購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
本科學生畢業(yè)設計
SX2190重型汽車驅動橋后橋設計
系部名稱: 汽車與交通工程學院
專業(yè)班級: 車輛工程B07-6班
學生姓名: 代 玉
指導教師: 李 榮
職 稱: 講 師
黑 龍 江 工 程 學 院
二○一一年六月
The Graduation Design for Bachelor's Degree
SX2190 Heavy Duty Truck Driving Axle Driving Axle Design
Candidate:Dai Yu
Specialty:Vehicle Engineering
Class:B07-6
Supervisor:Lecturer.Li Rong
Heilongjiang Institute of Technology
2011-06.Harbin
黑龍江工程學院本科生畢業(yè)設計
摘 要
本次設計的題目是SX2190重型汽車驅動橋設計。驅動橋一般由主減速器、差速器、半軸及橋殼四部分組成,其基本功用是增扭、降速,改變轉矩的傳遞方向,即增大由傳動軸或直接從變速器傳來的轉矩,并將轉矩合理地分配給左、右驅動車輪;其次,驅動橋還要承受作用于路面和車架或車身之間的垂直力、縱向力和橫向力,以及制動力矩和反作用力矩等。
本設計首先論述了驅動橋的總體結構,在分析驅動橋各部分結構型式、發(fā)展過程及其以往形式的優(yōu)缺點的基礎上,確定了總體設計方案:采用整體式驅動橋,主減速器的減速型式采用雙級減速器,主減速器齒輪采用螺旋錐齒輪,差速器采用普通對稱式圓錐行星齒輪差速器,半軸采用全浮式型式,橋殼采用鑄造整體式橋殼。在本次設計中,主要完成了雙級減速器、圓錐行星齒輪差速器、全浮式半軸的設計和橋殼的校核及材料選取等工作。
關鍵詞:驅動橋;設計;計算;校核;材料
II
ABSTRACT
This design topic is SX2190 heavy vehicle driving axle design. By main reducer, driving axle generally reviewd.the and half axle and bridge four components, its shell basic function is increasing twist, slow down, change torque transmission shaft, namely, increasing the direction or directly from transmission by the torque, and coming to a reasonable distribution of torque to left, right drive wheels; Secondly, to bear on the pavement drive axle of role and frame or body of vertical force, between the longitudinal force and transverse force, and braking torque and counterproductive torque, etc.
The configuration of the Driving Axle is introduced in the thesis at first. On the basis of the analysis of the structure and the developing process of Driving Axle, the design adopted the Integral Driving Axle, Double Reduction Gear for Main Decelerator’s deceleration form, Spiral Bevel Gear for Main Decelerator’s gear, Full Floating for Axle and Casting Integral Axle Housing for Axle Housing. In the design, we accomplished the design for Double Reduction Gear, tapered Planetary Gear Differential Mechanism, Full Floating Axle and Axle Housing.
Keywords: Driving axle; Design; Calculation; Check; Material
黑龍江工程學院本科生畢業(yè)設計
目 錄
摘要 I
Abstract II
第1章 緒論 1
1.1 設計主要參數(shù) 1
1.2 驅動橋的結構和種類 1
1.2.1 汽車車橋的種類 1
1.2.2 驅動橋的種類 2
1.2.3 驅動橋結構組成 2
1.3 設計主要內容 7
第2章 設計方案的確定 8
2.1 主減速比的計算 8
2.2 主減速器結構方案的確定 8
2.3 差速器結構方案的確定 9
2.4 半軸型式的確定 9
2.5 橋殼型式的確定 9
