拖拉機半軸殼銑床夾具設(shè)計【銑削φ36端面】【說明書+CAD+PROE】
拖拉機半軸殼銑床夾具設(shè)計【銑削φ36端面】【說明書+CAD+PROE】,銑削φ36端面,說明書+CAD+PROE,拖拉機半軸殼銑床夾具設(shè)計【銑削φ36端面】【說明書+CAD+PROE】,拖拉機,半軸殼,銑床,夾具,設(shè)計,銑削,36,端面,說明書,CAD,PROE
課題名稱課題名稱:拖拉機半軸套銑床夾具設(shè)計 課題類型課題類型:設(shè) 計 應(yīng) 用 專專 業(yè):業(yè):機械設(shè)計制造及其自動化 班班 級:級:機制052 姓姓 名:名:謝李華謝李華 指導老師:指導老師:曾曾 一一 凡凡 提交時間:2009年5月半軸殼在后橋機構(gòu)中的功用(示意圖)1、4半軸殼 2-左橋殼 3-右橋殼 5-鋼板彈簧座 6-突緣 7-半軸套管 8-后橋殼 9-殼蓋 分段式橋殼一般分為兩段,由螺栓1將兩段連成一體。分段式橋殼比較易于鑄造和加工。零件圖半軸殼加工工藝過程工序號工序號 工序名稱工序名稱 工序內(nèi)容工序內(nèi)容 設(shè)備設(shè)備 1 1車端面車端面 車左端面車左端面 車床車床 2 2粗車端面、外圓粗車端面、外圓 粗車右端面、外圓及左右兩大端面粗車右端面、外圓及左右兩大端面 車床車床 3 3半精車端面外圓半精車端面外圓 半精車右端面、外圓及左右兩大端面半精車右端面、外圓及左右兩大端面 車床車床 4 4銑圓柱面銑圓柱面 銑銑4 4個個28mmm28mmm的端面的端面 銑床銑床5 56 6銑圓柱面銑圓柱面 銑斜面銑斜面銑銑36mm36mm的圓柱面的圓柱面銑銑1010度傾角的斜面度傾角的斜面 銑床銑床 銑床銑床7 7鉆孔鉆孔 鉆左端面鉆左端面6 6個個10.5mm10.5mm的均布通孔的均布通孔 鉆床鉆床 8 8鉆孔鉆孔 鉆右端面鉆右端面8 8個個10.5mm10.5mm的均布通孔的均布通孔 鉆床鉆床 9 9鉆孔鉆孔 鉆鉆4 4個個1111深深2424的孔的孔 鉆床鉆床 1010攻絲攻絲 在在1111的孔中攻的孔中攻M12-6HM12-6H深深2020的螺紋的螺紋 鉆床鉆床 車削階段已達到的工藝要求本次承擔的加工內(nèi)容n n1.銑4個28mm的端面,表面粗糙度12.5.n n2.銑36mm的圓柱端面,表面粗糙度25.n n3.從26中銑出10斜面,表面粗糙度12.5.設(shè)計思路n n 工件的加工工藝分析工件的加工工藝分析n n n n 確定夾具的結(jié)構(gòu)方案確定夾具的結(jié)構(gòu)方案n n n n n n n n 定位方案定位方案 夾緊方案夾緊方案 方案誤差方案誤差 夾具對定位夾具對定位n n 分析及確定分析及確定 分析及確定分析及確定 分析分析 方案的確定方案的確定n n n n n n n n 繪制夾具總圖繪制夾具總圖 定位方案一n n優(yōu)點優(yōu)點:定位表面充分利用上道工序的加工表面定位表面充分利用上道工序的加工表面,形形位誤差小位誤差小,定位準確定位準確,方便方便.定位面積大定位面積大,在加工時在加工時受力均勻受力均勻,不易破壞已加工表面不易破壞已加工表面.尾架可同時完成尾架可同時完成定位和加緊定位和加緊.整體剛性強度大整體剛性強度大.n n缺點缺點:工件機構(gòu)較大工件機構(gòu)較大,定位表面接觸面積大定位表面接觸面積大,成本高成本高.定位方案二n n優(yōu)點優(yōu)點:型塊的對型塊的對中性好,夾具體簡中性好,夾具體簡單,定位方便快捷單,定位方便快捷定位表面接觸面定位表面接觸面積小,易加工,成積小,易加工,成本低本低n n缺點:由于工件是缺點:由于工件是通過兩短圓柱表面通過兩短圓柱表面和確定前后兩型和確定前后兩型塊的相對高度來定塊的相對高度來定位工件較長,因位工件較長,因此整體剛性不強,此整體剛性不強,工件在加工時易變工件在加工時易變形或被破壞形或被破壞夾具對定方案的確定n n本方案銑床夾具在機床上的定位是以夾具體的底面與輔助底板接觸,再由輔助底板與機床工作臺的接觸;再通過兩個定向鍵與機床工作臺的型槽相連接來實現(xiàn)的。在銑斜面時,調(diào)整夾具體與銑床工作臺的相對位置。刀具的對刀位置視工序而定.夾具與銑床的連接加工方式示意圖n n立銑刀立銑刀n n圓盤銑刀圓盤銑刀方案誤差分析方案誤差分析 n n分析此夾具定位方案可知,由于該工件是通過兩外圓柱面和端面與夾具的接觸來定位,再加上軸向尾架頂尖的螺旋壓緊力,保證軸向不移動.由于工件在上道加工工序中的精度已足夠滿足本道工序的定位加工,且本道加工工序?qū)Τ叽缇群臀恢枚纫蟛⒉桓?只是尺寸上的界定。且定位基準和工序基準重合。故影響其定位誤差的因素只有一項:工件外圓柱面和夾具體內(nèi)孔的配合引起的誤差,即基準位置誤差。定位誤差計算夾具裝配圖總裝圖夾具體通過弧型槽轉(zhuǎn)過10角,銑削10斜面零件圖 夾具體輔助底板裝配過程圖n n分解圖1:分解圖2:敬請各位老師批評指正 謝 謝!
