第6講 數(shù)列求和及綜合應(yīng)用

上傳人:沈*** 文檔編號:69226523 上傳時間:2022-04-05 格式:DOC 頁數(shù):10 大?。?51KB
收藏 版權(quán)申訴 舉報 下載
第6講 數(shù)列求和及綜合應(yīng)用_第1頁
第1頁 / 共10頁
第6講 數(shù)列求和及綜合應(yīng)用_第2頁
第2頁 / 共10頁
第6講 數(shù)列求和及綜合應(yīng)用_第3頁
第3頁 / 共10頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《第6講 數(shù)列求和及綜合應(yīng)用》由會員分享,可在線閱讀,更多相關(guān)《第6講 數(shù)列求和及綜合應(yīng)用(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、第六講 數(shù)列求和及綜合應(yīng)用 真題試做?——————————————————— 1.(2011·高考江西卷)已知數(shù)列{an}的前n項和Sn滿足:Sn+Sm=Sn+m,且a1=1,那么a10=(  ) A.1        B.9 C.10 D.55 2.(2013·高考江西卷)某住宅小區(qū)計劃植樹不少于100棵,若第一天植2棵,以后每天植樹的棵數(shù)是前一天的2倍,則需要的最少天數(shù)n(n∈N*)等于________. 3.(2013·高考湖南卷)設(shè)Sn為數(shù)列{an}的前n項和,已知a1≠0,2an-a1=S1·Sn,n∈N*. (1)求a1,a2,并求數(shù)列{an}的

2、通項公式; (2)求數(shù)列{nan}的前n項和. 考情分析?———————————————————    數(shù)列求和問題是數(shù)列中的重要知識,在各地的高考試題中頻頻出現(xiàn),對于等差數(shù)列、等比數(shù)列的求和主要是運用公式;而非等差數(shù)列、非等比數(shù)列的求和問題,一般用倒序相加法、通項化歸法、錯位相減法、裂項相消法、分組求和法等. 等差數(shù)列與等比數(shù)列、數(shù)列與函數(shù)、數(shù)列與不等式、數(shù)列與概率、數(shù)列的實際應(yīng)用等知識交匯點的綜合問題是近幾年高考的重點和熱點,此類問題在客觀題和解答題中都有所體現(xiàn),難度不一,求解此類問題的主要方法是利用轉(zhuǎn)化與化歸的思想,根據(jù)所學(xué)數(shù)列知識及題

3、目特征,構(gòu)造出解題所需的條件. 考點一 數(shù)列求和 數(shù)列的求和問題多從數(shù)列的通項入手,通過分組、錯位相減等轉(zhuǎn)化為等差或等比數(shù)列的求和問題,考查等差、等比數(shù)列求和公式及轉(zhuǎn)化與化歸思想的應(yīng)用,屬中檔題. (2013·高考山東卷)設(shè)等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1. (1)求數(shù)列{an}的通項公式; (2)若數(shù)列{bn}滿足++…+=1-,n∈N*,求{bn}的前n項和Tn. 【思路點撥】 (1)由于已知{an}是等差數(shù)列,因此可考慮用基本量a1,d表示已知等式,進而求出{an}的通項公式. (2)先求出,進而求出{bn}的通項公式,再

4、用錯位相減法求{bn}的前n項和.                                                                                                                                                                                                                               強化訓(xùn)練1 (2013·深圳調(diào)研)設(shè){an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和.已知S3

5、=7,且3a2是a1+3和a3+4的等差中項. (1)求數(shù)列{an}的通項公式; (2)設(shè)bn=,數(shù)列{bn}的前n項和為Tn,求證:Tn<. 考點二 數(shù)列的實際應(yīng)用 數(shù)列應(yīng)用題是近年來高考命題改革的一個亮點,主要考查學(xué)生數(shù)列建模能力,其題型為:一是,構(gòu)造等差數(shù)列或等比數(shù)列模型,然后用相應(yīng)的通項公式與求和公式求解;二是,通過歸納得到結(jié)論,再用數(shù)列知識求解. (2012·高考湖南卷)某公司一下屬企業(yè)從事某種高科技產(chǎn)品的生產(chǎn),該企業(yè)第一年年初有資金2 000萬元,將其投入生產(chǎn),到當(dāng)年年底資金增長了50%.預(yù)計以后每年資金年增長率與第一年的相同.公司