2.6 本章小結 10
第3章 主減速器設計 11
3.1 主減速齒輪計算載荷的確定 11
3.2 主減速器齒輪參數(shù)的選擇 12
3.3 主減速器螺旋錐齒輪的幾何尺寸計算與強度計算 12
3.3.1 主減速器螺旋錐齒輪的幾何尺寸計算 12
3.3.2 主減速器螺旋錐齒輪的強度計算 14
3.4 主減速器齒輪的材料及熱處理 16
3.5 主減速器軸承的計算 17
3.6 主減速器的潤滑 20
3.7 本章小結 20
第4章 差速器設計 21
4.1 概述 21
4.2 差速器的作用 21
4.3 對稱式圓錐行星齒輪差速器 21
4.3.1 差速器齒輪的基本參數(shù)選擇 22
4.3.2 差速器齒輪的幾何尺寸計算與強度計算 23
4.4 本章小結 26
第5章 半軸設計 27
5.1 概述 27
5.2 半軸的設計與計算 27
5.2.1 全浮式半軸的設計計算 27
5.2.2 半軸的結構設計及材料選擇 29
5.3 本章小結 30
第6章 驅動橋橋殼設計 31
6.1 概述 31
6.2 橋殼的受力分析及強度計算 31
6.2.1 橋殼的靜彎曲應力計算 31
6.2.2 在不平路面沖擊載荷作用下橋殼的強度計算 32
6.2.3 汽車以最大牽引力行駛時的橋殼的強度計算 32
6.3 本章小結 38
參考文獻 40
致謝 41
附錄 42
黑龍江工程學院本科生畢業(yè)設計
第1章 緒 論
驅動橋位于傳動系末端,其基本功用首先是增扭、降速、改變轉矩的傳遞方向,即增大由傳動軸或直接從變速器傳來的轉矩,并將轉矩合理地分配給左、右驅動車輪;其次,驅動橋還要承受作用于路面和車架或車身之間的垂直力、縱向力和橫向力,以及制動力矩和反作用力矩等。
驅動橋一般由主減速器、差速器、車輪傳動裝置和橋殼等組成,轉向驅動橋還有等速萬向節(jié)。
1.1 設計主要參數(shù)
本次設計的主要數(shù)據(jù)
表1.1 整車性能參數(shù)
驅動形式
6х6
軸距前/后
3375mm/1400mm
輪距前/后
2072mm/ 2072mm
整車質量
11500kg
最大轉矩
1070N.M
前懸/后懸
1719/1500
最高車速
80km/h
發(fā)動機型號
WD615.77A
最大功率/最大轉速
206Kw/2400rpm
輪胎規(guī)格
15.5-20-18
1.2 驅動橋的結構和種類
1.2.1 汽車車橋的種類
車橋通過懸架與車架(或承載式車身)相連,它的兩端安裝車輪,其功用是傳遞車架(或承載式車身)于車輪之間各方向的作用力及其力矩。
根據(jù)懸架結構的不同,車橋分為整體式和斷開式兩種。當采用非獨立懸架時,車橋中部是剛性的實心或空心梁,這種車橋即為整體式車橋;斷開式車橋為活動關節(jié)式結構,與獨立懸架配用。
根據(jù)車橋上車輪的作用,車橋又可分為轉向橋、驅動橋、轉向驅動橋和支持橋四種類型。其中,轉向橋和支持橋都屬于從動橋,一般越野車多以前橋為轉向橋,而后橋或中后兩橋為驅動橋。
1.2.2 驅動橋的種類
驅動橋作為汽車的重要的組成部分處于傳動系的末端,其基本功用是增大由傳動軸或直接由變速器傳來的轉矩,將轉矩分配給左、右驅動車輪,并使左、石驅動車輪具有汽車行駛運動學所要求的差速功能;同時,驅動橋還要承受作用于路面和車架或車廂之間的鉛垂力、縱向力和橫向力。
在一般的汽車結構中、驅動橋包括主減速器(又稱主傳動器)、差速器、驅動車輪的傳動裝置及橋殼等部件如圖1.1所示
1-半軸 2-軸承端蓋 3-差速器右殼 4-主動圓柱齒輪軸 5-主動錐齒輪
6-從動錐齒輪 7-油封 8-十字軸 9-調整螺母 10-密封墊片
圖1.1 驅動橋
對于各種不同類型和用途的汽車,正確地確定上述機件的結構型式并成功地將它們組合成一個整體——驅動橋,乃是設計者必須先解決的問題。
驅動橋的結構型式與驅動車輪的懸掛型式密切相關。當驅動車輪采用非獨立懸掛時,例如在絕大多數(shù)的載貨汽車和部分小轎車上,都是采用非斷開式驅動橋;當驅動車輪采用獨立懸掛時,則配以斷開式驅動橋。
本次設計采用非獨立懸架,整體式驅動橋。這種類型的車一般的設計多采用雙級減速器,它與單級減速器相比,在保證離地間隙的同時可以增大主傳動比。
1.2.3 驅動橋結構組成
1.主減速器
主減速器的結構形式,主要是根據(jù)其齒輪類型、主動齒輪和從動齒輪的安裝
(1)主減速器齒輪的類型 在現(xiàn)代汽車驅動橋中,主減速器采用得最廣泛的是螺旋錐齒輪和雙曲面齒輪。
螺旋錐齒輪如圖1.2(a)所示主、從動齒輪軸線交于一點,交角都采用90度。螺旋錐齒輪的重合度大,嚙合過程是由點到線,因此,螺旋錐齒輪能承受大的載荷,而且工作平穩(wěn),即使在高速運轉時其噪聲和振動也是很小的。
雙曲面齒輪如圖1.2(b)所示主、從動齒輪軸線不相交而呈空間交叉。和螺旋錐齒輪相比,雙曲面齒輪的優(yōu)點有:
①尺寸相同時,雙曲面齒輪有更大的傳動比。
②傳動比一定時,如果主動齒輪尺寸相同,雙曲面齒輪比螺旋錐齒輪有較大軸徑,較高的輪齒強度以及較大的主動齒輪軸和軸承剛度。
圖1.2 螺旋錐齒輪與雙曲面齒輪
③當傳動比一定,主動齒輪尺寸相同時,雙曲面從動齒輪的直徑較小,有較大的離地間隙。
④工作過程中,雙曲面齒輪副既存在沿齒高方向的側向滑動,又有沿齒長方向的縱向滑動,這可以改善齒輪的磨合過程,使其具有更高的運轉平穩(wěn)性。
