高中數(shù)學 第2講 證明不等式的基本方法 2 反證法與放縮法課件 新人教A版選修4-5.ppt
《高中數(shù)學 第2講 證明不等式的基本方法 2 反證法與放縮法課件 新人教A版選修4-5.ppt》由會員分享,可在線閱讀,更多相關《高中數(shù)學 第2講 證明不等式的基本方法 2 反證法與放縮法課件 新人教A版選修4-5.ppt(35頁珍藏版)》請在裝配圖網(wǎng)上搜索。
二反證法與放縮法 1 理解反證法在證明不等式中的應用 掌握用反證法證明不等式的方法 2 掌握放縮法證明不等式的原理 并會用其證明不等式 目標定位 1 利用反證法 幾何法 放縮法證明不等式 重點 2 在不等式證明中 常與數(shù)列 三角結(jié)合 將放縮法滲透其中進行考查 難點 預習學案 1 比較法用比較法證明不等式分為兩種方法 2 綜合法從 出發(fā) 利用 等 經(jīng)過一系列的推理 論證而得出命題成立 這種證明方法叫做綜合法 又叫 法 求差比較法 求商比較法 已知條件 定義 公理 定理 性質(zhì) 順推證法或由因?qū)Ч?3 分析法從 出發(fā) 逐步尋求使它成立的 直至所需條件為 從而得出要證的命題成立 這種證明方法叫做分析法 這是一種 的思考和證明的方法 要證的結(jié)論 充分條件 已知條件或一個明顯成立的事實 執(zhí)果索因 1 假設 以此為出發(fā)點 結(jié)合已知條件 應用 等 進行正確的推理 得到和 或已證明的定理 性質(zhì) 明顯成立的事實等 矛盾的結(jié)論 以說明假設不正確 從而證明 我們把它稱為反證法 2 證明不等式時 通過把不等式中的某些部分的值 或 簡化不等式 從而達到證明的目的 我們把這種方法稱為放縮法 要證的命題不成立 公理 定義 定理 命題的條件 原命題成立 放大 縮小 1 lg9 lg11與1的大小關系是 A lg9 lg11 1B lg9 lg11 1C lg9 lg11 1D 不能確定 2 否定 自然數(shù)a b c中恰有一個為偶數(shù) 時正確的反設為 A a b c都是奇數(shù)B a b c都是偶數(shù)C a b c中至少有兩個偶數(shù)D a b c中至少有兩個偶數(shù)或都是奇數(shù)解析 a b c是否是偶數(shù) 共為全不是偶數(shù) 1個偶數(shù) 2個偶數(shù) 3個偶數(shù)共四種情況 恰有一個偶數(shù)的否定為至少有2個偶數(shù)或全是奇數(shù) 答案 D 課堂學案 已知0 x 2 0 y 2 0 z 2 求證 x 2 y y 2 z z 2 x 不都大于1 思路點撥 不都大于1 即等價于 至少有一個小于或等于1 由于涉及三個式子 它們出現(xiàn)的情況很多 此類問題的常用方法是考慮問題的反面 即 不都 的反面為 都 可用反證法來證明 反證法證明不等式 用反證法證 至多 至少 型問題 2 實數(shù)a b c d滿足a b c d 1 ac bd 1 求證 a b c d中至少有一個是負數(shù) 思路點撥 本題的結(jié)論是 至少 型 包含的情況較多 直接證明比較麻煩 可以考慮用反證法加以證明 證明 假設a b c d都是非負數(shù) 即a 0 b 0 c 0 d 0 則1 a b c d ac bd ad bc ac bd 這與已知中ac bd 1矛盾 原假設錯誤 a b c d中至少有一個是負數(shù) 放縮法證明不等式 1 要證不等式M N 先假設M N 由題設及其他性質(zhì) 推出矛盾 從而肯定M N成立 凡涉及證明不等式為否定性命題 唯一性命題或是含 至多 至少 等字句時 可考慮使用反證法 反證法 2 反證法證明不等式的步驟是 反設 假設不等式的結(jié)論不成立 歸謬 從假設出發(fā) 經(jīng)過推理論證 得出矛盾 斷言 由矛盾得出反設不成立 反證法一般用于直接證明難以將已知條件與特征結(jié)論進行溝通 或者直接證明缺少條件 的情形 3 反證法中的數(shù)學語言反證法適宜證明 存在性問題 唯一性問題 帶有 至少有一個 或 至多有一個 等字樣的問題 或者說 正難則反 直接證明有困難時 常采用反證法 下面我們列舉一下常見的涉及反證法的文字語言及其相對應的否定假設 對某些數(shù)學語言的否定假設要準確 以免造成原則性的錯誤 有時在使用反證法時 對假設的否定也可以舉一定的特例來說明矛盾 在一些選擇題中 更是如此 1 要證明不等式A B成立 有時可以將它的一邊放大或縮小 尋找一個中間量 如將A放大成C 即A C 后證C B 這種證法便稱為放縮法 常用的放縮技巧有 1 舍掉 或加進 一些項 2 在分式中放大或縮小分子或分母 放縮法- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關 鍵 詞:
- 高中數(shù)學 第2講 證明不等式的基本方法 反證法與放縮法課件 新人教A版選修4-5 證明 不等式 基本 方法 反證法 放縮法 課件 新人 選修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://www.zhongcaozhi.com.cn/p-7580728.html