6、要求企業(yè)從第一年開始,每年年底上繳資金d萬元,并將剩余資金全部投入下一年生產(chǎn).設(shè)第n年年底企業(yè)上繳資金后的剩余資金為an萬元. (1)用d表示a1,a2,并寫出an+1與an的關(guān)系式; (2)若公司希望經(jīng)過m(m≥3)年使企業(yè)的剩余資金為4 000萬元,試確定企業(yè)每年上繳資金d的值(用m表示). 【思路點撥】 (1)由第n年和第(n+1)年的資金變化情況,得到an和an+1的遞推關(guān)系.(2)由遞推關(guān)系,利用迭代的方法可求通項公式,問題得解.                                                                         

7、                                                                                                                                                       解決數(shù)列實際應(yīng)用問題的關(guān)鍵是要做好三件事情:第一是努力讀懂題意,能用自己的語言把問題表述出來;第二是找出關(guān)鍵字句,其他的文字可以不管;第三是將實際生活化的語言翻譯成數(shù)學(xué)語言.在做好這三件事情的基礎(chǔ)上,經(jīng)過設(shè)元、列式,就不難實現(xiàn)這種數(shù)學(xué)模型的轉(zhuǎn)化. 強化訓(xùn)練2 某市投資甲、乙兩個工廠,2

8、012年兩工廠的年產(chǎn)量均為100萬噸,在今后的若干年內(nèi),甲工廠的年產(chǎn)量每年比上一年增加10萬噸,乙工廠第n年比上一年增加2n-1萬噸.記2012年為第一年,甲、乙兩工廠第n年的年產(chǎn)量分別記為an,bn. (1)求數(shù)列{an},{bn}的通項公式; (2)若某工廠年產(chǎn)量超過另一工廠年產(chǎn)量的2倍,則將另一工廠兼并,問到哪一年底其中一個工廠將被另一工廠兼并? 考點三 數(shù)列的綜合問題 數(shù)列與其他知識的綜合問題在高考中大多屬于中、高檔難度問題.在復(fù)習(xí)這部分內(nèi)容時,要注意對基礎(chǔ)知識的梳理,把握通性通法,不必刻意追求難度.

9、 (2013·高考天津卷)已知首項為的等比數(shù)列{an}不是遞減數(shù)列,其前n項和為Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差數(shù)列. (1)求數(shù)列{an}的通項公式; (2)設(shè)Tn=Sn-(n∈N*),求數(shù)列{Tn}的最大項的值與最小項的值. 【思路點撥】 (1)利用等比數(shù)列的性質(zhì)結(jié)合已知條件求出公比q,進而可得到通項公式;(2)結(jié)合數(shù)列的單調(diào)性求數(shù)列的最大項與最小項的值.                                                                                                 

10、                                                                                                                                                                                                                                              數(shù)列的綜合性問題是高考的熱點,此類問題一般以數(shù)列與函數(shù)、數(shù)列與不等式、數(shù)列與解析幾何的綜合應(yīng)用為主.在該類問題

11、的求解過程中往往會遇到遞推數(shù)列,因此掌握遞推數(shù)列的常見解法有助于該類問題的解決,解題時要注意溝通數(shù)列與函數(shù)的內(nèi)在聯(lián)系,靈活運用函數(shù)的思想方法求解,而本題利用數(shù)列的單調(diào)性求{Tn}的最值. 強化訓(xùn)練3 設(shè)數(shù)列{an}的前n項和為Sn,如果為常數(shù),則稱數(shù)列{an}為“幸福數(shù)列”. (1)等差數(shù)列{bn}的首項為1,公差不為零,若{bn}為“幸福數(shù)列”,求{bn}的通項公式; (2)數(shù)列{cn}的各項都是正數(shù),前n項和為Sn,若c+c+c+…+c=S對任意n∈N*都成立,試推斷數(shù)列{cn}是否為“幸福數(shù)列”?并說明理由. 數(shù)列與三類

12、知識的交匯 數(shù)列與函數(shù)、不等式、解析幾何、平面幾何等知識的交匯問題是高考的難點,與函數(shù)、不等式的交匯問題主要考查利用函數(shù)與方程的思想方法解決數(shù)列中的問題及用解決不等式的方法研究數(shù)列的性質(zhì);與解析幾何交匯,主要涉及點列問題,與平面幾何交匯,主要涉及面積(周長)問題,求解時應(yīng)建立數(shù)列的遞推關(guān)系或通項公式之間的關(guān)系,然后借助數(shù)列的知識加以解決. 一、數(shù)列和平面幾何的交匯 (2013·高考安徽卷) 如圖,互不相同的點A1,A2,…,An,…和B1,B2,…,Bn,…分別在角O的兩條邊上,所有AnBn相互平行,且所有梯形AnBnBn+1An+1的面積均相等,設(shè)OAn=an.若a1=1,a2=