江西農(nóng)業(yè)大學 工學院
工藝規(guī)程
零件圖號 33431A102 零件名稱 拖拉機半軸殼
班 級 機制052班 姓 名 謝李華
指導老師 曾一凡
2009年 5 月 18 日
江西農(nóng)業(yè)大學
機 械 加 工 工 序 卡
產(chǎn)品型號
BZK01
零件圖號
33431A102
產(chǎn)品名稱
半軸殼
零件名稱
半軸殼
共1 頁
第1 頁
工序圖見附頁
車 間
工序號
工序名稱
材料牌號
大金工
X2
銑端面
QT400—15
毛坯種類
毛坯外形尺寸
每毛坯件數(shù)
每臺件數(shù)
鑄造件
318xф220
1
1
設(shè)備名稱
設(shè)備型號
設(shè)備編號
同時加工件數(shù)
立式銑床
X53T
1
夾 具 編 號
夾 具 名 稱
切削液
銑床專用夾具
工序工時
準終
單件
13min
工步號
工 步 內(nèi) 容
工 藝 裝 備
主軸
轉(zhuǎn)速
(r/min)
切削
速度
(m/min)
進給
量
(mm/r)
切削
深度
(mm)
進給次數(shù)
工步工時
機動min
輔助min
X2-1
銑4個Φ28mm的端面
銑床專用夾具,游標卡尺,塞尺,圓盤銑刀
220
55
0.25
5
1
3
3
X2-2
銑Φ36mm的端面
銑床專用夾具,游標卡尺,塞尺,立銑刀
220
20
0.27
3
1
1.5
2
X2-3
銑10度傾角的端面
銑床專用夾具, 萬能角度尺,立銑刀
220
20
0.27
3
1
1.5
2
設(shè)計(日期)
審核(日期)
標準化(日期)
會簽(日期)
校對(日期)
標記
處數(shù)
更改文件號
簽字
日期
標記
更改文件號
簽字
日期
機 械 加 工 工 序 卡 附 頁
拖拉機半軸殼銑床夾具設(shè)計
學校代碼:10410
序 號:050453
本 科 畢 業(yè) 設(shè) 計
題目: 拖拉機半軸殼銑床夾具設(shè)計
學 院: 工 學 院
姓 名: 謝 李 華
學 號: 20050453
專 業(yè): 機械設(shè)計制造及其自動化
年 級: 機制05(2)班
指導教師: 曾一凡
二OO九年 五 月
摘 要
機床夾具是在金屬切削加工中,用以準確地確定工件位置,并將其牢固地夾緊,以接受加工的工藝設(shè)備. 本著夾得快,夾得牢,夾得準的設(shè)計原則和在經(jīng)濟,高效的市場觀念指導下進行本次畢業(yè)設(shè)計。 汽車半軸殼是汽車的重要部件之一。它既要承受車體和車載的全部質(zhì)量,還要承受汽車在行駛過程中由于道路不平而引起的沖擊力和扭矩,并要保證在行駛過程中不發(fā)生變形,而半軸在其內(nèi)旋轉(zhuǎn)自如。由拖拉機半軸殼零件圖可知零件的基本結(jié)構(gòu)和加工要求。該工件鑄成后要達到圖紙所示的加工要求要分三階段完成,第一階段需車削四個端面和兩個外圓;車削后第二階段銑削三個端面,其中兩個是為了鉆孔而做的前期工作,而有10度傾角要求的端面是零件結(jié)構(gòu)的要求。完成前兩階段加工后再對兩個端面鉆通孔,各端面孔的位置要求為均布。據(jù)些分析設(shè)計銑床夾具。
關(guān)鍵詞: 銑削 夾具 工件 定位 精度
Tractor rear axle shaft housing milling jig design
The engine bed jig is in the metal machining, with by accurately the definite work piece position, and its clamps reliably, accepts the processing the process unit. In line with clamps quickly, clamps the jail, clamps the accurate principle of design and in the economy, under the highly effective market idea instruction carries