2017-2018學(xué)年高中數(shù)學(xué) 第二章 隨機(jī)變量及其分布 2.2 二項(xiàng)分布及其應(yīng)用 2.2.2 事件的相互獨(dú)立性優(yōu)化練習(xí) 新人教A版選修2-3.doc
《2017-2018學(xué)年高中數(shù)學(xué) 第二章 隨機(jī)變量及其分布 2.2 二項(xiàng)分布及其應(yīng)用 2.2.2 事件的相互獨(dú)立性優(yōu)化練習(xí) 新人教A版選修2-3.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2017-2018學(xué)年高中數(shù)學(xué) 第二章 隨機(jī)變量及其分布 2.2 二項(xiàng)分布及其應(yīng)用 2.2.2 事件的相互獨(dú)立性優(yōu)化練習(xí) 新人教A版選修2-3.doc(6頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2.2.2 事件的相互獨(dú)立性 [課時(shí)作業(yè)] [A組 基礎(chǔ)鞏固] 1.把標(biāo)有1,2的兩張卡片隨機(jī)地分給甲、乙;把標(biāo)有3,4的兩張卡片隨機(jī)地分給丙、丁,每人一張,事件“甲得1號(hào)紙片”與“丙得4號(hào)紙片”是( ) A.互斥但非對(duì)立事件 B.對(duì)立事件 C.相互獨(dú)立事件 D.以上答案都不對(duì) 解析:相互獨(dú)立的兩個(gè)事件彼此沒(méi)有影響,可以同時(shí)發(fā)生,因此它們不可能互斥.故選C. 答案:C 2.兩個(gè)實(shí)習(xí)生每人加工一個(gè)零件,加工為一等品的概率分別為和,兩個(gè)零件是否加工為一等品相互獨(dú)立,則這兩個(gè)零件中恰有一個(gè)一等品的概率為( ) A. B. C. D. 解析:設(shè)“兩個(gè)零件中恰有一個(gè)一等品”為事件A,因事件相互獨(dú)立,所以P(A)=+=. 答案:B 3.設(shè)兩個(gè)獨(dú)立事件A和B都不發(fā)生的概率為,A發(fā)生B不發(fā)生的概率與B發(fā)生A不發(fā)生的概率相同,則事件A發(fā)生的概率P(A)是( ) A. B. C. D. 解析:由P(A)=P(B)得P(A)P()=P(B)P(),即P(A)[1-P(B)]=P(B)[1-P(A)], ∴P(A)=P(B).又P( )=, ∴P()=P()=. ∴P(A)=. 答案:D 4.在如圖所示的電路圖中,開(kāi)關(guān)a,b,c閉合與斷開(kāi)的概率都是,且是相互獨(dú)立的,則燈亮的概率是( ) A. B. C. D. 解析:設(shè)開(kāi)關(guān)a,b,c閉合的事件分別為A,B,C,則燈亮這一事件E=ABC∪AB∪AC,且A,B,C相互獨(dú)立,ABC,AB,AC互斥,所以 P(E)=P(ABC∪AB∪AC) =P(ABC)+P(AB)+P(AC) =P(A)P(B)P(C)+P(A)P(B)P()+P(A)P()P(C) =++=. 答案:B 5.甲、乙兩名學(xué)生通過(guò)某種聽(tīng)力測(cè)試的概率分別為和,兩人同時(shí)參加測(cè)試,其中有且只有一人能通過(guò)的概率是( ) A. B. C. D.1 解析:設(shè)事件A表示“甲通過(guò)聽(tīng)力測(cè)試”,事件B表示“乙通過(guò)聽(tīng)力測(cè)試”. 依題意知,事件A和B相互獨(dú)立,且P(A)=,P(B)=. 記“有且只有一人通過(guò)聽(tīng)力測(cè)試”為事件C,則 C=(A)∪(B),且A和B互斥. 故P(C)=P((A)∪(B))=P(A)+P(B)=P(A)P()+P()P(B)=+=. 答案:C 6.某條道路的A,B,C三處設(shè)有交通燈,這三盞燈在一分鐘內(nèi)平均開(kāi)放綠燈的時(shí)間分別為25秒、35秒、45秒,某輛車(chē)在這條路上行駛時(shí),三處都不停車(chē)的概率是________. 解析:P==. 答案: 7.某天上午,李明要參加“青年文明號(hào)”活動(dòng).