【溫馨提示】 dwg后綴的文件為CAD圖,可編輯,無水印,高清圖,,壓縮包內(nèi)文檔可直接點開預覽,需要原稿請自助充值下載,請見壓縮包內(nèi)的文件及預覽,所見才能所得,請細心查看有疑問可以咨詢QQ:414951605或1304139763
哈爾濱工業(yè)大學華德應用技術學院畢業(yè)設計
第1章 緒 論
1.1 概述
目前我國城市生活垃圾(MSW) 年總產(chǎn)生量已達1. 8 億噸,而且仍在不斷增長,年增長率為8 %~10 %。隨著城市建設規(guī)模的不斷擴大和人們生活水平的不斷提高,一方面,城市生活垃圾的成份發(fā)生了很大變化,其變化的主要特點是:垃圾密度不斷降低,可壓縮性增加。如果繼續(xù)采用常規(guī)的垃圾運輸方式,容易造成垃圾清運中的虧載,使垃圾轉(zhuǎn)運效率降低;另一方面,近郊可利用來填埋垃圾的洼地越來越少,人們不得不考慮在遠離市區(qū)的郊區(qū)建立垃圾處理處置場所。 據(jù)統(tǒng)計國內(nèi)幾個大城市的垃圾處理廠距離市區(qū)均在50km 以上,運輸費用占垃圾處理費用的比例較高。 在一些發(fā)達國家運輸費用已占垃圾處理費用的80 %以上。 所以,降低垃圾清運費用是降低整個城市垃圾處理處置費用的關鍵。 垃圾壓縮可以解決垃圾運輸中的虧載問題,降低垃圾的運輸費用,是城市生活垃圾集運的發(fā)展方向。 因此壓縮式垃圾車的優(yōu)勢日漸明顯,高效的垃圾壓縮運輸方式有了長足的發(fā)展。
帶掛桶的壓縮式垃圾車便是其中的一種常見結(jié)構(gòu)形式,它由汽車底盤、填料器、上裝廂體、排出板機構(gòu)和掛桶等組成。其發(fā)展方向是:提高垃圾的裝載量;改善車輛的密封性;垃圾的分類處理。垃圾的分類越細對于環(huán)境的保護效果就越好,目前城市垃圾主要可以分為4類:
1. 濕垃圾:主要指廚房產(chǎn)生的廚余、果皮等含水率較高的食物性垃圾。
2. 干垃圾(可回收利用垃圾):主要指廢紙張、廢塑料、廢金屬、廢玻璃等可用于直接回收利用或再生后循環(huán)使用的含水率較低的垃圾。
3. 有害垃圾:指對人體健康或者環(huán)境造成現(xiàn)實危害或者潛在危害的廢棄物,同時也包括對人體健康有害的重金屬或有毒物質(zhì)廢棄物。
4. 大件垃圾:指重量超過5千克或體積超過0.2立方米以及長度超過1米的廢舊家具、辦公用具、廢舊電器,以及包裝箱、籮筐等大型的、耐久性的固體廢棄物,是因體積較大等因素混入城市一般生活垃圾一起清運有困難的特殊的生活垃圾。
垃圾如何進行分類處理是目前垃圾運輸中急待解決的難題,這對于環(huán)境的保護意義重大。
本次設計的課題為帶掛桶的壓縮式垃圾車設計,來源于江蘇悅達專用車有限公司。本次設計主要是針對垃圾車車廂設計和排出機構(gòu)液壓設計。車廂是垃圾車的重要部件之一,主要起裝載、運輸垃圾之用。在運輸過程中,不得產(chǎn)生飄、灑、漏等現(xiàn)象,避免造成二次污染。根據(jù)設計要求,確定了廂體形狀和主要尺寸參數(shù),重點考慮它的密封性。排出機構(gòu)主要是用來排卸垃圾以及在垃圾裝載時提供一定的背壓力,使壓縮后的垃圾密度均勻。它采用液壓為動力裝置,實現(xiàn)作業(yè)自動化,大大降低勞動強度,提高工作效率。
第2章 總體方案論證
2.1 本課題基本前提條件和技術要求
2.1.1 基本前提條件
設計裝運空間為12m3,設計要求必須符合機動車等設計要求。
2.1.2 技術要求
1. 滿足裝運空間為12m3車。
2. 結(jié)構(gòu)設計應合理,填料器與箱體應可能連接滿足強度要求,自動鎖、安全棒等可靠。
3. 排出機構(gòu)等運動件工作安全、可靠,且便于維修、調(diào)整。
4. 盡量使用通用件,以便降低制造成本。
2.2 結(jié)構(gòu)方案確定
2.2.1 傳統(tǒng)自卸式垃圾車的結(jié)構(gòu)分析
主要采用側(cè)翼開啟、頂蓋前后梭動等幾種方式,這種車的主要特點是直接收集、轉(zhuǎn)運、不壓縮,適用于特定人工方式,操作簡單,成本低。缺點是:裝載量小、自動化程度低、轉(zhuǎn)運效率低,無法解決轉(zhuǎn)運中流污水的二次污染問題。
2.2.2 本垃圾車的結(jié)構(gòu)特點
1.填料器的擺放布置
后裝壓縮式垃圾車工作時,填料器有下放和上揚兩種布置形式。下放布置時,填料器與廂體相吻合,底部機構(gòu)聯(lián)接,以保證密封性能。這樣的布置充分考慮了行駛的平穩(wěn)性和駕駛性能。填料器上揚布置,整個填料器可以繞軸旋轉(zhuǎn)上揚70,這樣可以保證廂體內(nèi)的垃圾徹底排出。這種布置在填料器上揚時,整車的重心后移,汽車的行駛性能和爬坡能力降低,在不影響裝載量的情況下,回轉(zhuǎn)支承應盡量向前布置,使重心前移。這種布置和傳統(tǒng)的卸料方式相比,雖然結(jié)構(gòu)較復雜,但是垃圾的排出比較徹底,同時避免了整車的重心過分后移,而造成翻車事故。
2. 垃圾排卸方式
采用推板推出的方式,和傳統(tǒng)車廂上舉,靠重力卸料的方式相比,可以避免由于過分壓縮的垃圾膨脹堵塞在車廂內(nèi),同時還可以防止卸料時重心過于后移而翻車。
2.2.3垃圾車載質(zhì)量利用系數(shù)的提高
載質(zhì)量利用系數(shù)的提高將有助于降低車輛的運行成本。后裝壓縮式垃圾車的載質(zhì)量利用系數(shù)主要由二個方面組成:
1. 底盤的載質(zhì)量利用系數(shù)
在底盤選型時,選擇技術含量高、動力性好、自重相對較輕的底盤。