on this graduation project. The automobile rear axle shaft housing is one of automobile important parts.It already must withstand the complete quality which the chassis and the vehicle carry, but also must withstand the automobile in the travel process because the path does not put down the impulse and the torque which causes, and must guarantee does not have the distortion in the travel process, but the rear axle revolves in among them freely.May know the components by the tractor half axle sleeve detail drawing the basic structure and the processing request.After this work piece casts must achieve the blueprint shows the processing request must divide three stages to complete, the first stage needs the turning four end surfaces and two outer annuluses. After the turning the second stage milling three end surfaces, but has 10 degree inclination angle request end surface is the components structure request.After completes the first two stage processing to drill through the hole again to two end surfaces, various ends face position request is the even cloth.According to analysis design milling jig.
Key words: Milling jig work piece pointing accuracy
目錄
1緒論 1
1.1前 言 1
1.2 課題總體任務(wù)概述 1
2 工件的加工工藝分析 4
3.夾具的結(jié)構(gòu)設(shè)計 5
3.1定位方案選擇及定位元件設(shè)計 5
3.2定位誤差分析 7
3.3夾具對定方案的確定 8
4.繪制夾具總圖(見圖紙) 9
4.1銑削力的計算 9
4.1.1圓盤銑刀…………………………………………………………………………….9
4.1.2粗齒錐柄立銑刀…………………………………………………………………...10
4.2夾緊力的計算 10
5. 確定夾具的主要尺寸,公差及技術(shù)要求 12
5.1 夾具總圖上應(yīng)標尺寸,公差 12
5.2 夾具總圖應(yīng)標注的技術(shù)條件 12
6.總結(jié) 13
7.參考文獻 14
8.致謝 15
- iv -
1緒論
1.1前 言
機床夾具是在金屬切削加工中,用以準確地確定工件位置,并將其牢固地夾緊,以接受加工的工藝設(shè)備.它的主要作用是:可靠地保證工件的加工質(zhì)量,提高加工效率,減輕勞動強度,充分發(fā)揮和擴大機床的工藝性能.因此,機床夾具在機械制造中占有重要的地位.
夾具是機械加工不可缺少的部件,在機床技術(shù)向高速、高效、精密、復合、智能、環(huán)保方向發(fā)展的帶動下,夾具技術(shù)正朝著高精、高效、模塊、組合、通用、經(jīng)濟方向發(fā)展。
本著夾得快,夾得牢,夾得準的設(shè)計原則和在經(jīng)濟,高效的市場觀念指導下進行本次畢業(yè)設(shè)計.在滿足生產(chǎn)技術(shù)要求和現(xiàn)有生產(chǎn)設(shè)備配置的前提下,合理,優(yōu)化設(shè)計夾具裝置.使得所設(shè)計的夾具簡便,快捷,低廉,高效.
