2019-2020年高中數(shù)學 集合教案 新人教A版必修1.doc
《2019-2020年高中數(shù)學 集合教案 新人教A版必修1.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高中數(shù)學 集合教案 新人教A版必修1.doc(52頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 集合教案 新人教A版必修1 教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎,一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數(shù)學思想,在越來越廣泛的領域種得到應用。 課 型:新授課 教學目標:(1)通過實例,了解集合的含義,體會元素與集合的理解集合“屬于”關(guān)系; (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用; 教學重點:集合的基本概念與表示方法; 教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合; 教學過程: 一、 引入課題 軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生? 在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合(宣布課題),即是一些研究對象的總體。 閱讀課本P2-P3內(nèi)容 二、 新課教學 (一)集合的有關(guān)概念 1. 集合理論創(chuàng)始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這些東西,并且能判斷一個給定的東西是否屬于這個總體。 2. 一般地,研究對象統(tǒng)稱為元素(element),一些元素組成的總體叫集合(set),也簡稱集。 3. 思考1:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,對學生的例子予以討論、點評,進而講解下面的問題。 4. 關(guān)于集合的元素的特征 (1)確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。 (2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現(xiàn)同一元素。 (3)集合相等:構(gòu)成兩個集合的元素完全一樣 5. 元素與集合的關(guān)系; (1)如果a是集合A的元素,就說a屬于(belong to)A,記作a∈A (2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作aA(或a A)(舉例) 6. 常用數(shù)集及其記法 非負整數(shù)集(或自然數(shù)集),記作N 正整數(shù)集,記作N*或N+; 整數(shù)集,記作Z 有理數(shù)集,記作Q 實數(shù)集,記作R (二)集合的表示方法 我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。 (1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。 如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…; 例1.(課本例1) 思考2,引入描述法 說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。 (2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內(nèi)。 具體方法:在大括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。 如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…; 例2.(課本例2) 說明:(課本P5最后一段) 思考3:(課本P6思考) 強調(diào):描述法表示集合應注意集合的代表元素 {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。 辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。 說明:列舉法與描述法各有優(yōu)點,應該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。 (三)課堂練習(課本P6練習) 三、 歸納小結(jié) 本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。 四、 作業(yè)布置 書面作業(yè):習題1.1,第1- 4題 課題:1.2集合間的基本關(guān)系 教材分析:類比實數(shù)的大小關(guān)系引入集合的包含與相等關(guān)系 了解空集的含義 課 型:新授課 教學目的:(1)了解集合之間的包含、相等關(guān)系的含義; (2)理解子集、真子集的概念; (3)能利用Venn圖表達集合間的關(guān)系; (4)了解與空集的含義。 