2. 專用裝置的自重
后裝壓縮式垃圾車由于結(jié)構(gòu)復雜,自重較大,在設計時應盡量采用新材料、新技術、新工藝。主要零部件采用高強度鋼板,輔助件(如擋泥板、裝飾件、蓋板等) 采用比重較輕的注塑件。主要構(gòu)件采用特殊加工工藝方法,如:車廂側(cè)板及頂板采用數(shù)控折彎成弧形結(jié)構(gòu)。受力構(gòu)件采用局部加強法等,從而降低專用裝置的重量。
2.2.4 垃圾壓縮比的提高
壓縮機構(gòu)中刮板對垃圾的壓強將直接影響垃圾的壓縮比。當壓強增大時,垃圾的壓縮比將增大;反之則減小。因而在設計壓縮機構(gòu)時,應努力提高刮板的壓強。影響刮板壓強的因素主要有四個方面:
1.刮板的壓縮面積根據(jù)使用場合、投料方式、垃圾投入量來確定,如能滿足使用要求,刮板的面積應盡量小。
2.壓縮油缸的安裝形式應能充分利用油缸的最大能力,即在壓縮垃圾過程中應使油缸無桿腔作用。
3.滑板與導軌的摩擦力將有助于提高垃圾壓縮力。因而,在選取滑板滑塊與導軌材料時應配對選取相對摩擦系數(shù)較小的材料;減小壓縮油缸軸線與滑板導軌的夾角,以避免由于壓縮油缸安裝不當產(chǎn)生的扭力使N1 、N2增大;減小壓縮油缸軸線與滑塊中心線的平行偏移量,假如油缸軸線上偏于滑塊中心線,將增大N1 、N2的值,如軸線下偏于滑塊中心線,將減小N1 、N2的值,但結(jié)構(gòu)上很難布置,故通常將壓縮油缸置于滑塊中心線上。
4.壓縮油缸與地面的水平夾角θ1越小,則壓縮油缸的推力沿車廂長度方向的分力將越大,有利于垃圾填滿整個車廂,提高垃圾壓縮比。
2.2.5合理選擇壓縮機構(gòu)液壓控制方式
壓縮機構(gòu)的控制系統(tǒng)會直接影響液壓系統(tǒng)的可靠性,因而合理選擇壓縮機構(gòu)液壓控制方式將對后裝壓縮式垃圾車的性能起到至關重要的作用?;瑒庸伟迨綁嚎s機構(gòu)工作步驟如圖2-1
(a) 刮板開啟 (b)滑板下滑
(c)破碎摟起 (d)壓縮
圖2-1滑動刮板式壓縮機構(gòu)圖
1 .滑板 2.刮板 3.刮板油缸 4.滑板油缸
圖2-2填裝機構(gòu)結(jié)構(gòu)圖
壓縮機構(gòu)每一工作循環(huán)有以下四個步驟:
1. 刮板開———當垃圾倒入填塞器裝料斗后,操作刮板油缸控制閥,使刮板油缸活塞桿回縮,刮板向外翻轉(zhuǎn)。
2. 滑板下———當刮板油缸活塞桿回縮到位后, 操作滑板油缸控制閥使滑板油缸活塞桿回縮,滑板帶動刮板沿軌道向下運動,刮板壓向裝料斗內(nèi)的垃圾。
3. 刮板進———當滑板油缸活塞桿回縮到位后,反向操作刮板油缸控制閥使刮板油缸活塞桿外伸,刮板向內(nèi)翻轉(zhuǎn),將裝料斗內(nèi)的垃圾刮起,盛于刮板上。
4. 滑板上———當刮板油缸活塞桿外伸到位后,反向操作滑板油缸控制閥使滑板油缸活塞桿外伸,滑板帶動刮板沿軌道向上運動,將垃圾推入壓實到車廂內(nèi)。
2.2.6 車輛密封
后裝壓縮式垃圾車由于壓縮力大,經(jīng)壓縮后的垃圾產(chǎn)生大量的污水,如不加以控制,將嚴重影響環(huán)境,因而在設計時應從以下三個方面完善車輛密封,即:在車廂與填塞器之間安裝耐用型密封條,并加以壓縮、鎖緊;車廂底板做成前低后高,將污水控制在車廂內(nèi);在填塞器下部安裝便于清洗的積污水槽,用于車廂與填塞器之間滴漏的污水的臨時儲存。
第3章 垃圾車整體設計
3.1 垃圾車質(zhì)量參數(shù)的確定
3.1.1 裝載量
按課題要求,所設計的垃圾車的車廂容積為,以標準垃圾的單位質(zhì)量進行設計計算,取每立方米的標準垃圾質(zhì)量為0.45t
所以:
=0.4512 =5.4t (3-1)
3.1.2 整備質(zhì)量
參考國內(nèi)外同類型同級別的汽車的裝載量與整備質(zhì)量之比為新車型選擇一個適當?shù)恼麄滟|(zhì)量利用系數(shù),然后按其裝載量,計算整備質(zhì)量
查《汽車設計》表2-10,由于為柴油車因此取整備質(zhì)量利用系數(shù)
=0.8
所以:
=/=5.4/0.8=6.75t (3-2)
3.1.3 汽車的總質(zhì)量
載貨汽車的總質(zhì)量包括整備質(zhì)量、裝載量以及駕駛室坐滿人的質(zhì)量,按課題的要求,所設計的垃圾車駕駛室為2個座位,無附加的裝備,每人按65kg計算。
所以:
=++20.065 (3-3)
=5.4+6.75+0.13
=12.28t
3.2 垃圾車發(fā)動機的選型
3.2.1 發(fā)動機最大功率及其相應轉(zhuǎn)速
由《汽車設計》表2-12選取比功率值,由于垃圾車為中型載貨汽車,故取比功率為9
根據(jù)公式:
比功率=/ (3-4)
可得:
=9=912.28=110.52kw
根據(jù)發(fā)動機最大功率選取與其相應的轉(zhuǎn)速,中型貨車柴油機的多為2200~3400r/min,取=3000r/min
3.2.2 發(fā)動機最大轉(zhuǎn)矩及其相應轉(zhuǎn)速
根據(jù)式:
=α =7019α (3-5)
求
式中:
α——發(fā)動機的轉(zhuǎn)矩適應系數(shù)
——最大功率時的轉(zhuǎn)矩
——發(fā)動機的最大功率
---最大功率的相應轉(zhuǎn)速
因為車用柴油機的α值多在1.1~1.25(帶校正器),所以取α=1.15,代入上式可得:
=70191.15 (3-6)
=297.37
與之比不宜小于1.4,通常取/=1.4~2.0,
所以?。?