13、2,則數(shù)列{an}的通項公式是________. 【解析】 設(shè)OAn=x(n≥3),OB1=y(tǒng),∠O=θ, 記S△OA1B1=×1×ysin θ=S, 那么S△OA2B2=×2×2ysin θ=4S, S△OA3B3=4S+(4S-S)=7S, … S△OAnBn=x·xysin θ=(3n-2)S, ∴==, ∴=,∴x=. 即an=(n≥3). 經(jīng)驗證知an=(n∈N*). 【答案】 an=  對于數(shù)列與幾何圖形相結(jié)合的問題,通常利用幾何知識,并結(jié)合圖形,得出關(guān)于數(shù)列相鄰項an與an+1之間的關(guān)系,然后根據(jù)遞推關(guān)系,結(jié)合所求內(nèi)容變形,得出通項公式或其他所求結(jié)論.

14、二、數(shù)列和函數(shù)的交匯 (2013·高考安徽卷)設(shè)數(shù)列{an}滿足a1=2,a2+a4=8,且對任意n∈N*,函數(shù) f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x滿足f′()=0. (1)求數(shù)列{an}的通項公式; (2)若bn=2(an+),求數(shù)列{bn}的前n項和Sn. 【解】 (1)由題設(shè)可得 f′(x)=an-an+1+an+2-an+1sin x-an+2cos x. 對任意n∈N*,f′()=an-an+1+an+2-an+1=0, 即an+1-an=an+2-an+1,故{an}為等差數(shù)列. 由a1=2,a2+a4=8,可得數(shù)列{

15、an}的公差d=1, 所以an=2+1·(n-1)=n+1. (2)由bn=2(an+)=2(n+1+)=2n++2知, Sn=b1+b2+…+bn =2n+2·+ =n2+3n+1-.  (1)本題以函數(shù)為載體考查了數(shù)列的基本問題,求解中利用f′()=0,把函數(shù)知識轉(zhuǎn)化為數(shù)列知識,這種題型經(jīng)常見到. (2)數(shù)列與函數(shù)交匯問題的常見類型及解法: ①已知函數(shù)條件,解決數(shù)列問題,此類問題一般利用函數(shù)的性質(zhì)、圖象研究數(shù)列問題; ②已知數(shù)列條件,解決函數(shù)問題,解決此類問題一般要充分利用數(shù)列的范圍、分式、求和方法對式子化簡變形.另外,解題時要注意數(shù)列與函數(shù)的內(nèi)在聯(lián)系,靈活運用函數(shù)的思想

16、方法求解. 三、數(shù)列與不等式的交匯 (2013·高考天津卷)已知首項為的等比數(shù)列{an}的前n項和為Sn(n∈N*),且-2S2,S3,4S4成等差數(shù)列. (1)求數(shù)列{an}的通項公式; (2)證明Sn+≤(n∈N*). 【解】 (1)設(shè)等比數(shù)列{an}的公比為q. 因為-2S2,S3,4S4成等差數(shù)列, 所以S3+2S2=4S4-S3, 即S4-S3=S2-S4,可得2a4=-a3, 于是q==-. 又因為a1=, 所以等比數(shù)列{an}的通項公式為an=·=(-1)n-1·. (2)證明:Sn=1-, Sn+=1-+ = 當(dāng)n為奇數(shù)時,Sn+隨n的增大而

17、減小, 所以Sn+≤S1+=. 當(dāng)n為偶數(shù)時,Sn+隨n的增大而減小, 所以Sn+≤S2+=. 故對于n∈N*,有Sn+≤.  本題考查了數(shù)列不等式的證明,求解此類問題時應(yīng)根據(jù)題目特征,確定出與不等式有關(guān)的數(shù)列的項或前n項和,根據(jù)題目特征求解,求解時注意放縮法的應(yīng)用.而本題利用了數(shù)列的單調(diào)性求解. 體驗真題·把脈考向_ 1.【解析】選A.∵Sn+Sm=Sn+m,且a1=1,∴S1=1,可令m=1,得Sn+1=Sn+1,∴Sn+1-Sn=1,即當(dāng)n≥1時,an+1=1,∴a10=1. 2.【解析】每天植樹的棵數(shù)構(gòu)成以2為首項,2為公比的等比數(shù)列,其前n項和Sn===2n+1-2.