教學重點:子集與空集的概念;用Venn圖表達集合間的關(guān)系。 教學難點:弄清元素與子集 、屬于與包含之間的區(qū)別; 教學過程: 五、 引入課題 1、 復習元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填以下空白: (1)0 N;(2) Q;(3)-1.5 R 2、 類比實數(shù)的大小關(guān)系,如5<7,2≤2,試想集合間是否有類似的“大小”關(guān)系呢?(宣布課題) 六、 新課教學 (一) 集合與集合之間的“包含”關(guān)系; A={1,2,3},B={1,2,3,4} 集合A是集合B的部分元素構(gòu)成的集合,我們說集合B包含集合A; 如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關(guān)系,稱集合A是集合B的子集(subset)。 記作: 讀作:A包含于(is contained in)B,或B包含(contains)A 當集合A不包含于集合B時,記作A B 用Venn圖表示兩個集合間的“包含”關(guān)系 B A (二) 集合與集合之間的 “相等”關(guān)系; ,則中的元素是一樣的,因此 即 練習 結(jié)論: 任何一個集合是它本身的子集 (三) 真子集的概念 若集合,存在元素,則稱集合A是集合B的真子集(proper subset)。 記作:A B(或B A) 讀作:A真包含于B(或B真包含A) 舉例(由學生舉例,共同辨析) (四) 空集的概念 (實例引入空集概念) 不含有任何元素的集合稱為空集(empty set),記作: 規(guī)定: 空集是任何集合的子集,是任何非空集合的真子集。 (五) 結(jié)論: ,且,則 (六) 例題 (1)寫出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。 (2)化簡集合A={x|x-3>2},B={x|x5},并表示A、B的關(guān)系; (七) 課堂練習 (八) 歸納小結(jié),強化思想 兩個集合之間的基本關(guān)系只有“包含”與“相等”兩種,可類比兩個實數(shù)間的大小關(guān)系,同時還要注意區(qū)別“屬于”與“包含”兩種關(guān)系及其表示方法; (九) 作業(yè)布置 1、 書面作業(yè):習題1.1 第5題 2、 提高作業(yè): 已知集合,≥,且滿足,求實數(shù)的取值范圍。 設集合, ,試用Venn圖表示它們之間的關(guān)系。 課題:1.3集合的基本運算 教學目的:(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集; (2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集;(3)能用Venn圖表達集合的關(guān)系及運算,體會直觀圖示對理解抽象概念的作用。 課 型:新授課 教學重點:集合的交集與并集、補集的概念; 教學難點:集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”; 教學過程: 七、 引入課題 我們兩個實數(shù)除了可以比較大小外,還可以進行加法運算,類比實數(shù)的加法運算,兩個集合是否也可以“相加”呢? 思考(P9思考題),引入并集概念。 八、 新課教學 1. 并集 一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union) A∪B A B A 記作:A∪B 讀作:“A并B” ? 即: A∪B={x|x∈A,或x∈B} Venn圖表示: 說明:兩個集合求并集,結(jié)果還是一個集合,是由集合A與B的所有元素組成的集合(重復元素只看成一個元素)。 例題(P9-10例4、例5) 說明:連續(xù)的(用不等式表示的)實數(shù)集合可以用數(shù)軸上的一段封閉曲線來表示。 問題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問號部分)還應是我們所關(guān)心的,我們稱其為集合A與B的交集。 2. 交集 一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。 記作:A∩B 讀作:“A交B” 即: A∩B={x|∈A,且x∈B} 交集的Venn圖表示 說明:兩個集合求交集,結(jié)果還是一個集合,是由集合A與B的公共元素組成的集合。 例題(P9-10例6、例7) 拓展:求下列各圖中集合A與B的并集與交集 A B A(B) A B B A B A 說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個集合沒有交集 3. 補集 全集:一般地,如果一個集合含有我們所研究問題中所涉及的所有元素,那么就稱這個集合為全集(Universe),通常記作U。 補集:對于全集U的一個子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補集(plementary set),簡稱為集合A的補集, 記作:CUA 即:CUA={x|x∈U且x∈A} 補集的Venn圖表示 說明:補集的概念必須要有全集的限制 例題(P12例8、例9) 4. 