“工欲善其事,必先利其器”,這是我國歷史上勞動人民在生產(chǎn)斗爭中對工具重要性所作的結(jié)論。在現(xiàn)代化生產(chǎn)中,工具(工裝夾具)的作用也是如此。
在機械制造工業(yè)中,為了達到保證產(chǎn)品質(zhì)量、改善勞動條件、提高勞動生產(chǎn)率及降低成本的目的,在工藝過程中,除機車等設(shè)備外,還大量使用這種工藝裝備。它包括機具、模具、刀具、輔助工具及測量工具等。因此,廣義地說,夾具是一種保證產(chǎn)品質(zhì)量并便利和加速工藝過程的一種工藝裝備。不同的夾具,其結(jié)構(gòu)形式、工作情況、設(shè)計原則都不相同,但就其數(shù)量和在生產(chǎn)中所占的位置來說,應(yīng)以“機床夾具”為先。
所謂機車夾具就是機車上所使用的一種輔助設(shè)備,用它來準確地確定工件與刀具的相對位置,即將工件定位和夾緊,以完成加工所需要的相對運動。所以機床夾具是用以使工件定位和夾緊的機床附加裝置。
鑒于目前機械加工中大多是采用通用的機床加上各種夾具、輔助工具及刀具等進行產(chǎn)品的生產(chǎn),工藝準備工作比較繁重,夾具設(shè)計和制造的工作量顯得更為突出,往往成為生產(chǎn)準備工作的關(guān)鍵。因此,提高夾具設(shè)計水平,縮短設(shè)計時間,就成為生產(chǎn)準備中的一個重要問題。要做好夾具設(shè)計工作,應(yīng)當具備必要的基本知識,掌握合理的設(shè)計方法,了解產(chǎn)品的具體條件。此外,還應(yīng)考慮到夾具的制造工藝,并與產(chǎn)品工藝規(guī)程和刀具、輔助工具和測量工具設(shè)計相聯(lián)系。
1.2 課題總體任務(wù)概述
汽車半軸殼是汽車的重要部件之一,汽車的行駛是由發(fā)動機通過中間傳動軸,將動力傳送到汽車后橋的后半軸,再有后半軸帶動車輪完成的。后橋上,左右兩側(cè)各有一支半軸殼管,其一端與后橋殼壓配成一體,另一端安裝有輪轂軸承。它既要承受車體和車載的全部質(zhì)量,還要承受汽車在行駛過程中由于道路不平而引起的沖擊力和扭矩,并要保證在行駛過程中不發(fā)生變形,而半軸在其內(nèi)旋轉(zhuǎn)自如。因此,對半軸殼在重要配合表面的精度和整體結(jié)構(gòu)的剛度和強度要求較高。
在本次畢業(yè)設(shè)計中, 所要求加工的工件為一鑄鐵拖拉機半軸殼零件,其材料為QT400-15鑄鐵材料。
由拖拉機半軸殼零件圖可知零件的基本結(jié)構(gòu)和加工要求。該工件鑄成后(工件零件圖參見附錄)要達到圖紙所示的加工要求要分三階段完成,第一階段需車削四個端面和兩個外圓,并滿足各端面的平面度和垂直度的要求及前后兩外圓的同軸度要求,作為后面加工的主要定位基準;車削后第二階段銑削三個端面,其中兩個是為了鉆孔而做的前期工作,而有10度傾角要求的端面是零件結(jié)構(gòu)的要求。完成前兩階段加工后再對兩個端面鉆通孔,各端面孔的位置要求為均布,并且為了保證連接緊湊,法蘭面不光滑平整的情況下需要在通孔周圍刮深0.5Φ18的孔。在前期車好端面和鉆好孔的情況下,可以方便的利用其對鉆兩排孔進行定位。
整個加工工藝過程可用下表表示
工序號
工序名稱
工序內(nèi)容
設(shè)備
1
粗車端面、外圓
粗車左端面、外圓
車床
2
粗車端面、外圓
粗車右端面、外圓
車床
3
半精車端面、外圓