/=1.5 =/1.5=2000r/min (3-7)
3.2.3 發(fā)動機適應性系數(shù)
根據(jù)式:
ф= α發(fā)動機的轉(zhuǎn)矩適應系數(shù) (3-8)
=1.151.5=1.725
依據(jù)以上對發(fā)動機參數(shù)的要求,選用發(fā)動機的型號為:EQB180—20
3.3 料斗容積與污水箱容積
料斗容積直接反映垃圾車裝載垃圾的能力和效果,由于受汽車底盤承載和結(jié)構(gòu)布置的限制,垃圾車的斗容量不宜過大,否則對底盤的承載要求很高,與汽車難以匹配,開發(fā)實用價值低。因此,料斗容積適合在0.25~1.5。取料斗容積為1,要與料斗容積相匹配,污水箱容量可根據(jù)用戶的要求適當增減,設計時以250L為標準。
3.4 底盤的改造
底盤是保證垃圾車具有機動性好的關鍵,應選擇質(zhì)量好、承載能力大的底盤。垃圾車的車架按汽車的工作特性設計,垃圾車的工作特性與汽車的工作特性差異很大,垃圾裝載時有較大的工作載荷傳給車架,要求車架有較大的剛度支撐。
修改懸架和發(fā)動機安裝方法,改善操作穩(wěn)定性和行駛平順性。更新制動助力系統(tǒng),產(chǎn)生更好的制動力,而且更加自然。后懸架(所有車型)為了提供更好的平順性,去掉了后支撐副車架,同時增加了整個車輛的剛度,減輕重量。了改善操縱穩(wěn)定性,降低了副車架蹄部調(diào)整孔的位置,并改變了側(cè)傾特性。增加了高速行駛過程中的直線穩(wěn)定性,減少了補償轉(zhuǎn)向。
3.4.1 整備質(zhì)量和軸荷分配
由前面的計算得整備質(zhì)量:=6750kg
軸荷分配是汽車的重要質(zhì)量參數(shù),它對汽車的牽引性、通過性、制動性、操縱性和穩(wěn)定性等主要使用性能以及輪胎的使用壽命都有很大的影響。因此,在總體設計應根據(jù)汽車的布置形式、使用條件及性能要求合理地選定其軸荷分配。對垃圾車而言,滿載時的前軸負荷多在28%上下。查《汽車設計》表2-11a得:42后輪雙胎,短頭貨車在空載時:前軸負荷為:44%~49%,取45%;后軸負荷為:51%~56%,取55%。
所以:
空載時: 前軸軸載質(zhì)量=45%=6750kg45%=3037.5kg
后軸軸載質(zhì)量=55%=6750kg55%=3712.5kg
滿載時:
前軸負荷為:27%~30%,?。?8%,
后軸負荷為:70%~73%,?。?2%
所以:
滿載時前軸軸載質(zhì)量=28%=12280kg28%=3438.4kg
滿載時后軸軸載質(zhì)量=72%=12280kg72%=8841.6kg
3.4.2 性能參數(shù)
1. 最高車速
考慮汽車的類型、用途、道路條件、具備的安全條件和發(fā)動機功率的大小等,并以汽車行駛的功率平衡為依據(jù)來確定。參見《汽車設計》表2-12知:垃圾車的最高車速在90~120km/h,取為90km/h
2. 燃料經(jīng)濟性參數(shù)
參考總質(zhì)量相近的同類車型的百公里耗油量或單位燃料消耗量來估算。參考《汽車設計》表2-13知:總質(zhì)量>12t的柴油機垃圾車單位燃料消耗量為:1.43~1.53L/(100),現(xiàn)取為:1.5 L/(100)
3. 機動性參數(shù)
最小轉(zhuǎn)彎半徑反映了汽車通過小曲率半徑彎曲道路的能力和狹窄路面上或場地上調(diào)頭的能力。其值可按下式計算:
=+a (3-9)
=
式中:
——最大轉(zhuǎn)角
L——轉(zhuǎn)軸,4500mm
K——主銷軸
a——轉(zhuǎn)向輪的轉(zhuǎn)臂
通常取為35~40,為了減小值,值有時可達45,取=40
4. 通過性參數(shù)
查《汽車設計》表2-19得:
最小離第間隙=0.25m
接近角α=35
離去角β=20
縱向通過半徑=5m
3.4.3 垃圾車掛桶的選配
選配壓縮式垃圾車YD5141ZYS的掛桶以及提升機構(gòu),掛桶的尺寸為:高550mm,寬1300mm。掛桶可裝載垃圾為100kg。掛桶和裝載滿垃圾的總質(zhì)量為200kg。液壓缸的最大推力為1500N,最大行程500mm。
3.4.4 舉升液壓缸的選配
舉升油缸的作用力來自于裝料斗總成(包括滑板、刮板) 舉升過程中對旋轉(zhuǎn)支點的重力矩所產(chǎn)生的杠桿力。
取裝料斗總成(包括滑板、刮板) 重量G =1950kg ,最大舉升角。計算舉升時裝料斗總成和舉升油缸對旋轉(zhuǎn)支點的作用力矩。
1. 裝料斗總成作用力矩
2. 舉升油缸作用力矩
舉升時作用力矩隨舉升角而變化。
3. 裝料斗總成
作用力臂 :
作用力矩 :
當時,
4. 舉升油缸
作用力臂
=1.324
=
作用力矩
當時,
所以只要保證起始時刻能夠舉起裝料斗則舉升過程即可實現(xiàn)。同時也可以計算出:在裝料斗總成質(zhì)心不變的情況下,油缸可舉起的最大重量為2700kg。
3.4.5 尺寸參數(shù)
1. 軸距L
可根據(jù)要求的貨廂長度及駕駛室布置尺寸初步確定軸距L:
L=+ S - (3-10)
式中:
——貨廂長度,根據(jù)裝載量確定: =4620mm
——前輪中心至駕駛室后壁的距離,取=815mm
S——駕駛室與貨廂之間間隙,取S=500mm
——后懸尺寸,參考同類型垃圾車取=2100mm
L=4620+815+500-2100
=3835mm
2. 前后輪距與
根據(jù)《汽車設計》表2-7,初選輪距:
=1900mm =1850mm
3. 外廓尺寸
我國對公路車輛的限制尺寸要求總高不大于4m;總寬(不包括后視鏡)不大于2.5m,左右后視鏡等突出部分的側(cè)向尺寸總共不大于250mm;總長:載貨汽車不大于12m。
取總高為2710mm,總寬為2200mm,總長為7205mm。
第4章 垃圾車廂體的設計
4.1 合理選擇卸料方式
4.1.1 車廂后傾式卸料方式