雙曲面齒輪傳動有如下缺點:
①長方向的縱向滑動使摩擦損失增加,降低了傳動效率。
②齒面間有大的壓力和摩擦功,使齒輪抗嚙合能力降低。
③雙曲面主動齒輪具有較大的軸向力,使其軸承負荷增大。
④雙曲面齒輪必須采用可改善油膜強度和防刮傷添加劑的特種潤滑油。
(2)主減速器主動錐齒輪的支承形式及安裝方式的選擇 現(xiàn)在汽車主減速器主動錐齒輪的支承形式有如下兩種:
①懸臂式 懸臂式支承結構如圖1.3所示,其特點是在錐齒輪大端一側采用較長的軸徑,其上安裝兩個圓錐滾子軸承。為了減小懸臂長度a和增加兩端的距離b,以改善支承剛度,應使兩軸承圓錐滾子向外。懸臂式支承結構簡單,支承剛度較差,多用于傳遞轉鉅較小的轎車、輕型貨車的單級主減速器及許多雙級主減速器中。
圖1.3 錐齒輪懸臂式支承
②騎馬式 騎馬式支承結構如圖1.4所示,其特點是在錐齒輪的兩端均有軸承支承,這樣可大大增加支承剛度,又使軸承負荷減小,齒輪嚙合條件改善,在需要傳遞較大轉矩情況下,最好采用騎馬式支承。
圖1.4 主動錐齒輪騎馬式支承
(3)從動錐齒輪的支承方式和安裝方式的選擇 從動錐齒輪的兩端支承多采用圓錐滾子軸承,安裝時應使它們的圓錐滾子大端相向朝內,而小端相向朝外。為了防止從動錐齒輪在軸向載荷作用下的偏移,圓錐滾子軸承應用兩端的調整螺母調整。主減速器從動錐齒輪采用無輻式結構并用細牙螺釘以精度較高的緊配固定在差速器殼的凸緣上[5]。
(4)主減速器的軸承預緊及齒輪嚙合調整 支承主減速器的圓錐滾子軸承需預緊以消除安裝的原始間隙、磨合期間該間隙的增大及增強支承剛度。分析可知,當軸向力于彈簧變形呈線性關系時,預緊使軸向位移減小至原來的1/2。預緊力雖然可以增大支承剛度,改善齒輪的嚙合和軸承工作條件,但當預緊力超過某一理想值時,軸承壽命會急劇下降。主減速器軸承的預緊值可取為以發(fā)動機最大轉矩時換算所得軸向力的30%。
主動錐齒輪軸承預緊度的調整采用套筒與墊片,從動錐齒輪軸承預緊度的調整采用調整螺母。
(5)主減速器的減速形式 主減速器的減速形式分為單級減速(如圖2.5)、雙級減速、單級貫通、雙級貫通、主減速及輪邊減速等。減速形式的選擇與汽車的類型及使用條件有關,有時也與制造廠的產(chǎn)品系列及制造條件有關,但它主要取決于由動力性、經(jīng)濟性等整車性能所要求的主減速比io的大小及驅動橋下的離地間隙、驅動橋的數(shù)目及布置形式等。通常單極減速器用于主減速比io≤7.6的各種中小型汽車上。
2.差速器
根據(jù)汽車行駛運動學的要求和實際的車輪、道路以及它們之間的相互聯(lián)系表明:汽車在行駛過程中左右車輪在同一時間內所滾過的行程往往是有差別的。例如,拐彎時外側車輪行駛總要比內側長。另外,即使汽車作直線行駛,也會由于左右車輪在同一時間內所滾過的路面垂向波形的不同,或由于左右車輪輪胎氣壓、輪胎負荷、胎面磨損程度的不同以及制造誤差等因素引起左右車輪外徑不同或滾動半徑不相等而要求
(a) 單級主減速器 (b) 雙級主減速器
圖1.5 主減速器
車輪行程不等。在左右車輪行程不等的情況下,如果采用一根整體的驅動車輪軸將動力傳給左右車輪,則會由于左右車輪的轉速雖然相等而行程卻又不同的這一運動學上的矛盾,引起某一驅動車輪產(chǎn)生滑轉或滑移。這不僅會是輪胎過早磨、無益地消耗功率和燃料及使驅動車輪軸超載等,還會因為不能按所要求的瞬時中心轉向而使操縱性變壞。此外,由于車輪與路面間尤其在轉彎時有大的滑轉或滑移,易使汽車在轉向時失去抗側滑能力而使穩(wěn)定性變壞。為了消除由于左右車輪在運動學上的不協(xié)調而產(chǎn)生的這些弊病,汽車左右驅動輪間都有差速器,后者保證了汽車驅動橋兩側車輪在行程不等時具有以下不同速度旋轉的特性,從而滿足了汽車行駛運動學的要求。
差速器的結構型式選擇,應從所設計汽車的類型及其使用條件出發(fā),以滿足該型汽車在給定的使用條件下的使用性能要求。
差速器的結構型式有多種,大多數(shù)汽車都屬于公路運輸車輛,對于在公路上和市區(qū)行駛的汽車來說,由于路面較好,各驅動車輪與路面的附著系數(shù)變化很小,因此幾乎都采用了結構簡單、工作平穩(wěn)、制造方便、用于公路汽車也很可靠的普通對稱式圓錐行星齒輪差速器,作為安裝在左、右驅動車輪間的所謂輪間差速器使用。
3.半軸
驅動車輪的傳動裝置置位于汽車傳動系的末端,其功用是將轉矩由差速器半軸齒輪傳給驅動車輪。在斷開式驅動橋和轉向驅動橋中,驅動車輪的傳動裝置包括半軸和萬向接傳動裝置且多采用等速萬向節(jié)。在一般非斷開式驅動橋上,驅動車輪的傳動裝置就是半軸,這時半軸將差速器半鈾齒輪與輪轂連接起來。在裝有輪邊減速器的驅動橋上,半軸將半軸齒輪與輪邊減速器的主動齒輪連接起來。
半浮式半軸具有結構簡單、質量小、尺寸緊湊、造價低廉等優(yōu)點。主要用于質量較小,使用條件好,承載負荷也不大的轎車和輕型載貨汽車。
3/4浮式半軸,因其側向力引起彎矩使軸承有歪斜的趨勢,這將急劇降低軸承的壽命,故未得到推廣。
全浮式半軸廣泛應用于輕型以上的各類汽車上,本設計采用此種半軸。
4.橋殼
驅動橋橋殼是汽車上的主要零件之一,非斷開式驅動橋的橋殼起著支承汽車荷重的作用,并將載荷傳給車輪。作用在驅動車輪上的牽引力、制動力、側向力和垂向力也是經(jīng)過橋殼傳到懸掛及車架或車廂上。因此橋完既是承載件又是傳力件,同時它又是主減速器、差速器及驅動車輪傳動裝置(如半軸)的外殼。
