和俄語都要求必須有男生參加.學(xué)校通過選拔定下3男2女共5個推薦對象,則不同的推薦方法的種數(shù)為( ) A.20 B.22 C.24 D.36 【解析】 3個男生每個語種各推薦1個,共有AA種推薦方法;將3個男生分為兩組,其中一組2個人,則共有CAA種推薦方法.所以共有AA+CAA=24種不同的推薦方法. 【答案】 C 8.兩人進行乒乓球比賽,先贏3局者獲勝,決出勝負為止,則所有可能出現(xiàn)的情形(各人輸贏局次的不同視為不同情形)共有( ) A.10種 B.15種 C.20種 D.30種 【解析】 由題意知比賽場數(shù)至少為3場,至多為5場. 當為3場時,情況為甲或乙連臝3場,共2種. 當為4場時,若甲贏,則前3場中甲羸2場,最后一場甲贏,共有C=3(種)情況;同理,若乙贏也有3種情況.共有6種情況. 當為5場時,前4場,甲、乙各贏2場,最后1場勝出的人贏,共有2C=12(種)情況. 由上綜合知,共有20種情況. 【答案】 C 9.(xx洛陽模擬)甲、乙、丙3人站到共有7級的臺階上,若每級臺階最多站2人,同一級臺階上的人不區(qū)分站的位置,則不同的站法種數(shù)是( ) A.258 B.306 C.336 D.296 【解析】 根據(jù)題意,每級臺階最多站2人,所以,分兩類:第一類,有2人站在同一級臺階,共有CA種不同的站法;第二類,一級臺階站1人,共有A種不同的站法.根據(jù)分類加法計數(shù)原理,共有CA+A=336(種)不同的站法. 【答案】 C 10.張、王兩家夫婦各帶一個小孩到頤和園游玩,購得門票后排隊依次入園,為安全起見,首尾一定要排兩位爸爸,另外兩個小孩要排在一起,則這6人的入館順序的排法種數(shù)是( ) A.12 B.24 C.36 D.48 【解析】 第一步,將兩個爸爸放在首尾,有A=2種方法;第二步,將兩個小孩視作一個與兩位媽媽排在中間的三個位置上有AA=12種排法,故總的排法有212=24種. 【答案】 B 11.(xx鄭州模擬)已知集合A={5},B={1,2},C={1,3,4},從這三個集合中各取一個元素構(gòu)成空間直角坐標系中點的坐標,則確定的不同點的個數(shù)為( ) A.33 B.34 C.35 D.36 【解析】 (1)若從集合B中取元素2時,再從C中任取一個元素,則確定的不同點的個數(shù)為CA. (2)當從集合B中取元素1,且從C中取元素1,則確定的不同點有C1=C. (3)當從B中取元素1,且從C中取出元素3或4,則確定的不同點有CA個. ∴由分類加法計數(shù)原理,共確定不同的點有CA+C+CA=33(個). 【答案】 A 12.(xx西寧模擬)若一個三位數(shù)的十位數(shù)字比個位數(shù)字和百位數(shù)字都大,則稱這個數(shù)為“傘數(shù)”.現(xiàn)從1,2,3,4,5,6這六個數(shù)字中任取3個數(shù)字,組成無重復(fù)數(shù)字的三位數(shù),其中“傘數(shù)”有( ) A.120個 B.80個 C.40個 D.20個 【解析】 法一 可分兩步: 第1步,從6個數(shù)字中任取3個數(shù)字,有C種不同的取法; 第2步,將選出的3個數(shù)字中的最大數(shù)字排到十位上,其余2個數(shù)字有A種不同的排法. 根據(jù)分步乘法計數(shù)原理,共有CA=40個不同的“傘數(shù)”. 法二 可分四類: 第1類,當十位數(shù)為6時,有A個不同的“傘數(shù)”; 第2類,當十位數(shù)為5時,有A個不同的“傘數(shù)”; 第3類,當十位數(shù)為4時,有A個不同的“傘數(shù)”; 第4類,當十位數(shù)為3時,有A個不同的“傘數(shù)”; 根據(jù)分類加法計數(shù)原理,共有A+A+A+A=40個不同的“傘數(shù)”. 【答案】 C 二、填空題 13.(xx長春模擬)用1,2,3,4這四個數(shù)字組成無重復(fù)數(shù)字的四位數(shù),其中恰有一個偶數(shù)字夾在兩個奇數(shù)字之間的四位數(shù)的個數(shù)為________. 【解析】 ACA=8種. 【答案】 8 14.將9個相同的小球放入3個不同的盒子,要求每個盒子中至少有1個小球,且每個盒子中的小球個數(shù)都不同,則共有________種不同放法. 【解析】 對這3個盒子中所放的小球的個數(shù)情況進行分類計數(shù):第1類,這3個盒子中所放的小球的個數(shù)分別是1,2,6,此類有A=6種放法;第2類,這3個盒子中所放的小球的個數(shù)分別是1,3,5,此類有A=6種放法;第3類,這3個盒子中所放的小球的個數(shù)分別是2,3,4,此類有A=6種放法.因此共有6+6+6=18種滿足題意的放法. 【答案】 18 15.(xx重慶高考)從3名骨科、4名腦外科和5名內(nèi)科醫(yī)生中選派5人組成一個抗震救災(zāi)醫(yī)療小組,則骨科、腦外科和內(nèi)科醫(yī)生都至少有1人的選派方法種數(shù)是________(用數(shù)字作答). 【解析】 分三類:①選1名骨科醫(yī)生,則有C(CC+CC+CC)=360(種); ②選2名骨科醫(yī)生,則有C(CC+CC)=210(種); ③選3名骨科醫(yī)生,則有CCC=20(種). ∴骨科、腦外科和內(nèi)科醫(yī)生都至少有1人的選派方法種數(shù)是360+210+20=590. 【答案】 590 16.(xx浙江高考)將A,B,C,D,E,F(xiàn)六個字母排成一排,且A,B均在C的同側(cè),則不同的排法共有________種(用數(shù)字作答). 【解析】?、佼擟在第一或第六位時,有A=120(種)排法; ②當C在第二或第五位時,有AA=72(種)排法; ③當C在第三或第四位時,有AA+AA=48(種)排法. 所以共有2(120+72+48)=480(種)排法. 【答案】 480- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)總復(fù)習(xí) 課時提升練56 排列與組合 新人教版 2019 2020 年高 數(shù)學(xué) 復(fù)習(xí) 課時 提升 56 排列 組合 新人
鏈接地址:http://www.zhongcaozhi.com.cn/p-2662415.html