其原理是:在傾卸油缸的作用下,車廂、壓縮機構(gòu)及車廂內(nèi)的垃圾繞車架尾部的回轉(zhuǎn)中心旋轉(zhuǎn),旋轉(zhuǎn)至一定角度后車廂內(nèi)的垃圾靠自重下落實現(xiàn)卸料作業(yè)。這種卸料方式的優(yōu)點是結(jié)構(gòu)簡單,但在實際使用時存在許多弊端,如:
1. 由于垃圾在車廂內(nèi)被壓實,垃圾與車廂四周存在著較大的膨脹力與磨檫力,垃圾不易倒出,嚴重時垃圾的自重不足以克服摩擦力,產(chǎn)生垃圾脹死現(xiàn)象。
2. 在傾翻作業(yè)時,車廂、壓縮機構(gòu)及垃圾的重心將后移、上升,車輛前橋負荷降低,影響整車縱向穩(wěn)定性。嚴重時,前橋離地,整車傾翻(特別在路基較為松散的填埋場)。
3. 傾翻時,所有重量將集中至車廂回轉(zhuǎn)中心及汽車大梁尾部,將對汽車大梁及后橋產(chǎn)生嚴重的損壞。
4.1.2 推板卸料方式
其原理是:在車廂內(nèi)設置一塊面板呈鏟形并能沿預定軌道滑行的推板,推板在油缸的推動下,向車廂尾部作水平推擠運動,將垃圾推出車廂,實現(xiàn)卸料作業(yè)。這種卸料方式雖結(jié)構(gòu)較為復雜,但卸料不受垃圾壓縮比的限制,卸料干凈,對車架的載荷分布較為均勻,卸料過程平穩(wěn)、安全。同時,可利用推板的阻力實現(xiàn)壓縮車雙向壓縮。因此,推板卸料是后裝壓縮式垃圾車較為理想的卸料方式。
4.2 確定廂體設計方案
目前市面上最流行的垃圾車車廂是流線型(圖4-1),樣子比較美觀,頂蓋做成弧形結(jié)構(gòu),可以承受垃圾對它向上的膨脹力。當然也有方型的(圖4-2),此種結(jié)構(gòu),造型比較笨重,質(zhì)量比較大,無形中增加了汽車發(fā)動機的功率,造成浪費,已逐漸淘汰,在此不作說明。所以我選用圖3-1這種廂體流線型設計方案。
圖4-1 流線型廂體
圖4-2 方形廂體
根據(jù)在江蘇悅達專用車有限公司的車型以及課題要求,所設計的垃圾車的車廂容積為12立方米,所以確定車廂形狀和尺寸如圖4-3。
圖4-3 廂體尺寸圖
4.3 垃圾車廂體成形工藝
4.3.1 概述
垃圾車廂體是垃圾車的重要部件之一,主要起裝載、運輸垃圾之用,它由前板、左右側(cè)板、頂板、底板等五項主要零件組成。這些零件由于所處位置不同,受力情況各異,因而結(jié)構(gòu)也不相同,選用的材質(zhì)雖一致(Q235),但料厚有差異。對這幾項零件的工藝成形方法的選擇也完全不一樣。在此對廂體零件成形的工藝選擇作一分析。
4.3.2 影響成形工藝選擇的因素
下面分析垃圾車車廂成形工藝選擇的主要因素:
1.產(chǎn)品結(jié)構(gòu)
產(chǎn)品結(jié)構(gòu)是決定成形工藝的主要因素。任何一種成形工藝都以滿足設計要求為前提,由于該幾項零件結(jié)構(gòu)不同,因此它們的成形方法也不一樣,如前板為拉伸成形,側(cè)板和頂板為彎曲成形等。
2.產(chǎn)量和成本
產(chǎn)量和成本是互相聯(lián)系的,降低成本是工藝工作的核心。當一個新產(chǎn)品投入生產(chǎn)前,應根據(jù)該產(chǎn)品的試制總方案設定的批量或年產(chǎn)量,決定該零件的成形方法,工藝裝備的選擇不宜成本過高,否則將加重產(chǎn)品的附加成本,不利市場的銷售。
3.研制周期
研制周期也是決定零件成形工藝的主要因素,為適應市場經(jīng)濟,一般要求研制周期越短越好。這就給選擇成形工藝帶來諸如模具制造、展開件試制等困難。YD5141SYZ型垃圾車從方案論證到樣車鑒定,研制周期較短。選擇工藝成形方法時,就不能選用制造周期長的模具,而選擇那種既能保證零件成形質(zhì)量,制造周期又短的模具。
4.設備
工廠現(xiàn)有的工藝設備和工藝水平也是選擇成形工藝必須考慮的因素。
5.人員技術水平
操作者的技術水平也是影響成形的因素之一,在考慮工藝方案時需結(jié)合本廠操作人員的技術水平。
6.拼料狀態(tài)
由于YD5141SYZ垃圾車車廂尺寸為4360、2015、1645mm(長、寬、高),超過一般板料幅面,而大幅面板料的訂貨又因用量有限受到制約,因而需進行拼焊,拼焊中因設備原因不能都采用對接鎢極自動氬弧焊。有的采用墊板接觸焊,由于各板焊接方法不同,因此在選擇零件成形工藝時還需考慮拼料狀態(tài)。
4.3.3成形工藝的選擇
幾種工藝的比較及選擇:
1. 采用帶壓邊裝置的拉伸模拉伸成形,生產(chǎn)的零件尺寸準確,表面質(zhì)量好,但模具制造成本高,模具毛坯需外協(xié)加工,制造周期長,模具結(jié)構(gòu)較復雜,維修困難。該工藝方法實用于大批量生產(chǎn)。
2. 采用鉛鋅合金模落壓成形,模具制造方便,費用較低,制造周期也短。缺點是模具壽命短,零件外觀質(zhì)量較差,人工修整工作量大,工作環(huán)境太差。該方法適宜試制或小批量生產(chǎn)。
3. 采用鋼下模、鉛上模結(jié)構(gòu)的沖壓模,模具制造時按鋼模澆鑄,模具吻合較好,零件的質(zhì)量得到保證,制造成本相對較低。缺點是因無壓邊裝置,零件成形過程中有起皺現(xiàn)象,需在轉(zhuǎn)角處增開缺口,成形后采用人工補焊。該方法適于中批量生產(chǎn)。
根據(jù)以上幾種工藝方法的比較,結(jié)合YD5141SYZ垃圾車的中批量生產(chǎn)模式,決定選用最后一種方法作為前板零件的成形工藝方法,做出合格的開口展開件。這樣既有利于零件的成形,又避免成形后過多的人工打磨。左右側(cè)板也采用相同的成形工藝方法,頂板采用壓制槽形件,然后在平板上進行焊接的方法成形。
4.3.4 拼焊工藝
YD5141SYZ垃圾車車廂尺寸為4360、2015、1645mm,超過一般板料的幅面尺寸,大幅面板料的訂貨因受用量限制而制約,因此尋求一種適于不同加工成形的焊接方法是拼焊的關鍵。由于受成形方法和料厚的影響,拼焊工藝各異,具體方法簡述如下:
1. 前板的拼焊