18、由2n+1-2≥100,得2n+1≥102.由于26=64,27=128.則n+1≥7,即n≥6. 【答案】6 3.【解】(1)令n=1,得2a1-a1=a,即a1=a. 因為a1≠0,所以a1=1. 令n=2,得2a2-1=S2=1+a2,解得a2=2. 當(dāng)n≥2時,由2an-1=Sn,2an-1-1=Sn-1兩式相減,得2an-2an-1=an,即an=2an-1. 于是數(shù)列{an}是首項為1,公比為2的等比數(shù)列. 因此,an=2n-1. 所以數(shù)列{an}的通項公式為an=2n-1. (2)由(1)知,nan=n·2n-1. 記數(shù)列{n·2n-1}的前n項和為Bn,

19、于是Bn=1+2×2+3×22+…+n×2n-1,① 2Bn=1×2+2×22+3×23+…+n×2n.② ①-②,得-Bn=1+2+22+…+2n-1-n·2n =2n-1-n·2n.從而Bn=1+(n-1)·2n. _典例展示·解密高考_ 【例1】【解】(1)設(shè)等差數(shù)列{an}的首項為a1,公差為d. 由S4=4S2,a2n=2an+1,得 解得 因此an=2n-1,n∈N*. (2)由已知++…+=1-,n∈N*, 當(dāng)n=1時,=; 當(dāng)n≥2時,=1--(1-)=. 所以=,n∈N*. 由(1)知an=2n-1,n∈N*, 所以bn=,n∈N*. 所以T

20、n=+++…+, Tn=++…++. 兩式相減,得 Tn=+(++…+)- =--, 所以Tn=3-. [強化訓(xùn)練1]【解】(1)由已知,得 解得a2=2. 設(shè)數(shù)列{an}的公比為q, 則a1q=2, ∴a1=,a3=a1q2=2q. 由S3=7,可知+2+2q=7, ∴2q2-5q+2=0, 解得q1=2,q2=. 由題意,得q>1,∴q=2. ∴a1=1. 故數(shù)列{an}的通項公式為an=2n-1. (2)證明:∵bn= ==-, ∴Tn=(-)+(-)+(-)+…+(-) =-=-<. 【例2】【解】(1)由題意得a1=2 000(1+50%)-

21、d=3 000-d, a2=a1(1+50%)-d=a1-d=4 500-d, an+1=an(1+50%)-d=an-d. (2)由(1)得an=an-1-d=-d =an-2-d-d=… =a1-d. 整理得an=(3 000-d)-2d =(3 000-3d)+2d. 由題意,知am=4 000, 即(3 000-3d)+2d=4 000, 解得d==. 故該企業(yè)每年上繳資金d的值為時,經(jīng)過m(m≥3)年企業(yè)的剩余資金為4 000萬元. [強化訓(xùn)練2]【解】(1)因為{an}是等差數(shù)列,a1=100,d=10, 所以an=10n+90. 因為bn-bn-1=2

22、n-1,bn-1-bn-2=2n-2,…,b2-b1=2, 所以bn=100+2+22+…+2n-1=2n+98. (2)當(dāng)n≤5時,an≥bn且an<2bn. 當(dāng)n≥6時,an≤bn,所以甲工廠有可能被乙工廠兼并. 2an

23、項公式為 an=×=(-1)n-1·. (2)由(1)得Sn=1-= 當(dāng)n為奇數(shù)時,Sn隨n的增大而減小, 所以1Sn-≥S2-=-=-. 所以數(shù)列{Tn}最大項的值為,最小項的值為-. [強化訓(xùn)練3]【解】(1)設(shè)等差數(shù)列bn的公差為d(d≠0),=k,因為b1=1, 則n+n(n-1)d=k[2n+·2n(2n-1)d], 即2+(n-1)d=4k+2k(2n-1)d, 整理得,(4k-1)dn+(2k-1)(2-d)=0, 因為對任意正整數(shù)n上式

24、恒成立,則, 解得. 故數(shù)列bn的通項公式是bn=2n-1. (2)由已知,當(dāng)n=1時,c=S=c.因為c1>0,所以c1=1.當(dāng)n≥2時,c+c+c+…+c=S,c+c+c+…+c=S. 兩式相減,得c=S-S=(Sn-Sn-1)(Sn+Sn-1)=cn·(Sn+Sn-1). 因為cn>0,所以c=Sn+Sn-1=2Sn-cn, 顯然c1=1適合上式,所以當(dāng)n≥2時,c=2Sn-1-cn-1. 于是c-c=2(Sn-Sn-1)-cn+cn-1=2cn-cn+cn-1=cn+cn-1. 因為cn+cn-1>0,則cn-cn-1=1, 所以數(shù)列{cn}是首項為1,公差為1的等差數(shù)列. 所以==不為常數(shù),故數(shù)列{cn}不是“幸福數(shù)列”

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!