求集合的并、交、 補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法。 5. 集合基本運算的一些結(jié)論: A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A (CUA)∪A=U,(CUA)∩A= 若A∩B=A,則AB,反之也成立 若A∪B=B,則AB,反之也成立 若x∈(A∩B),則x∈A且x∈B 若x∈(A∪B),則x∈A,或x∈B 6. 課堂練習 (1)設A={奇數(shù)}、B={偶數(shù)},則A∩Z=A,B∩Z=B,A∩B= (2)設A={奇數(shù)}、B={偶數(shù)},則A∪Z=Z,B∪Z=Z,A∪B=Z 九、 歸納小結(jié)(略) 十、 作業(yè)布置 3、 書面作業(yè):P13習題1.1,第6-12題 4、 提高內(nèi)容: (1) 已知X={x|x2+px+q=0,p2-4q>0},A={1,3,5,7,9},B={1,4,7,10},且 ,試求p、q; (2) 集合A={x|x2+px-2=0},B={x|x2-x+q=0},若AB={-2,0,1},求p、q; (3) A={2,3,a2+4a+2},B={0,7,a2+4a-2,2-a},且AB ={3,7},求B 課題:1.2.1函數(shù)的概念 教材分析:函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學模型.高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,同時還用集合與對應的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想. 教學目的:(1)通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù),體會對應關(guān)系在刻畫函數(shù)概念中的作用; (2)了解構(gòu)成函數(shù)的要素; (3)會求一些簡單函數(shù)的定義域和值域; (4)能夠正確使用“區(qū)間”的符號表示某些函數(shù)的定義域; 教學重點:理解函數(shù)的模型化思想,用合與對應的語言來刻畫函數(shù); 教學難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示; 教學過程: 十一、 引入課題 1. 復習初中所學函數(shù)的概念,強調(diào)函數(shù)的模型化思想; 2. 閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學模型的思想: (1)炮彈的射高與時間的變化關(guān)系問題; (2)南極臭氧空洞面積與時間的變化關(guān)系問題; (3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題 備用實例: 我國xx年4月份非典疫情統(tǒng)計: 日 期 22 23 24 25 26 27 28 29 30 新增確診病例數(shù) 106 105 89 103 113 126 98 152 101 3. 引導學生應用集合與對應的語言描述各個實例中兩個變量間的依賴關(guān)系; 4. 根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系. 十二、 新課教學 (一)函數(shù)的有關(guān)概念 1.函數(shù)的概念: 設A、B是非空的數(shù)集,如果按照某個確定的對應關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function). 記作: y=f(x),x∈A. 其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域(range). 注意: “y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”; 函數(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x. 2. 構(gòu)成函數(shù)的三要素: 定義域、對應關(guān)系和值域 3.區(qū)間的概念 (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間; (2)無窮區(qū)間; (3)區(qū)間的數(shù)軸表示. 4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論 (由學生完成,師生共同分析講評) (二)典型例題 1.求函數(shù)定義域 課本P20例1 解:(略) 說明: 函數(shù)的定義域通常由問題的實際背景確定,如果課前三個實例; 如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合; 函數(shù)的定義域、值域要寫成集合或區(qū)間的形式. 鞏固練習:課本P22第1題 2.