前板零件的成形是拉伸成形,因此焊接滲透性要求較高,又考慮到在拉伸過程中焊縫對模具的影響,要求焊縫光順平滑無明顯的凸起,因此只能選擇成本相對高的鎢極自動氬弧焊,從而滿足了該零件的拼焊需要。采用該工藝拼焊的板料,滿足了零件成形的需要。
2. 側(cè)板、頂板、底板的拼焊
側(cè)板、頂板、底板的拼焊選用加墊塊的點焊、滾焊工藝。由于這幾塊板在零件的成形中僅有彎曲成形(側(cè)板)或不需成形(底板),材料的受力狀態(tài)較前板好,加之該幾項零件都超過了鎢極自動氬弧焊的軌道,采用CO2 焊因熱影響區(qū)較大,零件的變形也大,需大量手工較形,且不能滿足設計要求,因此選用影響區(qū)小的點焊、滾焊工藝是較合適的,它既克服了大量的人工勞動,又能滿足設計要求。具體拼接如圖4-4,選用同牌號同料厚并與焊縫等長的墊板,采用先點焊后滾焊接融焊工藝。
后裝壓縮式垃圾車由于壓縮力大,經(jīng)壓縮后的垃圾產(chǎn)生大量的污水,如不加以控制,將嚴重影響環(huán)境,所以為了滿足設計要求,不產(chǎn)生飄、灑、漏等問題,焊前涂點焊密封膠劑,以提高其密封性。
圖4-4 拼焊圖
4.3.5結(jié)果分析
經(jīng)過以上的成形工藝選擇和拼焊工藝選擇,滿足了設計要求,大大縮短了新產(chǎn)品開發(fā)研制周期。由于選用的工藝裝備合適,不僅滿足了工廠的生產(chǎn)需要,而且降低了研制費用。在拼焊中,由于合理選擇拼焊工藝,減少了大量人工較形,不僅保證了產(chǎn)品的質(zhì)量,而且降低了成本,節(jié)約了資金??傊诶囓噹某尚畏椒ㄟx擇中,由于本著從實際出發(fā),結(jié)合現(xiàn)狀進行了認真選擇,因此所選工藝方法是成熟的,可行的,真正做到了投資少,見效快。
第5章 排出油缸安裝角及排出板斜度取值
5.1 排出板的結(jié)構(gòu)及工作情況
目前,國內(nèi)生產(chǎn)的垃圾車主要是后壓縮式,垃圾裝滿后,填料器舉升,排出機構(gòu)將垃圾推出車廂。后壓縮式垃圾車的排出機構(gòu)均采用直面折彎形狀結(jié)構(gòu),便于垃圾推卸干凈。排出機構(gòu)與排出油缸一端固定,排出機構(gòu)兩端各裝兩個滑塊。推卸垃圾時,油缸推動排出機構(gòu)前移,排出機構(gòu)滑塊沿導軌滑動。排出油缸的安裝角度和排出機構(gòu)折彎斜度各廠取值不同,教科書中也未給出取值范圍, 取值大小有何利弊? 現(xiàn)對排出機構(gòu)進行受力分析,確定其取值。
5.2 排出機構(gòu)的受力分析
如圖 5-1
圖5-1 受力分析示意圖
排出機構(gòu)在推卸垃圾過程中, 受到排出油缸的推力 、壓縮的垃圾在車廂四壁產(chǎn)生的摩擦阻力 、排出板上方垃圾對排出板的作用力、排出機構(gòu)的重力、垃圾重量和排出機構(gòu)重量在底板上產(chǎn)生的摩擦力以及導軌對排出板機構(gòu)的法向作用力,的作用。排出油缸的布置和排出板折彎斜度的不同,排出機構(gòu)的受力狀況也不同。
剛開始移動前的平衡方程為:
(5-1)
(5-2)
式中:——推卸油缸的安裝角度,
——為的傾斜角度
從圖中看, 、均有水平分力、和向下的垂直分力、,水平分力推卸垃圾,向下的垂直分力以及排出機構(gòu)的重力W , 三個力使排出機構(gòu)滑塊緊壓在導軌上, 產(chǎn)生阻止排出機構(gòu)前進的摩擦阻力。
由(5-2) 式可得:
即 =
= (5-3)
式中:——滑動摩擦系數(shù)。
排出油缸所需的最小推力,由5-1式得:
(5-4)
5.3 取值范圍的探討
由(5-3)(5-4)式知, 排出油缸的推力主要用于克服推卸垃圾的摩擦阻力, 而摩擦阻力基本是水平力。排出油缸的安裝角越大, 推力的水平分力越小, 垂直分力越大,即摩擦阻力越大, 滑塊的磨損越快, 排出機構(gòu)移動所需的最小推力也越大, 油缸缸徑越大。排出板折彎斜度越大,垃圾對排出板的垂直分力越小,而排出板對垃圾反作用力的垂直分力(向上) 小, 頂蓋的受力情況改善;但垃圾對排出板的水平分力增加。此外,開始裝垃圾時,當滑板上移,刮板反轉(zhuǎn),滑板下移,垃圾掉下來的多。但排出板折彎斜度也不要小于38°,否則垃圾卸不干凈。
為了整車垃圾壓縮后密度均勻,延長油鋼的使用壽命,根據(jù)5.1節(jié)的分析,排出油缸的安裝角度應近可能大一點。無論怎樣,排出油缸的安裝角和排出板折彎斜度只要合理取值,垃圾均能全部卸干凈,不會增加成本和重量,還可延長滑塊的使用壽命。因此, 根據(jù)實習時的現(xiàn)場觀察和結(jié)構(gòu)設計,排出油缸的安裝角度取62°。排出板折彎斜度不要太大,否則開始填裝垃圾時, 垃圾掉下的多, 填裝效率不高, 過小時垃圾卸不干凈, 一般應在38°~45°之間,因此決定取45°。此外,為使頂蓋能承受垃圾對它向上的膨脹力,頂蓋應做成弧形結(jié)構(gòu)。
第6章 液壓系統(tǒng)設計
6.1 確定液壓系統(tǒng)方案
眾所周知,后裝壓縮式垃圾車主箱中的推板(排出板)油缸有兩個作用:垃圾壓縮過程中提供背壓力,而卸載垃圾時提供推力。目前市場上的產(chǎn)品,油缸的擺放有兩種方式:平置(圖6-1) 和斜置(圖6-2) 。表面上看這兩種方式在功能上沒有什么區(qū)別,但認真分析,卻存在很大的差異。
圖6-1 推板油缸平置示意圖
圖6-2 推板油缸斜置示意圖
6.1.1 垃圾收集時壓縮原理
如圖6-3 ,推板推置主箱末端。通過填塞箱后壓縮機構(gòu)的提升,垃圾不斷地被壓送到主箱中。在提升垃圾的過程中,刮板提升壓力作為背壓回路遠端控制信號通過油口Pil 將先導閥B 打開,使得推板油缸無桿腔回油路與背壓閥A 相通,當且僅當垃圾擠壓力超過推板油缸的背壓閥A 調(diào)定的預壓力(圖中為2 MPa) 時,推板油缸無桿腔內(nèi)的液壓油通過背壓閥A 一部分回油箱。一部分通過單向閥補入有桿腔,從而垃圾和推板向主箱前端移動,直到推板油缸完全收回,垃圾充滿整個主箱。
6.1.2 排出板油缸推力