半精車左右端面、外圓
車床
4
銑圓柱面
銑4個Φ28mm的端面
銑床
5
銑圓柱面
銑Φ36mm的端面
銑床
6
銑斜面
銑10度傾角的端面
銑床
7
鉆孔
鉆左端面6個Φ10.5mm的均布通孔
鉆床
8
鉆孔
鉆右端面8個Φ10.5mm的均布通孔
鉆床
9
鉆孔
鉆4個Φ11深24的孔
鉆床
10
攻絲
在Φ11的孔中攻M12-6H深20的螺紋
鉆床
加工該零件的夾具設(shè)計由我和其它兩位同學負責設(shè)計。其中本人負責銑床夾具的設(shè)計。.在同學完成上道車削加工工序的基礎(chǔ)上,工件已達到的尺寸,位置精度如圖1-2-1所示:可以看出,左右兩端面和外圓的尺寸,位置精度要求高,為重要的配合表面。也可作為本道工序的參考定位基準。在銑削加工中,對,4-的端面進行銑削,并在端面銑削出斜面.在設(shè)計過程中,夾具特點必須與機床相匹配。
圖1-1位置精度圖
銑床專用夾具的設(shè)計特點
(1) 由于銑削過程不是連續(xù)切削,且加工余量較大,切削力較大而方向隨時都可能在變化。所以夾具應(yīng)有足夠的剛度和強度,夾具的重心應(yīng)盡量低,夾具的高度和寬度之比應(yīng)為1~1.25,并應(yīng)有足夠的排屑空間。
(2) 夾緊裝置要有足夠的剛度和強度,保證必需的夾緊力,并有良好的自鎖功能,一般在銑床夾具上特別是粗銑,不宜采用偏心夾緊。
(3) 夾緊力應(yīng)作用在工件剛度較大的部位上,工件與主要定位元件的定位表面接觸剛度要大。當從側(cè)面壓緊工件時,壓板在側(cè)面的著力點應(yīng)低于工件的側(cè)面支承點。
(4) 為了調(diào)整和確定夾具與銑刀的相對位置,應(yīng)正確選用對刀裝置,對刀裝置在使用塞尺方便和易于觀察的位置,并應(yīng)在銑刀開始切入的一側(cè)。
(5) 切屑和冷卻液應(yīng)能順利排出,必要是要開排屑空。
(6) 為了調(diào)整和確定夾具與機床工作臺軸線的相對位置,在夾具體的底面應(yīng)具有兩個定向鍵,定向鍵與工作臺型槽宜用單面貼合,當工作臺型槽平整時可采用圓柱銷,精度高的或重型夾具宜采用夾具體上的找正基面。
根據(jù)上述特點結(jié)合實際設(shè)計本道工序的夾具,具體步驟如下所述。
2 工件的加工工藝分析
分析圖紙可知,工件在上道車削工序中已加工并達到要求的尺寸包括的外圓,表面粗糙度為6.3。的外圓尺寸,表面粗糙度為3.2。兩外圓的端面的表面粗糙度均為6.3,且左右兩外圓的同軸度為。與的外圓端面的平面度為0.06,且與兩外圓的中心線的垂直度要求均為0.08,為了方便描述,今設(shè)A代表的外圓表面,B代表的端面,C代表的端面,D代表的外圓表面,如圖2-1所示。
圖2-1
1.在銑削斜面和端面時,應(yīng)該保證的中心線垂直于設(shè)計基準,且該中心線是鉆孔加工工序中的工序基準,銑削端面是為便于鉆孔,因此,在銑削加工過程中,位置度要求較高,而兩待加工表面的粗糙度要求較低。
2.銑削4--時,工序圖上并未就平面度和位置度作嚴格要求,表面粗糙度為12.5。說明此項形位要求較低,只要加工到一定程度便于下道工序鉆孔即可,因此,不必做重點要求。
3.夾具的結(jié)構(gòu)設(shè)計
3.1定位方案選擇及定位元件設(shè)計