為了準(zhǔn)時(shí)起床,他用甲、乙兩個(gè)鬧鐘叫醒自己.假設(shè)甲鬧鐘準(zhǔn)時(shí)響的概率是0.80,乙鬧鐘準(zhǔn)時(shí)響的概率是0.90,則兩個(gè)鬧鐘至少有一個(gè)準(zhǔn)時(shí)響的概率是________. 解析:至少有一個(gè)準(zhǔn)時(shí)響的概率為1-(1-0.90)(1-0.80)=1-0.100.20=0.98. 答案:0.98 8.如圖所示,在兩個(gè)圓盤(pán)中,指針落在本圓盤(pán)每個(gè)數(shù)所在區(qū)域的機(jī)會(huì)均等,那么兩個(gè)指針同時(shí)落在奇數(shù)所在區(qū)域的概率是________. 解析:左邊圓盤(pán)指針落在奇數(shù)區(qū)域的概率為=,右邊圓盤(pán)指針落在奇數(shù)區(qū)域的概率為,所以兩個(gè)指針同時(shí)落在奇數(shù)區(qū)域的概率為=. 答案: 9.從一副除去大小王的撲克牌(52張)中任取一張,設(shè)事件A為“抽得K”,事件B為“抽得紅牌”,事件A與B是否相互獨(dú)立?是否互斥?是否對(duì)立?為什么? 解析:由于事件A為“抽得K”,事件B為“抽得紅牌”,故抽到的紅牌中可能抽到紅桃K或方塊K,故事件A與B有可能同時(shí)發(fā)生,顯然它們不是互斥或?qū)α⑹录? 下面判斷它們是否相互獨(dú)立:“抽得K”的概率為P(A)==,“抽得紅牌”的概率為P(B)==,“既是K又是紅牌”的概率為P(AB)==.因?yàn)椋剑訮(AB)=P(A)P(B).因此A與B相互獨(dú)立. 10.某班甲、乙、丙三名同學(xué)競(jìng)選班委,甲當(dāng)選的概率為,乙當(dāng)選的概率為,丙當(dāng)選的概率為. (1)求恰有一名同學(xué)當(dāng)選的概率; (2)求至多有兩人當(dāng)選的概率. 解析:設(shè)甲、乙、丙當(dāng)選的事件分別為A、B、C, 則P(A)=,P(B)=,P(C)=. (1)易知事件A、B、C相互獨(dú)立, 所以恰有一名同學(xué)當(dāng)選的概率為 P(A)+P(B)+P(C) =P(A)P()P()+P()P(B)P()+P()P()P(C) =++=. (2)至多有兩人當(dāng)選的概率為1-P(ABC)=1-P(A)P(B)P(C)=1-=. [B組 能力提升] 1.國(guó)慶節(jié)放假,甲,乙,丙去北京旅游的概率分別為,,.假定三人的行動(dòng)相互之間沒(méi)有影響,那么這段時(shí)間內(nèi)至少有1人去北京旅游的概率為( ) A. B. C. D. 解析:因甲,乙,丙去北京旅游的概率分別為,,.因此,他們不去北京旅游的概率分別為,,,所以,至少有1人去北京旅游的概率為P=1-=. 答案:B 2.從甲袋中摸出一個(gè)紅球的概率是,從乙袋中摸出一個(gè)紅球的概率是且從兩個(gè)袋中摸球相互之間不受影響,從兩袋中各摸出一個(gè)球,則等于( ) A.2個(gè)球不都是紅球的概率 B.2個(gè)球都是紅球的概率 C.至少有1個(gè)紅球的概率 D.2個(gè)球中恰有1個(gè)紅球的概率 解析:分別記從甲、乙袋中摸出一個(gè)紅球?yàn)槭录嗀,B,則P (A)=,P(B)=,由于A,B相互獨(dú)立,所以1-P()P()=1-=.根據(jù)互斥事件可知C正確. 答案:C 3.甲袋中有8個(gè)白球,4個(gè)紅球;乙袋中有6個(gè)白球,6個(gè)紅球.從每袋中任取一個(gè)球,則取得同色球的概率為_(kāi)_______. 解析:設(shè)從甲袋中任取一個(gè)球,事件A為“取得白球”,則事件為“取得紅球”,從乙袋中任取一個(gè)球,事件B為“取得白球”,則事件為“取得紅球”. ∵事件A與B相互獨(dú)立,∴事件與相互獨(dú)立. ∴從每袋中任取一個(gè)球,取得同色球的概率為 P((A∩B)∪(∩))=P(A∩B)+P(∩)=P(A)P(B)+P()P()=+=. 答案: 4.設(shè)甲、乙、丙三臺(tái)機(jī)器是否需要照顧相互之間沒(méi)有影響,已知在某一小時(shí)內(nèi),甲、乙都需要照顧的概率為0.05.