在汽車行駛過程中,橋殼承受繁重的載荷,設計時必須考慮在動載荷下橋殼有足夠的強度和剛度。為了減小汽車的簧下質量以利于降低動載荷、提高汽車的行駛平順性,在保證強度和剛度的前提下應力求減小橋殼的質量。橋殼還應結構簡單、制造方便以利于降低成本。其結構還應保證主減速器的拆裝、調整、維修和保養(yǎng)方便。在選擇橋殼的結構型式時,還應考慮汽車的類型、使用要求、制造條件、材料供應等。
結構形式分類:可分式、整體式、組合式。
按制造工藝不同分類:
鑄造式——強度、剛度較大,但質量大,加工面多,制造工藝復雜,用于中重型越野車,本設計采用鑄造橋殼。
鋼板焊接沖壓式——質量小,材料利用率高,制造成本低,適于大量生產(chǎn),轎車和中小型貨車,部分重型汽車。
1.3 設計主要內容
本設計為SX2190重型汽車后驅動橋的設計與研究,要求完成
(1)查閱資料了解SX2190重型汽車驅動橋研究現(xiàn)狀及發(fā)展歷史,知道本課題研究的意義
(2)分析各種汽車驅動橋的工作原理和優(yōu)缺點
(3)驅動橋和主減速器、差速器、半軸、驅動橋橋殼和差速鎖結構形式的選擇
(4)主減速器參數(shù)的選擇與設計計算
(5)差速器和差速鎖、半軸的設計計算
(6)驅動橋橋殼受力分析和強度計算
(7)設計SX2190重型汽車驅動橋、CAD繪制裝配圖、零件圖
1.4 設計的目的和意義
現(xiàn)代的驅動橋設計是傳統(tǒng)設計的深入、豐富和發(fā)展,而非獨立于傳統(tǒng)設計的全新設計。以理論為指導、以計算機為輔助,是現(xiàn)代設計的主要特征。利用這種方法指導設計可以減少經(jīng)驗設計的盲目性和隨意性,提高設計的主動性、科學性和精確性。以便為廣大消費者生產(chǎn)出質量好,操作簡便,價格便宜適合中國國情,包括道路條件和經(jīng)濟條件的車輛,滿足廣大消費者的要求。重型汽車在當今社會發(fā)展建設中充當了很重要的角色,驅動橋在整車中十分重要,設計出結構簡單、工作可靠、造價低廉的驅動橋能大大降低整車生產(chǎn)的總成本,推動汽車經(jīng)濟的發(fā)展。
通過對本課題的研究,了解關于驅動橋相關的知識。驅動橋作為汽車四大總成之一,它的性能的好壞直接影響整車性能,而對于載重汽車顯得尤為重要。當采用大功率發(fā)動機輸出大的轉矩以滿足目前載重汽車的快速、重載的高效率、高效益的需要時,必須要搭配一個高效、可靠的驅動橋本課題的設計主要保證汽車在給定的條件下具有良好的動力性和燃油經(jīng)濟性。根據(jù)給定參數(shù)設計驅動橋主減速器的減速形式,對驅動橋總體進行方案設計和結構設計。另外,汽車驅動橋涵蓋大量的機械零件、部件,因此驅動橋設計涉及的機械零部件及元件及為廣泛,通過對驅動橋的設計,可以更好的學習并掌握現(xiàn)代汽車設計與機械設計的全面知識和技能。
10
第2章 設計方案的確定
2.1 主減速比的計算
主減速比對主減速器的結構形式、輪廓尺寸、質量大小以及當變速器處于最高檔位時汽車的動力性和燃料經(jīng)濟性都有直接影響。的選擇應在汽車總體設計時和傳動系統(tǒng)的總傳動比一起由整車動力計算來確定。可利用在不同的下的功率平衡圖來計算對汽車動力性的影響。通過優(yōu)化設計,對發(fā)動機與傳動系參數(shù)作最佳匹配的方法來選擇值,可是汽車獲得最佳的動力性和燃料經(jīng)濟性。
為了得到足夠的功率而使最高車速稍有下降,一般選得比最小值大10%~25%,即按下式選擇:
=0.377=0.377×0.538×2400/(80×1)=6.08 (2.1)
6.08+6.08(10%~25%)=6.68~7.6 取7.6
式中:——車輪的滾動半徑
=0.0254[+(1-)b]=0.538(m) 輪輞直徑d=20英寸輪輞寬度b=11英寸,=0.05;
——變速器最高檔傳動比1.0(為直接檔)。
2.2 主減速器結構方案的確定
(1)主減速器齒輪的類型 螺旋錐齒輪傳動效率高,還能承受大的載荷,而且工作平穩(wěn),即使在高速運轉時其噪聲和振動也是很小的。本次設計采用螺旋錐齒輪[4]。
(2)主減速器主動錐齒輪的支承形式及安裝方式的選擇
本次設計選用: 主動錐齒輪:懸臂式支撐(圓錐滾子軸承)
從動錐齒輪:騎馬式支撐(圓錐滾子軸承)
(3)從動錐齒輪的支承方式和安裝方式的選擇
從動錐齒輪的兩端支承多采用圓錐滾子軸承,安裝時應使它們的圓錐滾子大端相向朝內,而小端相向朝外。為了防止從動錐齒輪在軸向載荷作用下的偏移,圓錐滾子軸承應用兩端的調整螺母調整。主減速器從動錐齒輪采用無輻式結構并用細牙螺釘以精度較高的緊配固定在差速器殼的凸緣上[5]。
(4)主減速器的軸承預緊及齒輪嚙合調整
支承主減速器的圓錐滾子軸承需預緊以消除安裝的原始間隙、磨合期間該間隙的增大及增強支承剛度。分析可知,當軸向力于彈簧變形呈線性關系時,預緊使軸向位移減小至原來的1/2。預緊力雖然可以增大支承剛度,改善齒輪的嚙合和軸承工作條件,但當預緊力超過某一理想值時,軸承壽命會急劇下降。主減速器軸承的預緊值可取為以發(fā)動機最大轉矩時換算所得軸向力的30%。
主動錐齒輪軸承預緊度的調整采用調整螺母(利用叉形凸緣實現(xiàn)),從動錐齒輪軸承預緊度的調整采用調整螺母。