分析零件的結(jié)構(gòu)及尺寸要求可知,在加工4—28的高度90時應(yīng)以兩孔之間的軸線為工序基準;在加工26是的斜面時應(yīng)以C面為工序基準,高度120時應(yīng)以兩孔之間的軸線為工序基準;在加工36是高度53時應(yīng)以兩孔之間的軸線為工序準。所以在加工時兩孔之間的軸線是非常重要的工序基準。根據(jù)基準重合的原則,可以用外圓面D為定位基準,這樣在加工尺寸90、120、53時,定位基準與工序基準重合;在加工斜面時用C面為定位基準,則工序基準與定位基準重合。
定位方案1如圖3-1-1所示:
圖3-1定位方案一
定位方案2如圖3-2所示:
圖3-2定位方案二
定位方案分析分析及選擇:
分析方案一可知:圖3-1-1所示為一環(huán)行工件銑床專用夾具典型結(jié)構(gòu),工件以已加工端面C,D為定位基準進行定位,從該工件的零件圖可知,C面作為定位表面可實現(xiàn)與的工序基準重合:D面作為另一定位基準也可實現(xiàn)基準重合。在對4--銑削時,雖然基準不重合,但由于是對4個圓柱端面進行銑削,造成的誤差方向不一致,故基準不重合誤差可忽略,所以這樣選擇定位基準是可行的??上拗乒ぜ奈鍌€自由度。再通過擋位柱控制工件的繞中心線的轉(zhuǎn)動自由度。從而實現(xiàn)完全定位。
分析方案二可知:圖3-1-2所示,工件通過兩V型塊的相對位置實現(xiàn)對工件的主要定位。V型塊有很好的對中性,可保證工件的中心線與夾具體正確的位置關(guān)系。但由于工件A,D兩外圓端面與V型塊的接觸長度較小,只是限制工件的四個自由度,工件在軸向方向上的移動自由度并沒有得到限制,擋位柱可控制工件的繞中心線的轉(zhuǎn)動自由度。故第二種方案限制了工件的5個自由度,為不完全定位。
綜合分析上述兩種方案,選擇第一種方案作為定位方案。
考慮到加工時裝卸方便,生產(chǎn)高效,及經(jīng)濟性,產(chǎn)品為中批量生產(chǎn),采用一次裝夾完成加工.選用X53T立式銑床,銑削4-的圓柱端面時用圓柱銑刀(D=80,Z=8),銑削的端面和銑削斜面時采用粗齒錐柄立銑刀(D=30,Z=4)。在銑削的端面后,調(diào)整夾具體與輔助底板的相對位置。進而實現(xiàn)與銑刀端面的正確位置。 銑削斜面。調(diào)整方案如圖3-3所示。
圖3-3銑斜面定位圖
3.2定位誤差分析
分析此夾具定位方案可知,由于該工件是通過兩外圓柱面和端面與夾具的接觸來定位,再加上軸向尾架頂尖的螺旋壓緊力,保證軸向不移動. 由于工件在上道加工工序中的精度已足夠滿足本道工序的定位加工,且本道加工工序?qū)Τ叽缇群臀恢枚纫蟛⒉桓?只是尺寸上的界定。且定位基準和工序基準重合。故影響其定位誤差的因素只有一項:工件外圓柱面和夾具體內(nèi)孔的配合引起的誤差,即基準位置誤差。在此基礎(chǔ)上進行定位誤差分析。
定位誤差的計算公式為:
;
其中=0;
工件外圓柱面和夾具體內(nèi)孔的配合引起的誤差:
;
其中:TD=0.019,Td=0.022, =0.028
所以=0.049<-- 滿足加工要求。
3.3夾具對定方案的確定
夾具的設(shè)計除了考慮工件在夾具上的定位之外,還要考慮夾具如何在機床上定位,以及刀具相對夾具的位置如何確定,針對本方案銑床夾具在機床上的定位是以夾具體的底面與輔助底板接觸,再由輔助底板與機床工作臺的接觸;再通過兩個定向鍵與機床工作臺的型槽相連接來實現(xiàn)的。在銑斜面時, 調(diào)整夾具體與銑床工作臺的相對位置。刀具的對刀位置視工序而定。