甲、丙都需要照顧的概率為0.1,乙、丙都需要照顧的概率為0.125.則求甲、乙、丙每臺(tái)機(jī)器在這個(gè)小時(shí)內(nèi)需要照顧的概率分別為_(kāi)_______,________,________. 解析:記“機(jī)器甲需要照顧”為事件A,“機(jī)器乙需要照顧”為事件B,“機(jī)器丙需要照顧”為事件C,由題意可知A,B,C是相互獨(dú)立事件. 由題意可知 得 所以甲、乙、丙每臺(tái)機(jī)器需要照顧的概率分別為0.2,0.25,0.5. 答案:0.2 0.25 0.5 5.某商場(chǎng)舉行的“三色球”購(gòu)物摸獎(jiǎng)活動(dòng)規(guī)定:在一次摸獎(jiǎng)中,摸獎(jiǎng)?wù)呦葟难b有3個(gè)紅球與4個(gè)白球的袋中任意摸出3個(gè)球,再?gòu)难b有1個(gè)藍(lán)球與2個(gè)白球的袋中任意摸出1個(gè)球.根據(jù)摸出4個(gè)球中紅球與藍(lán)球的個(gè)數(shù),設(shè)一、二、三等獎(jiǎng)如下: 獎(jiǎng)級(jí) 摸出紅、藍(lán)球個(gè)數(shù) 獲獎(jiǎng)金額 一等獎(jiǎng) 3紅1藍(lán) 200元 二等獎(jiǎng) 3紅0藍(lán) 50元 三等獎(jiǎng) 2紅1藍(lán) 10元 其余情況無(wú)獎(jiǎng)且每次摸獎(jiǎng)最多只能獲得一個(gè)獎(jiǎng)級(jí). (1)求一次摸獎(jiǎng)恰好摸到1個(gè)紅球的概率; (2)求摸獎(jiǎng)?wù)咴谝淮蚊?jiǎng)中獲獎(jiǎng)金額X的分布列. 解析:設(shè)Ai(i=0,1,2,3)表示摸到i個(gè)紅球,Bj(j=0,1)表示摸到j(luò)個(gè)藍(lán)球,則Ai與Bj獨(dú)立. (1)恰好摸到1個(gè)紅球的概率為 P(A1)==. (2)X的所有可能值為:0,10,50,200,且 P(X=200)=P(A3B1)=P(A3)P(B1)==; P(X=50)=P(A3B0)=P(A3)P(B0)==, P(X=10)=P(A2B1)=P(A2)P(B1)===, P(X=0)=1---=. 綜上可知,獲獎(jiǎng)金額X的分布列為 X 0 10 50 200 P 6.某公司招聘員工,指定三門(mén)考試課程,有兩種考試方案: 方案一:考三門(mén)課程至少有兩門(mén)及格為考試通過(guò); 方案二:在三門(mén)課程中,隨機(jī)選取兩門(mén),這兩門(mén)都及格為考試通過(guò). 假設(shè)某應(yīng)聘者對(duì)三門(mén)指定課程考試及格的概率分別為0.5,0.6,0.9,且三門(mén)課程考試是否及格相互之間沒(méi)有影響. (1)求該應(yīng)聘者用方案一通過(guò)的概率; (2)求該應(yīng)聘者用方案二通過(guò)的概率. 解析:記“應(yīng)聘者對(duì)三門(mén)考試及格”分別為事件A,B,C.則P(A)=0.5,P(B)=0.6,P(C)=0.9. (1)該應(yīng)聘者用方案一通過(guò)的概率為 P1=P(AB)+P(BC)+P(AC)+P(ABC) =0.50.60.1+0.50.60.9+0.50.40.9+0.50.60.9 =0.03+0.27+0.18+0.27=0.75. (2)應(yīng)聘者用方案二通過(guò)的概率為 P2=P(AB)+P(BC)+P(AC) =(0.50.6+0.60.9+0.50.9) =1.29=0.43.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2017-2018學(xué)年高中數(shù)學(xué) 第二章 隨機(jī)變量及其分布 2.2 二項(xiàng)分布及其應(yīng)用 2.2.2 事件的相互獨(dú)立性優(yōu)化練習(xí) 新人教A版選修2-3 2017 2018 學(xué)年 高中數(shù)學(xué) 第二 隨機(jī)變量 及其
鏈接地址:http://www.zhongcaozhi.com.cn/p-6122695.html