判斷兩個函數(shù)是否為同一函數(shù) 課本P21例2 解:(略) 說明: 構(gòu)成函數(shù)三個要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù)) 兩個函數(shù)相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。 鞏固練習: 課本P22第2題 判斷下列函數(shù)f(x)與g(x)是否表示同一個函數(shù),說明理由? (1)f ( x ) = (x -1) 0;g ( x ) = 1 (2)f ( x ) = x; g ( x ) = (3)f ( x ) = x 2;f ( x ) = (x + 1) 2 (4)f ( x ) = | x | ;g ( x ) = (三)課堂練習 求下列函數(shù)的定義域 (1) (2) (3) (4) (5) (6) 十三、 歸納小結(jié),強化思想 從具體實例引入了函數(shù)的的概念,用集合與對應的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。 十四、 作業(yè)布置 課本P28 習題1.2(A組) 第1—7題 (B組)第1題 課題:1.2.2映射 教學目的:(1)了解映射的概念及表示方法,了解象、原象的概念; (2)結(jié)合簡單的對應圖示,了解一一映射的概念. 教學重點:映射的概念. 教學難點:映射的概念. 教學過程: 十五、 引入課題 復習初中已經(jīng)遇到過的對應: 1. 對于任何一個實數(shù)a,數(shù)軸上都有唯一的點P和它對應; 2. 對于坐標平面內(nèi)任何一個點A,都有唯一的有序?qū)崝?shù)對(x,y)和它對應; 3. 對于任意一個三角形,都有唯一確定的面積和它對應; 4. 某影院的某場電影的每一張電影票有唯一確定的座位與它對應; 5. 函數(shù)的概念. 十六、 新課教學 1. 我們已經(jīng)知道,函數(shù)是建立在兩個非空數(shù)集間的一種對應,若將其中的條件“非空數(shù)集”弱化為“任意兩個非空集合”,按照某種法則可以建立起更為普通的元素之間的對應關(guān)系,這種的對應就叫映射(mapping)(板書課題). 2. 先看幾個例子,兩個集合A、B的元素之間的一些對應關(guān)系 (1)開平方;(2)求正弦(3)求平方;(4)乘以2; 3. 什么叫做映射? 一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射(mapping). 記作“f:AB” 說明: (1)這兩個集合有先后順序,A到B的射與B到A的映射是截然不同的.其中f表示具體的對應法則,可以用漢字敘述. (2)“都有唯一”什么意思? 包含兩層意思:一是必有一個;二是只有一個,也就是說有且只有一個的意思。 4. 例題分析:下列哪些對應是從集合A到集合B的映射? (1)A={P | P是數(shù)軸上的點},B=R,對應關(guān)系f:數(shù)軸上的點與它所代表的實數(shù)對應; (2)A={ P | P是平面直角體系中的點},B={(x,y)| x∈R,y∈R},對應關(guān)系f:平面直角體系中的點與它的坐標對應; (3)A={三角形},B={x | x是圓},對應關(guān)系f:每一個三角形都對應它的內(nèi)切圓; (4)A={x | x是新華中學的班級},B={x | x是新華中學的學生},對應關(guān)系f:每一個班級都對應班里的學生. 思考: 將(3)中的對應關(guān)系f改為:每一個圓都對應它的內(nèi)接三角形;(4)中的對應關(guān)系f改為:每一個學生都對應他的班級,那么對應f: BA是從集合B到集合A的映射嗎? 5. 完成課本練習 十七、 作業(yè)布置 補充習題 課題:1.2.2函數(shù)的表示法 教學目的:(1)明確函數(shù)的三種表示方法; (2)在實際情境中,會根據(jù)不同的需要選擇恰當?shù)姆椒ū硎竞瘮?shù); (3)通過具體實例,了解簡單的分段函數(shù),并能簡單應用; (4)糾正認為“y=f(x)”就是函數(shù)的解析式的片面錯誤認識. 教學重點:函數(shù)的三種表示方法,分段函數(shù)的概念. 教學難點:根據(jù)不同的需要選擇恰當?shù)姆椒ū硎竞瘮?shù),什么才算“恰當”?分段函數(shù)的表示及其圖象. 教學過程: 十八、 引入課題 5. 復習:函數(shù)的概念; 6. 常用的函數(shù)表示法及各自的優(yōu)點: (1)解析法; (2)圖象法; (3)列表法. 十九、 新課教學 (一)典型例題 例1.某種筆記本的單價是5元,買x (x∈{1,2,3,4,5})個筆記本需要y元.試用三種表示法表示函數(shù)y=f(x) . 分析:注意本例的設問,此處“y=f(x)”有三種含義,它可以是解析表達式,可以是圖象,也可以是對應值表. 解:(略) 注意: 函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數(shù)圖象的依據(jù); 解析法:必須注明函數(shù)的定義域; 圖象法:是否連線; 列表法:選取的自變量要有代表性,應能反映定義域的特征. 鞏固練習: 課本P27練習第1題 例2.