(5)主減速器的減速形式 主減速器的減速形式分為單級減速、雙級減速、單級貫通、雙級貫通、主減速及輪邊減速等。減速形式的選擇與汽車的類型及使用條件有關,有時也與制造廠的產(chǎn)品系列及制造條件有關,但它主要取決于由動力性、經(jīng)濟性等整車性能所要求的主減速比的大小及驅動橋下的離地間隙、驅動橋的數(shù)目及布置形式等。
本次設計采用雙級減速,主要從傳動比及它是載重量超過10t的重型越野車和保證離地間隙上考慮。
2.3 差速器結構方案的確定
差速器的結構型式選擇,應從所設計汽車的類型及其使用條件出發(fā),以滿足該型汽車在給定的使用條件下的使用性能要求。
本次設計選用:普通錐齒輪式差速器,因為它結構簡單,工作平穩(wěn)可靠,適用于本次設計的汽車驅動橋。
2.4 半軸型式的確定
半軸根據(jù)其車輪端的支撐方式不同,可分為半浮式3/4浮式和全浮式三種形式。 3/4浮式半軸,因其側向力引起彎矩使軸承有歪斜的趨勢,這將急劇降低軸承的壽命,故未得到推廣。全浮式半軸廣泛應用于輕型以上的各類汽車上。本次設計選擇全浮式半軸。
2.5 橋殼型式的確定
驅動橋殼的主要功用是支撐汽車質量,并承受由車輪傳來的路面反力和反力矩,并經(jīng)懸架傳給車架(或車身);它又是主減速器,差速器,半軸的裝配基本。
整體式橋殼的特點是整個橋殼是一根空心梁,橋殼和主減速器殼為兩體。它具有強度和剛度較大,主減速器拆裝調整方便等優(yōu)點
鑄造式橋殼強度、剛度較大多用于重型貨車。
本次設計驅動橋殼就選用鑄造式整體式橋殼。
2.6 本章小結
本章首先確定了主減速比,以方便確定其它參數(shù)。對主減速器型式確定中主要從主減速器齒輪的類型、主減速器主動錐齒輪的支承形式及安裝方式的選擇、從動錐齒輪的支承方式和安裝方式的選擇、主減速器的軸承預緊及齒輪嚙合調整及主減速器的減速形式上得以確定從而逐步給出驅動橋各個總成的基本結構,分析了驅動橋各總成結構組成。
第3章 主減速器設計
3.1 主減速齒輪計算載荷的確定
通常是將發(fā)動機最大轉矩配以傳動系最低檔傳動比時和驅動車輪打滑時這兩種情況下作用于主減速器從動齒輪上的轉矩()的較小者,作為載貨汽車計算中用以驗算主減速器從動齒輪最大應力的計算載荷。即
/n=8970.345 () (3.1) =8834.02() (3.2)
式中:——發(fā)動機最大轉矩1070;
——由發(fā)動機到所計算的主加速器從動齒輪之間的傳動系最低檔傳動比;
=
根據(jù)同類型車型的變速器傳動比選取=2.25
——上述傳動部分的效率,取=0.9;
——超載系數(shù),取=1.0;
n——驅動橋數(shù)目3;
——汽車滿載時驅動橋給水平地面的最大負荷,N;但后橋來說還應考慮到汽車加速時負荷增大量,可初?。?
=18500×9.8×30%=54390N
——分別為由所計算的主減速器從動齒輪到驅動輪之間的傳動效率和減速比,分別取0.98和3.38。
由式(3.1),式(3.2)求得的計算載荷,是最大轉矩而不是正常持續(xù)轉矩,不能用它作為疲勞損壞依據(jù)。對于公路車輛來說,使用條件較非公路用車輛穩(wěn)定,其正常持續(xù)轉矩是根據(jù)所謂平均牽引力的值來確定的,即主加速器的平均計算轉矩為
==3435.45() (3.3)
式中:——汽車滿載總重18500×9.8N;
——所牽引的掛車滿載總重,N,僅用于牽引車取=0;
——道路滾動阻力系數(shù),越野車通常取0.020~0.035,可初取 =0.025;
——汽車正常使用時的平均爬坡能力系數(shù)。越野車通常取0.09~0.30,可初取=0.10;
——汽車性能系數(shù)
(3.4)
當 =46.86>16時,取=0
3.2 主減速器齒輪參數(shù)的選擇
(1)齒數(shù)的選擇 對于普通雙級主減速器,由于第一級的減速比i01比第二級的i02小些(通常i01/ i02≈1.4~2.0),這時,第一級主動錐齒輪的齒數(shù)z1可選的較大,約在9~15范圍內。第二級圓柱齒輪傳動的齒數(shù)和,可選在68±10的范圍內。
(2)節(jié)圓直徑地選擇 根據(jù)從動錐齒輪的計算轉矩(見式3.2,式3.3并取兩者中較小的一個為計算依據(jù))按經(jīng)驗公式選出:
=268.7~330.8mm (3.5)
式中:——直徑系數(shù),取=13~16;
——計算轉矩,,取,較小的。
計算得,=268.7~330.8mm,初取=270mm。
(3)齒輪端面模數(shù)的選擇 選定后,可按式算出從動齒輪大端模數(shù),并用下式校核
= 7.94mm 取8mm
(4)齒面寬的選擇 汽車主減速器螺旋錐齒輪齒面寬度推薦為:
F=0.155=41.85mm,可初取F=42mm。
(5)螺旋錐齒輪螺旋方向 一般情況下主動齒輪為左旋,從動齒輪為右旋,以使二齒輪的軸向力有互相斥離的趨勢。
(6)螺旋角的選擇 螺旋角應足夠大以使1.25。因愈大傳動就愈平穩(wěn)噪聲就愈低。螺旋角過大時會引起軸向力亦過大,因此應有一個適當?shù)姆秶?。在一般機械制造用的標準制中,螺旋角推薦用35°。
3.3 主減速器螺旋錐齒輪的幾何尺寸計算與強度計算
3.3.1 主減速器螺旋錐齒輪的幾何尺寸計算
主減速器圓弧齒螺旋錐齒輪的幾何尺寸計算 雙重收縮齒的優(yōu)點在于能提高小齒輪粗切工序。雙重收縮齒的齒輪參數(shù),其大、小齒輪根錐角的選定是考慮到用一把實用上最大的刀頂距的粗切刀,切出沿齒面寬方向正確的齒厚收縮來。當大齒輪直徑大于刀盤半徑時采用這種方法是最好的。