排出板油缸是多級油缸,在收縮過程中,推力會因為活塞截面積的不同發(fā)生階段性的變化。而且在實際工作中,在垃圾擠壓的情況下,油缸活塞桿由小到大順序收回,所以推力變化的趨勢是由小到大。以三級油缸為例, 推力變化趨勢與推板后退行程L 的關系見圖6-4 。
= PS I (6-1)
式中:——排出板油缸推力
P ——背壓值
Si ——活塞的作用面積
圖6-3 背壓油路原理圖 圖6-4 F油箱與推板L的關系
6.1.3 背壓力
1. 平置油缸
當油缸平置時(圖6-5) , = ,推力變化的趨勢是由小到大,從而導致背壓力的變化,這與用戶追求的整車垃圾壓縮后密度均勻的效果是向背的,意味著被壓縮的垃圾是前松后緊,而且滿載時也會造成整車后橋過重。
2. 斜置油缸
在推板油缸斜置的情況下,隨著推板向主箱前端移動,θ的增大, 背壓力() 逐漸減小(圖6-6) , = 。但同時,因為活塞截面積階段性的增大,又會在一定程度上彌補因角度變化引起的背壓力損失。
圖6-5 平置油缸背壓力 圖6-6 斜置油缸背壓力
6.1.4 兩種方式的比較
通過對比,我們可以發(fā)現(xiàn)排出板油缸斜置方式比較平置方式有以下優(yōu)點:
1. 節(jié)省安裝空間,提高主箱容積利用率。
2. 有利于垃圾在壓縮過程中密度均勻。
3. 利于油缸的保護,避免主箱內(nèi)污水損害油缸
體,保證使用壽命。
4. 有利于排出機構(gòu)平穩(wěn)移動(防偏轉(zhuǎn)) 。
所以,決定選用油缸斜置式放置。
6.1.5 液壓系統(tǒng)工況分析
根據(jù)設計要求,在排卸垃圾時,液壓系統(tǒng)能發(fā)出足夠的力使垃圾排出;在裝載垃圾時,為了使壓縮后的垃圾密度均勻,提高其裝載量,液壓系統(tǒng)要提供一定的背壓力,使其滿足設計要求。所以,液壓原理圖如圖6-7
圖6-7 液壓原理圖
6.2 液壓缸的設計計算
6.2.1計算工作循環(huán)中的最大載荷
1. 對排出機構(gòu)進行受力分析,見圖5-1
可得如下方程:
(6-2)
(6-3)
式中:——推卸油缸的推力 ,也就是液壓缸的最大載荷
——推卸油缸的安裝角度
——壓縮的垃圾在車廂四壁產(chǎn)生的摩擦阻力
——排出板上方垃圾對排出板的作用力
——為的傾斜角度
——排出板機構(gòu)的重力
——垃圾重量和排出板機構(gòu)重量在底板上產(chǎn)生的摩擦力
,——為導軌對排出板機構(gòu)的法向作用力
由5-2式得,
(6-4)
2. 排出機構(gòu)的重量計算
底部鋼管:
式中:——方管邊長 ()
——方管壁厚 ()
——每米鋼管重量 ()
——方管長 ()
頂部鋼管:
側(cè)部鋼管:
側(cè)部鋼管1:
側(cè)部鋼管2:
側(cè)部鋼管3:
此鋼板的理論重量為,所以,此鋼板重量為:
排出板前板:
所以,排出機構(gòu)重量
因為,一些小零件采取估算的方式以及計算誤差
所以,最后取
3. 壓縮的垃圾在車廂四壁產(chǎn)生的摩擦阻力的計算
式中:——廂體的有效長度
——廂體的有效寬度
——廂體的有效高度
——垃圾壓縮后對廂體的壓力 ,垃圾的單位膨脹力為6235,那其對廂體的壓力
——垃圾與車廂壁之間的動摩擦系數(shù),查表取
4. 排出板上方垃圾對排出板的作用力的計算
式中:——排出板機構(gòu)底部長度
——重力加速度
——垃圾壓縮后的密度
5. 垃圾重量和排出板機構(gòu)重量在底板上產(chǎn)生的摩擦力的計算
式中: ——廂體的容積
——排出板機構(gòu)與導軌之間的動摩擦系數(shù),查表取
F. 將上述數(shù)據(jù)代入式(5-4)中
則,
6.2.2 確定液壓缸參數(shù)
1. 此液壓缸為三級液壓缸,各級壓力和速度可按活塞式液壓缸有關公式來計算。
式中:——一級液壓缸內(nèi)徑,
——二級活塞桿尺寸,
——三級活塞桿尺寸
—— 液壓缸工作壓力,初算時取系統(tǒng)工作壓力12.7MPa;
—— 液壓缸回油腔背壓力;為
—— 活塞桿與液壓缸內(nèi)徑之比,液壓缸采用差動連接;比值取0.7
—— 工作循環(huán)中最大的外負載;
ηcm —— 液壓缸的機械效率,一般ηcm=0.9~0.97;
標準的液壓缸直徑系列取[2]。根據(jù)
計算的結(jié)果在活塞尺寸系列之中,所以取
依此類推:
標準的活塞桿尺寸系列圓整為[2]
根據(jù)已取的缸徑和活塞桿直徑,計算液壓缸實際有效工作面積,無桿腔面積A1,有桿腔面積A2、A3分別為:
2. 計算液壓缸的流量
式中:—— 排出機構(gòu)的速度7.7
3. 液壓泵流量,壓力的計算
液壓泵向液壓缸輸入的最大流量為:若取回路泄漏系數(shù)K=1.1,
則泵的流量:
q=1.1×181.3=199.43L/min。
液壓缸的最大工作壓力為=12.7MPa,在進油路上的壓力損失一般為0.5~1.5MPa,現(xiàn)取0.8MPa。則液壓泵的最高工作壓力:
根據(jù)計算出的泵的流量和工作壓力,由作總體設計人員參考。
4. 計算電動機的驅(qū)動功率
(6-5)
式中:p —— 液壓泵的出口壓力(Pa),其值等于液壓缸的進口壓力與泵到液壓缸這段管路壓力損失之和,壓力損失??;
q —— 液壓泵輸出流量(),q=199.43L/min=3.32×10-3m3/s;
—— 液壓泵的效率,取[3]
所以:
5. 液壓缸的設計計算
(6-6)
+ = (6-7)
式中: —— 液壓缸密封處摩擦力
由式5-6和式5-7可求得為
(6-8)
詳細計算見6.2.2節(jié),,,
6.2.3 確定管道直徑
管道的材料一般推薦采用10號、20號的薄壁無縫鋼管、和拉制紫銅管。鋼管承受的工作壓力較高,價廉,所以本系統(tǒng)主要采用鋼管。
油管直徑尺寸一般可參照選用的液壓元件接口尺寸而定,也可按管路允許流速進行計算。 油管的內(nèi)徑d按下式進行計算:
(6-9)
式中: d—— 管道直徑(mm);
q —— 液體流量(L/min);
v —— 允許流速,按金屬管內(nèi)油液推薦流速值選用,吸油管路取