下表是某校高一(1)班三位同學在高一學年度幾次數(shù)學測試的成績及班級及班級平均分表: 第一次 第二次 第三次 第四次 第五次 第六次 王 偉 98 87 91 92 88 95 張 城 90 76 88 75 86 80 趙 磊 68 65 73 72 75 82 班平均分 88.2 78.3 85.4 80.3 75.7 82.6 請你對這三們同學在高一學年度的數(shù)學學習情況做一個分析. 分析:本例應引導學生分析題目要求,做學情分析,具體要分析什么?怎么分析?借助什么工具? 解:(略) 注意: 本例為了研究學生的學習情況,將離散的點用虛線連接,這樣更便于研究成績的變化特點; 本例能否用解析法?為什么? 鞏固練習: 課本P27練習第2題 例3.畫出函數(shù)y = | x | . 解:(略) 鞏固練習:課本P27練習第3題 拓展練習: 任意畫一個函數(shù)y=f(x)的圖象,然后作出y=|f(x)| 和 y=f (|x|) 的圖象,并嘗試簡要說明三者(圖象)之間的關(guān)系. 課本P27練習第3題 例4.某市郊空調(diào)公共汽車的票價按下列規(guī)則制定: (1) 乘坐汽車5公里以內(nèi),票價2元; (2) 5公里以上,每增加5公里,票價增加1元(不足5公里按5公里計算). 已知兩個相鄰的公共汽車站間相距約為1公里,如果沿途(包括起點站和終點站)設20個汽車站,請根據(jù)題意,寫出票價與里程之間的函數(shù)解析式,并畫出函數(shù)的圖象. 分析:本例是一個實際問題,有具體的實際意義.根據(jù)實際情況公共汽車到站才能停車,所以行車里程只能取整數(shù)值. 解:設票價為y元,里程為x公里,同根據(jù)題意, 如果某空調(diào)汽車運行路線中設20個汽車站(包括起點站和終點站),那么汽車行駛的里程約為19公里,所以自變量x的取值范圍是{x∈N*| x≤19}. 由空調(diào)汽車票價制定的規(guī)定,可得到以下函數(shù)解析式: () 根據(jù)這個函數(shù)解析式,可畫出函數(shù)圖象,如下圖所示: 注意: 本例具有實際背景,所以解題時應考慮其實際意義; 本題可否用列表法表示函數(shù),如果可以,應怎樣列表? 實踐與拓展: 請你設計一張乘車價目表,讓售票員和乘客非常容易地知道任意兩站之間的票價.(可以實地考查一下某公交車線路) 說明:象上面兩例中的函數(shù),稱為分段函數(shù). 注意:分段函數(shù)的解析式不能寫成幾個不同的方程,而就寫函數(shù)值幾種不同的表達式并用一個左大括號括起來,并分別注明各部分的自變量的取值情況. 二十、 歸納小結(jié),強化思想 理解函數(shù)的三種表示方法,在具體的實際問題中能夠選用恰當?shù)谋硎痉▉肀硎竞瘮?shù),注意分段函數(shù)的表示方法及其圖象的畫法. 二十一、 作業(yè)布置 課本P28 習題1.2(A組) 第8—12題 (B組)第2、3題 課題:1.3.1函數(shù)的單調(diào)性 教學目的:(1)通過已學過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性及其幾何意義; (2)學會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì); (3)能夠熟練應用定義判斷數(shù)在某區(qū)間上的的單調(diào)性. 教學重點:函數(shù)的單調(diào)性及其幾何意義. 教學難點:利用函數(shù)的單調(diào)性定義判斷、證明函數(shù)的單調(diào)性. 教學過程: 二十二、 引入課題 1. 觀察下列各個函數(shù)的圖象,并說說它們分別反映了相應函數(shù)的哪些變化規(guī)律: y x 1 -1 1 -1 y x 1 -1 1 -1 y x 1 -1 1 -1 隨x的增大,y的值有什么變化? 能否看出函數(shù)的最大、最小值? y x 1 -1 1 -1 函數(shù)圖象是否具有某種對稱性? 2. 畫出下列函數(shù)的圖象,觀察其變化規(guī)律: 1.f(x) = x 從左至右圖象上升還是下降 ______? 在區(qū)間 ____________ 上,隨著x的增 大,f(x)的值隨著 ________ . y x 1 -1 1 -1 2.f(x) = -2x+1 從左至右圖象上升還是下降 ______? 在區(qū)間 ____________ 上,隨著x的增 大,f(x)的值隨著 ________ . y x 1 -1 1 -1 3.f(x) = x2 在區(qū)間 ____________ 上,f(x)的值隨 著x的增大而 ________ . 在區(qū)間 ____________ 上,f(x)的值隨 著x的增大而 ________ . 二十三、 新課教學 (一)函數(shù)單調(diào)性定義 1.增函數(shù) 一般地,設函數(shù)y=f(x)的定義域為I, 如果對于定義域I內(nèi)的某個區(qū)間D內(nèi)的任意兩個自變量x1,x2,當x1- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高中數(shù)學 集合教案 新人教A版必修1 2019 2020 年高 數(shù)學 集合 教案 新人 必修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://www.zhongcaozhi.com.cn/p-2409559.html