主減速器錐齒輪的幾何尺寸計算見表3.1。
表3.1 主減速器錐齒輪的幾何尺寸計算用表
序號
項 目
計 算 公 式
計 算 結 果
1
主動齒輪齒數(shù)
15
2
從動齒輪齒數(shù)
34
3
模數(shù)
8㎜
4
齒面寬
=42㎜
5
工作齒高
13.6㎜
6
全齒高
=15㎜
7
法向壓力角
=22.5°
8
軸交角
=90°
9
節(jié)圓直徑
=
120㎜
=272㎜
10
節(jié)錐角
arctan
=90°-
=23.8°
=66.2
11
節(jié)錐距
A==
A=148.66㎜
12
周節(jié)
t=3.1416
t=25.1328㎜
13
齒頂高
=9.192mm
=4.408mm
14
齒根高
=
=5.912mm
=10.696mm
15
徑向間隙
c=
c=1.504㎜
16
齒根角
=2.28°
=4.12°
17
面錐角
;
=27.92°
=68.48°
18
根錐角
=
=
=21.52°
=62.08°
19
齒頂圓直徑
=
=136.8㎜
=275.6㎜
20
節(jié)錐頂點止齒輪外緣距離
=132㎜
=57㎜
21
理論弧齒厚
=25.27mm
=11.52mm
22
齒側間隙
B=0.305~0.406
0.356mm
23
螺旋角
=35°
3.3.2 主減速器螺旋錐齒輪的強度計算
在完成主減速器齒輪的幾何計算之后,應對其強度進行計算,以保證其有足夠的強度和壽命以及安全可靠性地工作。在進行強度計算之前應首先了解齒輪的破壞形式及其影響因素。
螺旋錐齒輪的強度計算:
(1)主減速器螺旋錐齒輪的強度計算
①單位齒長上的圓周力
(3.6)
式中:——單位齒長上的圓周力,N/mm;
P——作用在齒輪上的圓周力,N,按發(fā)動機最大轉矩和最大附著力矩兩種載荷工況進行計算;
按發(fā)動機最大轉矩計算時:
=5273.57<8834.02N/mm (3.7)
按最大附著力矩計算
=5122.87 (3.8)
雖然附著力矩產(chǎn)生的p很大,但由于發(fā)動機最大轉矩的限制p最大只有8834.02N/mm
可知,校核成功。
②輪齒的彎曲強度計算。汽車主減速器螺旋錐齒輪輪齒的計算彎曲應力為
(3.9)
式中:——超載系數(shù)1.0;
——尺寸系數(shù)==0.749;
——載荷分配系數(shù)1.1~1.25;
——質量系數(shù),對于汽車驅動橋齒輪,檔齒輪接觸良好、節(jié)及徑向跳動精度高時,取1;
J——計算彎曲應力用的綜合系數(shù),見圖3.1,。
圖3.1 彎曲計算用綜合系數(shù)J
作用下: 從動齒輪上的應力=455.37MPa<700MPa;
作用下: 從動齒輪上的應力=125.36MPa<210.9MPa;
當計算主動齒輪時,/Z與從動相當,而,故<,<
綜上所述,故所計算的齒輪滿足彎曲強度的要求。
汽車主減速器齒輪的損壞形式主要時疲勞損壞,而疲勞壽命主要與日常行駛轉矩即平均計算轉矩有關,只能用來檢驗最大應力,不能作為疲勞壽命的計算依據(jù)。
(2)輪齒的接觸強度計算 螺旋錐齒輪齒面的計算接觸應力(MPa)為:
(3.10)
式中:——材料的彈性系數(shù),對于鋼制齒輪副取232.6;
=1,=1,=1.1,=1;
——表面質量系數(shù),對于制造精確的齒輪可取1;
J—— 計算應力的綜合系數(shù),=0.1232,見圖3.2所示。
=2238.44MPa<=3435.45MPa
=3617.09MPa<=8970.345MPa,故符合要求、校核合理。
圖3.2 接觸強度計算綜合系數(shù)J
3.4 主減速器齒輪的材料及熱處理
汽車驅動橋主減速器的工作相當繁重,與傳動系其他齒輪比較,它具有載荷大、工作時間長、載荷變化多、帶沖擊等特點。其損壞形式主要有齒根彎曲折斷、齒面疲勞點蝕(剝落)、磨損和擦傷等。據(jù)此對驅動橋齒輪的材料及熱處理應有以下要求:
(1)具有高的彎曲疲勞強度和接觸疲勞強度以及較好的齒面耐磨性,故齒表面應有高的硬度;
(2)輪齒芯部應有適當?shù)捻g性以適應沖擊載荷,避免在沖擊載荷下輪齒根部折斷;
(3)鋼材的鍛造、切削與熱處理等加工性能良好,熱處理變形小或變形規(guī)律性易控制,以提高產(chǎn)品質量、減少制造成本并降低廢品率;
(4)選擇齒輪材料的合金元素時要適應我國的情況。例如:為了節(jié)約鎳、鉻等我國發(fā)展了以錳、釩、硼、鈦、鉬、硅為主的合金結構鋼系統(tǒng)。
汽車主減速器和差速器圓錐齒輪與雙曲面齒輪目前均用滲碳合金鋼制造。常用的鋼號,,及,在本設計中采用了。
用滲碳合金鋼制造齒輪,經(jīng)滲碳、淬火、回火后,齒輪表面硬度可高達HRC58~64,而芯部硬度較低,當m≤8時為HRC32~45。
對于滲碳深度有如下的規(guī)定:當端面模數(shù)m≤5時,為0.9~1.3mm。
由于新齒輪潤滑不良,為了防止齒輪在運行初期產(chǎn)生膠合、咬死或擦傷,防止早期磨損,圓錐齒輪與雙曲面齒輪副草熱處理及精加工后均予以厚度為0.005~0.010~0.020mm的磷化處理或鍍銅、鍍錫。這種表面鍍層不應用于補償零件的公差尺寸,也不能代替潤滑。