v ≤ 0.5~2m/s,壓油管路取v≤2.5~6m/s。
管道的壁厚可根據(jù)工作壓力由下式計算得出:
(6-10)
式中:p —— 工作壓力,取工作壓力為12.7MPa;
d —— 油管內(nèi)徑(mm);
—— 許用應力(MPa),對于鋼管≤98.1MPa,對于銅管≤25Mpa。
本系統(tǒng)主油路流量取差動連接時流量q = 181.3 L/min,允許流速按壓油管路取v = 4m/s, 則管道內(nèi)徑為:
油管的壁厚:
可選用外徑D為34mm[3]的10號冷拉無縫鋼管。
吸油管按式5-8、式5-9計算可得:
壁厚:
故可選用外徑D為65mm的10號冷拉無縫鋼管。
鋼管彎曲半徑不能太小,其最小曲率半徑R≥3D,油管經(jīng)彎曲后,彎曲處側(cè)壁厚的減薄不應超過油管壁厚的20%,彎曲處內(nèi)側(cè)不應有明顯的鋸齒行波紋、扭傷或壓壞,彎曲處的橢圓度不應超過15%。
6.2.4 液壓油的選擇
該系統(tǒng)為一般液壓傳動,所以在環(huán)境溫度為-5°C~35°C之間時,一般選用20號或30號液壓油.冷天用20號機械油,熱天用30號機械油。
由與本系統(tǒng)容量較大,故不必進行系統(tǒng)溫升的驗算。
6.2.5 液壓缸壁厚、外徑及工作行程的計算
1. 中低壓液壓系統(tǒng)中,液壓缸的壁厚一般不做計算,按經(jīng)驗選取,則缸筒外徑
(6-11)
按標準JB1068-67系列選取液壓缸的外徑為240mm[4]。
缸筒壁厚的校核,液壓缸的內(nèi)徑()與其壁厚(=0.5×40=20mm)的比值=10,故可用薄壁圓筒的壁厚計算公式進行校核
(6-12)
式中: —— 液壓缸壁厚(mm);
—— 試驗壓力,一般取最大工作壓力的(1.25~1.5)倍(MPa);
—— 缸筒材料的許用應力,無縫鋼管=100~110MPa。
==19.05mm≤20mm
所以所選壁厚滿足要求。
2. 液壓缸工作行程長度,可根據(jù)執(zhí)行機構(gòu)實際工作的最大行程來確定,所選的執(zhí)行機構(gòu)即液壓滑臺的工作行程為3410.5mm,結(jié)合液壓缸活塞行程參數(shù)系列確定液壓缸的工作行程為3600mm。
6.2.6 液壓缸缸底和缸蓋的計算
在中低壓系統(tǒng)中,液壓缸的缸底和缸蓋一般是根據(jù)結(jié)構(gòu)需要進行設計,不需進行強度計算。
6.2.7 液壓缸進出油口尺寸的確定
液壓缸的進出油口尺寸,是根據(jù)油管內(nèi)的平均速度來確定的,要求壓力管路內(nèi)的最大平均流速控制在4~5m/s以內(nèi),過大會造成壓力損失劇增,而使回路效率下降,并會引起氣蝕、噪音、振動等,因此油口不宜過小,一般可按文獻[2]選用,本系統(tǒng)選用進出油口M48×2的螺紋接頭。
根據(jù)以上計算及選用的參數(shù)綜合為表6-1。
6.2.8 液壓缸結(jié)構(gòu)設計
液壓缸體與缸蓋的連接結(jié)構(gòu)選用外半環(huán)連接[4],此種結(jié)構(gòu)的優(yōu)點是重量比拉桿連接的小。
活塞與活塞桿的接結(jié)構(gòu)采用螺紋連接,這種結(jié)構(gòu)連接穩(wěn)固,活塞與活塞桿之間無公差要求。
根據(jù)密封的部位、溫度、運動速度的范圍,活塞與缸體的密封形式選用高低唇Y(jié)形圈,這種密封圈的內(nèi)外兩唇邊長不同,直接密封用較短唇邊,這樣就不易翻轉(zhuǎn),一般不要支承。
表6-1 液壓缸基本參數(shù)
缸筒內(nèi)徑(mm)
缸筒外徑(mm)
二級活塞桿直徑(mm)
三級活塞桿直徑(mm)
進出油口連接
公稱直徑
螺紋連接
200
240
140
100
40
M48×2
活塞桿導向部分的結(jié)構(gòu),包括活塞桿與端蓋、導向套的結(jié)構(gòu),以及密封、防塵和鎖緊裝置等。導向套的結(jié)構(gòu)可以做成端蓋整體式直接導向,可以使結(jié)構(gòu)簡單。活塞桿處的密封形式用Yx形密封圈。為了清除活塞桿處外露部分沾附的灰塵,保證油液清潔及減少磨損,在端蓋外側(cè)增加防塵圈,本系統(tǒng)選用無骨架防塵圈。
液壓缸帶動工作部件運動時,因為運動部件的質(zhì)量較大,運動速度較高,則在行程終點時,會產(chǎn)生液壓沖擊甚至使活塞與缸筒端蓋之間產(chǎn)生機械碰撞,為防止這種現(xiàn)象的發(fā)生,在行程末端設置緩沖裝置。
常用的緩沖結(jié)構(gòu)有:
1. 環(huán)狀間隙式節(jié)流緩沖裝置
適用于運動慣性不大、運動速度不高的液壓系統(tǒng)。
2. 三角槽節(jié)流緩沖裝置
三角槽節(jié)流緩沖裝置是利用被封閉液體的節(jié)流產(chǎn)生餓液壓阻力來緩沖的。
3. 可調(diào)節(jié)流緩沖裝置
這種節(jié)流閥不緊有圓柱形的緩沖柱塞和凹腔等結(jié)構(gòu),而且在液壓缸端蓋上還裝有針形節(jié)流閥和單向閥。
液壓系統(tǒng)如果長期停止工作,或油中混有空氣,液壓缸重新工作時產(chǎn)生爬行、噪聲和發(fā)熱等現(xiàn)象。為防止這些不正?,F(xiàn)象產(chǎn)生,一般在液壓缸的最高位置設置放氣閥。
6.2.9 液壓缸主要零件的材料和技術要求
1. 缸體
材料選用45鋼。
內(nèi)徑用H9配合,粗糙度Ra0.3,內(nèi)徑圓度、圓柱度不大于直徑公差之半,內(nèi)表面直線度在500mm長度不大于0.03mm,端面與缸蓋固定時,端面跳動量在直徑100mm上不大于0.04mm,為防止腐蝕和提高壽命,內(nèi)表面可鍍鉻,層厚0.03~0.04mm,在進行拋光,缸體外涂外耐腐蝕油漆。
2. 缸蓋
常用材料有:35鋼、45鋼或鑄鋼;做導向時選用鑄鐵、耐磨鑄鐵。故可選取前缸蓋HT200、后缸蓋為35鋼。
配合表面的圓度、圓柱度不大于直徑公差之半,端面在對孔軸線的垂直度在直徑100mm上不大于0.04mm.
