高一數(shù)學(xué)上學(xué)期周清 第三周周清 正余弦定理小結(jié)與復(fù)習(xí)
《高一數(shù)學(xué)上學(xué)期周清 第三周周清 正余弦定理小結(jié)與復(fù)習(xí)》由會(huì)員分享,可在線閱讀,更多相關(guān)《高一數(shù)學(xué)上學(xué)期周清 第三周周清 正余弦定理小結(jié)與復(fù)習(xí)(2頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第三周周清 正余弦定理小結(jié)與復(fù)習(xí) 核心知識(shí) 1.正弦定理:===2R,其中R是三角形外接圓的半徑.由正弦定理可以變形為: (1)a∶b∶c=sin A∶sin B∶sin C; (2)a=2Rsin_A,b=2Rsin_B,c=2Rsin_C; (3)sin A=,sin B=,sin C=等形式,以解決不同的三角形問題. 2.余弦定理:a2=b2+c2-2bccos_A,b2=a2+c2-2accos_B,c2=a2+b2-2abcos_C.余弦定理可以變形為:cos A=,cos B=,cos C=. 自我檢測(cè) 1. 已知A,B,C為△ABC的三個(gè)內(nèi)角,其所對(duì)的邊分別為a,b,c,且2cos2 +cos A=0. (1)求角A的值; (2)若a=2,b+c=4,求△ABC的面積. 解 (1)由2cos2 +cos A=0,得1+cos A+cos A=0, 即cos A=-,∵0<A<π,∴A=. (2)由余弦定理得,a2=b2+c2-2bccos A,A=, 則a2=(b+c)2-bc,又a=2,b+c=4, 有12=42-bc,則bc=4,故S△ABC=bcsin A=. 2.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且cos B=,b=2. (1)當(dāng)A=30時(shí),求a的值; (2)當(dāng)△ABC的面積為3時(shí),求a+c的值. 解 (1)因?yàn)閏os B=,所以sin B=. 由正弦定理=,可得=, 所以a=. (2)因?yàn)椤鰽BC的面積S=acsin B,sin B=, 所以ac=3,ac=10. 由余弦定理得b2=a2+c2-2accos B, 得4=a2+c2-ac=a2+c2-16,即a2+c2=20. 所以(a+c)2-2ac=20,(a+c)2=40. 所以a+c=2. 3.△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,asin Asin B+bcos2 A=a. (1)求; (2)若c2=b2+a2,求B. [嘗試解答] (1)由正弦定理得, sin2Asin B+sin Bcos2A=sin A,即 sin B(sin2A+cos2A)=sin A. 故sin B=sin A,所以=. (2)由余弦定理和c2=b2+a2,得cos B=. 由(1)知b2=2a2,故c2=(2+)a2. 可得cos2B=,又cos B>0,故cos B=,所以B=45.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高一數(shù)學(xué)上學(xué)期周清 第三周周清 正余弦定理小結(jié)與復(fù)習(xí) 數(shù)學(xué) 學(xué)期 第三 周周 余弦 定理 小結(jié) 復(fù)習(xí)
鏈接地址:http://www.zhongcaozhi.com.cn/p-11946303.html