對刀方案:在進行4-的圓柱端面銑削時,把夾具體左端的A面高度加工成與定位時4-的圓柱端面的理論位置高度一致,從而實現(xiàn)對4-的加工對刀,在加工時可采用圓盤端面銑刀,立式銑床X53T。
對于端面和斜面的銑削定位:從零件圖及定位方案上分析可以看出,的圓柱高出中心線的距離與工件表面差不多平齊,且工件在該周向的半徑較大,右側(cè)與4-的軸向距離又不是很大,左側(cè)又與加強筋靠近,因此,用普通的立式銑床進行對刀加工很容易發(fā)生干涉,難以滿足加工要求。對于銑削斜面時也容易發(fā)生這樣的情況,因此需從與基面垂直的方向進行端面?zhèn)让驺娤?,這對銑床和銑刀提出較高的要求,銑刀由于伸出的長度比較大,所以刀桿的剛度較大,宜用高速鋼銑刀,為減少加工時對工藝系統(tǒng)的穩(wěn)定性,每次銑削量較小,分多次走刀完成,由于X53T立式銑床的技術(shù)參數(shù)可滿足這些要求,因此,可選用該立式銑床。銑削端面的對刀定位采用以夾具體左側(cè)的定位塊右表面B為對刀位置.如圖3-4所示:(加工時對刀后周向移動27mm,軸向移動167.5mm.)。
圖 3-4對刀示意圖
在銑削好端面后,移動工作臺,再裝夾一次,通過夾具體底面的弧型槽調(diào)整好角度,通過止位銷來防止工件在加工時的轉(zhuǎn)動,對刀是通過計算工作臺的移動量來確定對刀位置。
4.繪制夾具總圖(見圖紙)
工件裝夾方案確定后,進行銑削力,夾緊力的計算:
4.1銑削力的計算
4.1.1圓盤銑刀
工件材料: 球墨鑄鐵 刀具材料:硬質(zhì)合金鋼 銑刀類型: 圓盤銑刀
P=52z
根據(jù)<<金屬切削機床夾具設(shè)計手冊>>查表得:
P=1330N
式中 P---銑削力;
t--銑削深度(mm),指銑刀刀齒切入和切出工件過程中, 接觸弧在垂直走刀方向平面中測得的投影長度,取值5mm;
--每齒進給量,取0.2mm;
D—銑刀直徑80mm;
B--銑削寬度56mm;
z—銑刀的齒數(shù)8。
4.1.2粗齒錐柄立銑刀
工件材料: 球墨鑄鐵 刀具材料:高速鋼 銑刀類型:粗齒錐柄立銑刀
P=
根據(jù)<<機床夾具設(shè)計手冊>>查表得:
P=1126 N
式中 P---銑削力
--在用高速鋼(W18Cr4V)銑刀銑削時,考慮工件材料及銑刀類型的參數(shù),本式中取30;
t--銑削深度(mm),只銑刀刀齒切入和切出工件過程中, 接觸弧在垂直走刀方向平面中測得的投影長度取值3mm;
--每齒進給量0.2mm;
D—銑刀直徑30mm;
B--銑削寬度36mm;
z—銑刀的齒數(shù)4;
--用高速鋼(W18Cr4V)銑刀銑削時,考慮工件材料機械性能不同的修正參數(shù).對于灰鑄鐵: =;
HB—工件材料的布氏硬度值(取最大值)。
4.2夾緊力的計算
夾緊力的確定:
計算夾緊力時,通常將夾具和工件看成是一個剛性系統(tǒng).根據(jù)工件受切削力,夾緊力(大型工件還應(yīng)考慮工件重力,運動的工件還應(yīng)考慮慣性力等)的作用情況,找出在加工過程中對夾緊最不利的瞬時狀態(tài),按靜力平衡原理計算出理論夾緊力.最后為保證夾緊可靠,再乘于安全系數(shù)作為實際所需夾緊力的數(shù)值.即:
=WK
式中, --實際所需夾緊力(N);
W----在一定條件下,由靜力平衡計算出的理論夾緊力(N);
K---安全系數(shù).