對齒面進行噴丸處理有可能提高壽命達25%。對于滑動速度高的齒輪,為了提高其耐磨性進行滲硫處理。滲硫處理時溫度低,故不會引起齒輪變形。滲硫后摩擦系數(shù)可顯著降低,故即使?jié)櫥瑮l件較差,也會防止齒輪咬死、膠合和擦傷等現(xiàn)象產(chǎn)生。
3.5 主減速器軸承的計算
設計時,通常是先根據(jù)主減速器的結構尺寸初步確定軸承的型號,然后驗算軸承壽命。影響軸承壽命的主要外因是它的工作載荷及工作條件,因此在驗算軸承壽命之前,應先求出作用在齒輪上的軸向力、徑向力、圓周力,然后再求出軸承反力,以確定軸承載荷。
(1) 作用在主減速器主動齒輪上的力
齒面寬中點的圓周力P為
(3.11)
式中:T——作用在該齒輪上的轉矩。主動齒輪的當量轉矩;
——該齒輪齒面寬中點的分度圓直徑。
注:汽車在行駛過程中,由于變速器檔位的改變,且發(fā)動機也不盡處于最大轉矩狀態(tài),因此主減速器齒輪的工作轉矩處于經(jīng)常變化中。實踐表明,軸承的主要損壞形式是疲勞損傷,所以應按輸入的當量轉矩進行計算。作用在主減速器主動錐齒輪上的當量轉矩可按下式求得:
(3.12)
式中:——變速器Ⅰ,Ⅱ,,Ⅴ檔使用率為1%,3%,5%,16%,
75%;
——變速器的傳動比為7.64,4.27,2.61,1.59,1.00;
——變速器處于Ⅰ,Ⅱ,,Ⅴ檔時的發(fā)動機轉矩利用率50%,60%,70%,70%,60%。
對于螺旋錐齒輪
=233.57(mm) (3.13)
=103.04(mm) (3.14)
式中:——主、從動齒輪齒面寬中點的分度圓直徑;
——從動齒輪齒面寬
——從動齒輪的節(jié)錐角66.2;
計算得:=22145.12N
螺旋錐齒輪的軸向力與徑向力
主動齒輪的螺旋方向為左;旋轉方向為順時針:
=18707.56(N) (3.16)
=4001.06(N) (3.17)
從動齒輪的螺旋方向為右:
=4001.06(N) (3.18)
=18707.56(N) (3.19)
式中:——齒廓表面的法向壓力角22.5;
——主、從動齒輪的節(jié)錐角23.8,66.2。
(2)主減速器軸承載荷的計算 軸承的軸向載荷,就是上述的齒輪軸向力。而軸承的徑向載荷則是上述齒輪徑向力、圓周力及軸向力這三者所引起的軸承徑向支承反力的向量和。當主減速器的齒輪尺寸、支承型試和軸承位置已確定,并算出齒輪的徑向力、軸向力及圓周力以后,則可計算出軸承的徑向載荷。
①懸臂式支承主動錐齒輪的軸承徑向載荷 如圖3.3(a)所示軸承A、B的徑向載荷為
=10957(N) (3.20)
=13368.21(N) (3.21)
(a) (b)
圖3.3 主減速器軸承的布置尺寸
其尺寸為:
懸臂式支撐的主動齒輪a=101.5,b=51,c=152.5;
式中:——齒面寬中點處的圓周力;
——主動齒輪的軸向力;
——主動齒輪的徑向力;
——主動齒輪齒面寬中點的分度圓直徑。
②雙級減速器的從動齒輪的軸承徑向載荷
軸承C、D的徑向載荷分別為
=6521.25(N) (3.22)
=3021.85(N) (3.23)
式中:——齒面寬中點處的圓周力;
——從動齒輪的軸向力;
——從動齒輪的徑向力;
——第二級減速斜齒圓柱齒輪的圓周力、軸向力和徑向力;
——第二級減速主動齒輪的節(jié)圓直徑;
——從動齒輪齒面寬中點的分度圓直徑。
(3.24) (3.25) (3.26)
式中:——計算轉矩;
——斜齒圓柱齒輪的螺旋角;
——法向壓力角。
3.6 主減速器的潤滑
主加速器及差速器的齒輪、軸承以及其他摩擦表面均需潤滑,其中尤其應注意主減速器主動錐齒輪的前軸承的潤滑,因為其潤滑不能靠潤滑油的飛濺來實現(xiàn)。為此,通常是在從動齒輪的前端靠近主動齒輪處的主減速殼的內壁上設一專門的集油槽,將飛濺到殼體內壁上的部分潤滑油收集起來再經(jīng)過近油孔引至前軸承圓錐滾子的小端處,由于圓錐滾子在旋轉時的泵油作用,使?jié)櫥陀蓤A錐滾子的下端通向大端,并經(jīng)前軸承前端的回油孔流回驅動橋殼中間的油盆中,使?jié)櫥偷玫窖h(huán)。這樣不但可使軸承得到良好的潤滑、散熱和清洗,而且可以保護前端的油封不被損壞。為了保證有足夠的潤滑油流進差速器,有的采用專門的倒油匙。
為了防止因溫度升高而使主減速器殼和橋殼內部壓力增高所引起的漏油,應在主減速器殼上或橋殼上裝置通氣塞,后者應避開油濺所及之處。
加油孔應設置在加油方便之處,油孔位置也決定了油面位置。放油孔應設在橋殼最低處,但也應考慮到汽車在通過障礙時放油塞不易被撞掉。
3.7 本章小結
本章根據(jù)所給參數(shù)確定了主減速器的參數(shù),對主減速器齒輪計算載荷的計算、齒輪參數(shù)的選擇,螺旋錐齒輪的幾何尺寸計算與強度計算并對主減速器齒輪的材料及熱處理,軸承的預緊,主減速器的潤滑等做了必要的交待。選擇了機械設計、機械制造的標準參數(shù)。
第4章 差速器設計
4.1 概述
根據(jù)汽車行駛運動學的要求和實際的車輪、道路的特征,為了消除由于左右車輪在運動學上的不協(xié)調而產(chǎn)生的弊病,汽車左右驅動輪間都有差速器,保證了汽車驅動橋兩側車輪在行程不等時具有以下不同速度旋轉的特性,從而滿足了汽車行駛運動學的要求。
4.2 差速器的作用
差速器作用:分配兩輸出軸轉矩,保證兩輸出軸有可能以不同角速度轉動。 本次設計選用的普通錐齒輪式差速器結構簡單,工作平穩(wěn)可靠,適用于本次設計的汽車驅動橋。