3. 活塞
材料選用HT200。
外徑的圓度、圓柱度不大于直徑公差之半,外徑對內(nèi)孔的徑向跳動不大于外徑公差之半,端面對軸線垂直度在直徑100mm上不大于0.04mm,活塞外徑用橡膠密封圈密封時可取f9配合,內(nèi)孔與活塞桿的配合取H8。
4. 活塞桿
本設計中是空心活塞桿,選用的材料為45鋼的無縫鋼管。
桿外圓柱面粗糙度為Ra0.8,材料進行熱處理,調(diào)質(zhì)52~58HRC,外徑的圓度、圓柱度不大于直徑公差之半,外徑表面直線度在500mm長度不大于0.03mm,活塞桿與前端蓋采用H9/f9配合,與活塞的連接可采用H9/h8配合。
6.2.10 選擇各類控制閥
1確定控制閥的壓力和流量參數(shù)
各控制閥的壓力取決于液壓泵的工作壓力。該壓力值應納入中壓系列,壓力參數(shù)確定為13.5MPa。
2 確定各類控制閥的型號
系統(tǒng)工作壓力為12.7MPa,油泵的額定最高壓力為13.5MPa,所以可以選取額定壓力大于或等于13.5MPa的各種元件,其流量按實際情況分別選取。
根據(jù)所擬訂的液壓系統(tǒng)圖,按通過的各元件的最大流量來選擇液壓元件的規(guī)格。
(1). 溢流閥4
溢流閥4的壓力調(diào)整值為系統(tǒng)壓力最高值,其值比泵的最高工作壓力稍大即可,所以選擇溢流閥的型號為DBDA10/20。
(2). 定壓閥7
定壓閥7的壓力值為液壓缸工作壓力的,其值為3.1MPa,所以選擇定壓閥的型號為DBD10/5。
(3). 單向閥6的型號為S10A01
6.3 液壓泵裝置
6.3.1 液壓泵的安裝方式
泵裝置采用非上置臥式安裝,這種安裝方式與其他安裝方式的比較見表6-2。
6.3.2 液壓泵與電機的連接
液壓泵與電機之間的聯(lián)軸器用簡單型彈性圈柱銷聯(lián)軸器,這種聯(lián)軸器的結(jié)構(gòu)簡
表6-2 各種安裝方式的比較
安裝方式
比較項目
上置立式
上置臥式
非上置臥式
振動情況
較大
小
占地面積
小
較大
油箱清洗
較麻煩
容易
液壓泵工作條件
工作條件好
一般
好
對液壓泵安裝的要求
泵與電機同心
1. 泵與電機同心
2. 考慮液壓泵的自吸高度
3. 吸油管與泵連接處密封要求嚴格
1.泵與電機同心
2.吸油管與泵連接處密封要求嚴格
單,裝卸方便,使用壽命長,傳遞扭矩范圍較大,轉(zhuǎn)速較高,彈性好。
安裝聯(lián)軸器的技術要求是:
a. 半聯(lián)軸器做主動件;
b. 半聯(lián)軸器與電動機舟配時采用H7/h6配合,與其他軸端采用低于H7/h6的配合。
c. 最大軸度偏差不大于0.1mm,軸線傾斜角不大于40′。
大流量泵的額定轉(zhuǎn)速低于電動機的額定轉(zhuǎn)速,故泵與電機之間要用減速器相聯(lián)。
6.4 輔助元件的選用
6.4.1 濾油網(wǎng)
液壓系統(tǒng)中油的過濾精度是以污粒最大粒度為標準,一半分為四類:粗的(d≤100pm),普通的(d≤10pm),精的(d≤5pm),特精的(d≤1pm)?,F(xiàn)選用普通過濾精度的濾油網(wǎng)。
6.4.2 油位指示器、溫度計的選用
油箱上安裝的油位指示器,其中心線的高度為油箱側(cè)壁高度的0.8倍,選用帶溫度計的液位計,型號為YWZ-160T。
結(jié) 論
本課題是針對后壓縮式垃圾車上裝廂體設計和排出機構(gòu)液壓系統(tǒng)設計的,在設計時考慮了其使用狀況,工作時盡可能穩(wěn)定可靠,滿足設計要求。
根據(jù)所得的結(jié)果說明:本課題設計正確,達到了預期目標;在設計過程中使用了大量的通用材料,節(jié)約了原材料,降低了制造成本;后壓縮式垃圾車集自動裝填與壓縮、密封運輸和自卸為一體,自動化程度高,提高了垃圾運載能力,降低了運輸成本,避免了二次污染,是收集、運輸城市生活垃圾的理想工具;克服了擺臂式、側(cè)裝式等型式的垃圾車容量小、可壓縮性差和容易產(chǎn)生飄、灑、撒、漏等現(xiàn)象的缺點,是垃圾車的發(fā)展趨勢。
致 謝
為期三個月的畢業(yè)設計業(yè)已經(jīng)結(jié)束?;仡櫿麄€畢業(yè)設計過程,雖然充滿了困難與曲折,但我感到受益匪淺。本次畢業(yè)設計課題是帶掛桶的壓縮式垃圾車的總體設計。本設計是為了解決城市垃圾運輸工程中的二次污染問題,以及降低環(huán)衛(wèi)工人的工作強度。本設計是學院所有大學期間本專業(yè)應修的課程以后所進行的,是對我四年來所學知識的一次大檢驗。使我能夠在畢業(yè)前將理論與實踐更加融會貫通,加深了我對理論知識的理解,強化了實際生產(chǎn)中的感性認識。
通過這次畢業(yè)設計,我基本上掌握了后裝壓縮式垃圾車總體設計的方法和步驟,以及設計時應注意的問題等,另外還更加熟悉查閱各種相關手冊,運用CAD以及office軟件的水平也得到了提高等。
總的來說,這次設計,使我在基本理論的綜合運用以及正確解決實際問題等方面得到了一次較好的鍛煉,提高了我獨立思考問題、解決問題以及創(chuàng)新設計的能力,縮短了我與工廠工程技術人員的差距,為我以后從事實際工程技術工作奠定了一個堅實的基礎。
本次設計任務業(yè)已順利完成,但由于本人水平有限,缺乏經(jīng)驗,難免會留下一些遺憾,在此懇請各位專家、老師及同學不吝賜教。
此次畢業(yè)設計是在王猛老師的認真指導下進行的。王老師經(jīng)常為我解答一系列的疑難問題,以及指導我的思想,引導我的設計思路。在歷經(jīng)三個多月的設計過程中,一直熱心的輔導。另外,我還得到了廣大同學的幫助和意見。在此,我忠心地向他們表示誠摯的感謝和敬意!
41