4.3 對稱式圓錐行星齒輪差速器
設計中采用的普通對稱式圓錐行星齒輪差速器(如圖4.1)由差速器左殼為整體式,
圖4.1 中央為普通對稱式圓錐行星齒輪差速器
2個半軸齒輪,4個行星齒輪,行星齒輪軸,半軸齒輪以及行星齒輪墊片等組成。由于其結構簡單、工作平穩(wěn)、制造方便、用在公路汽車上也很可靠等優(yōu)點,所以本設計采用該結構。
由于差速器殼是裝在主減速器從動齒輪上,故在確定主減速器從動齒輪尺寸時,應考慮差速器的安裝。差速器的輪廓尺寸也受到從動齒及主動齒輪導向軸承支座的限制。普通圓錐齒輪差速器的工作原理圖,如圖4.2所示。
圖4.2 普通圓錐齒輪差速器的工作原理圖
4.3.1 差速器齒輪的基本參數(shù)選擇
(1)行星齒輪數(shù)目的選擇 重型貨車多用4個行星齒輪。
(2)行星齒輪球面半徑(mm)的確定 圓錐行星齒輪差速器的尺寸通常決定于行星齒輪背面的球面半徑,它就是行星齒輪的安裝尺寸,實際上代表了差速器圓錐齒輪的節(jié)錐距,在一定程度上表征了差速器的強度。
球面半徑可根據(jù)經(jīng)驗公式來確定:
=53.75(mm) (4.1)
圓整取=54mm
式中:——行星齒輪球面半徑系數(shù),2.52~2.99,對于有4個行星輪的重型汽車取小值,取2.6;
確定后,即根據(jù)下式預選其節(jié)錐距:
=(0.98~0.99)=52.92~53.46mm 取54mm (4.2)
(3)行星齒輪與半軸齒輪齒數(shù)的選擇 為了得到較大的模數(shù)從而使齒輪有較高的強度,應使行星齒輪的齒數(shù)盡量少,但一般不應少于10。半軸齒輪的齒數(shù)采用14~25。半軸齒輪與行星齒輪的齒數(shù)比多在1.5~2范圍內。取=11,=20。
在任何圓錐行星齒輪式差速器中,左、右兩半軸齒輪的齒數(shù)之和,必須能被行星齒輪的數(shù)目n所整除,否則將不能安裝,即應滿足:
=11 (4.3)
(4)差速器圓錐齒輪模數(shù)及半軸齒輪節(jié)圓直徑的初步確定 先初步求出行星齒輪和半軸齒輪的節(jié)錐角:
(4.4)
式中:——行星齒輪和半軸齒輪齒數(shù)。
再根據(jù)下式初步求出圓錐齒輪的大端模數(shù):
=4.73 (4.5)
取標準模數(shù)5;
式中:在前面已初步確定。
算出模數(shù)后,節(jié)圓直徑d即可由下式求得:
(4.6)
(5)壓力角 目前汽車差速器齒輪大都選用的壓力角,齒高系數(shù)為0.8,最少齒數(shù)可減至10,并且再小齒輪(行星齒輪)齒頂不變尖的情況下還可由切相修正加大半軸齒輪齒厚,從而使行星齒輪與半軸齒輪趨于等強度。
(6)行星齒輪安裝孔直徑及其深度L的確定 行星齒輪安裝孔與行星齒輪名義直徑相同,而行星齒輪安裝孔的深度L就是行星齒輪在其軸上的支承長度。
=30(mm)
=27.67 mm (4.7)
式中:差速器傳遞的轉矩24942;
n——行星齒輪數(shù)4;
——行星齒輪支承面中點到錐頂?shù)木嚯x,mm. ,是半軸齒輪齒面寬中點處的直徑=76,=38mm;
[]——支承面的許用擠壓應力,取為69MPa.
4.3.2 差速器齒輪的幾何尺寸計算與強度計算
表4.1為汽車差速器用直齒錐齒輪的幾何尺寸計算步驟,表中計算用的弧齒厚系數(shù)τ見圖4.3。
表4.1 汽車差速器直齒錐齒輪的幾何尺寸計算表
序號
項 目
計 算 公 式 及 結 果
1
行星齒輪齒數(shù)
2
半軸齒輪齒數(shù)
3
模數(shù)
4
齒面寬
=14mm
5
齒工作高
=1.6m=8mm
6
齒全高
h=1.788m+0.051=9mm
7
壓力角
8
軸交角
9
節(jié)圓直徑
10
節(jié)錐角
11
節(jié)錐距
A===54mm
12
周節(jié)
t=3.1416m=15.7mm
13
齒頂高
14
齒根高
15
徑向間隙
16
齒根角
17
面錐角
18
根錐角
19
外圓直徑
20
節(jié)錐頂點至齒輪外緣距離
21
理論弧齒厚
22
齒側間隙
(高精度)
注:實際齒根高比上表計算值大0.051mm。
圖4.3 汽車差速器直齒錐齒輪切向修正系數(shù)(弧齒系數(shù))
差速器齒輪主要進行彎曲強度計算,而對于疲勞壽命則不予考慮,這是由于行星齒輪在差速器的工作中經(jīng)常只起等臂推力桿的作用,僅在左/右驅動車輪有轉速差時行星齒輪和半軸齒輪之間有相對滾動的緣故。
汽車差速器齒輪的彎曲應力為
(4.8)
式中:T——差速器一個行星齒輪給予一個半軸齒輪的轉矩,;
(4.9)
n——差速器行星齒輪數(shù)目4;
——半軸齒輪齒數(shù)20;
——超載系數(shù)1.0;
——質量系數(shù)1.0;
——尺寸系數(shù);
——載荷分配系數(shù)1.1;
F——齒面寬14mm;
m——模數(shù)5;
J——計算汽車差速器齒輪彎曲應力的總和系數(shù)0.227,見圖4.4。
圖4.4 彎曲計算用綜合系數(shù)J
以計算得:=1401.7MPa<[]1980MPa
以計算得:=536.82MPa<[]790Mpa
綜上所述,差速器齒輪強度滿足要求。
4.4 本章小結
本章首先說明了差速器作用及工作原理,對對稱式圓錐行星齒輪差速器的基本參數(shù)進行了必要的設計計算,對差速器齒輪的幾何尺