安全系數(shù)K可按下式計算:
=
查表得: --考慮工件材料及加工余量均勻性的基本安全系數(shù),取1.3;
--加工性質(zhì)(粗加工)取1.2;
--刀面鈍化程度(端面銑削,粗銑,含碳量高于0.3%.故選1.3;
--切削特點.斷續(xù)切削.取1.2;
--夾緊力的穩(wěn)定性,手動夾緊.取1.3;
--手動夾緊時的手柄位置.取1.0;
--僅有力矩使工件回轉(zhuǎn)時工件與支承接觸的情況,接觸點不確定.取1.5;
其中本夾具機構(gòu)采用的夾緊裝置是螺旋夾緊機構(gòu):該類夾緊機構(gòu)結(jié)構(gòu)簡單,夾緊可靠,通用性大,故在機床夾具中得到廣泛應(yīng)用。它的主要缺點是與液壓機構(gòu)相比該機構(gòu)在夾緊和松開工件時比較費時和費力;
單個螺旋夾緊時產(chǎn)生的夾緊力按下列計算: = (N)
式中 ---原始作用力;
---作用力臂;
---螺桿端部與工件間的當量摩擦半徑(mm),其值視螺桿端部的結(jié)構(gòu)形式而定,查表可得:
---螺桿端部與工件間的摩擦角;
---螺紋中徑之半;
---螺紋升角,查表可得;
經(jīng)計算的:
=1250
=3250 經(jīng)校核,滿足強度和剛度要求。
夾具裝配圖: 見圖紙
夾具元件零件圖: 見圖紙
具體裝夾方式: 見圖紙
5. 確定夾具的主要尺寸,公差及技術(shù)要求
5.1 夾具總圖上應(yīng)標尺寸,公差
(1).夾具的最大輪廓尺寸: 560mm ×280mm ×209mm;
(2).定位鍵的定位表面精度及兩定位鍵的位置公差分別為0.8,;
(3)夾具體定向槽與定向鍵的配合為20或;
(4)輔助底板與定位元件的配合為18;
(5) 輔助底板與止位銷的配合為。
5.2 夾具總圖應(yīng)標注的技術(shù)條件
(1)夾具體的六個凸臺的表面粗糙度為1.6,平面度為0.01;
(2)輔助底板的平行度公差為0.03/100;
(3)夾具體與輔助底板的轉(zhuǎn)動是通過弧型槽實現(xiàn)的,弧型槽與固定定位銷的配合為。
6.總結(jié)
通過此次畢業(yè)設(shè)計,使我在資料的準備、設(shè)計的規(guī)劃、思維創(chuàng)新和自學能力等方面都有了較大的提高。并且在畢業(yè)前使個人能力有了一個飛躍。
設(shè)計期間,我多次到工廠參觀學習,對夾具的設(shè)計和工作用途有了較為深刻的認識,并熟悉了多種應(yīng)用軟件,為這次畢業(yè)設(shè)計提供了較豐富的實踐經(jīng)驗。設(shè)計過程中,通過查找資料、方案設(shè)計、工藝分析、軟件應(yīng)用(PRO/E、CAD、UG)等使得我對夾具的設(shè)計和圖紙的繪制有了更加深刻的認識和了解,為我今后工作學習提供了寶貴的經(jīng)驗。
鑒于本人的知識水平和實踐經(jīng)驗所限,在設(shè)計和裝配這套銑床夾具上存在有許多不足的地方,如夾緊機構(gòu)的連動性、底板的強度、夾緊的穩(wěn)定性等方面都比較粗糙和不完善,懇請各位老師批評指正。
7.參考文獻
1 機床夾具設(shè)計手冊 上??茖W技術(shù)出版社,1988
2 王啟平 機床夾具設(shè)計 哈爾濱工業(yè)大學出版社 1995
3 陶崇德, 葛鴻翰編. 機床夾具設(shè)計(第二版). 上??茖W技術(shù)出版社 1989
4 職工大學機制專業(yè)教學研究會編.機床夾具.北京科學技術(shù)出版社 1985
5 李益民主編.機械制造工藝.機械工業(yè)出版社.1986
6 長春汽車制造廠工裝設(shè)計室編.機床設(shè)計原理.吉林人民出版社.1976
7. 林文渙、陳本通.機床夾具設(shè)計. 國防工業(yè)出版社,1987.8
8. 朱龍根.簡明機械設(shè)計手冊.機械工業(yè)出版社,1997.11
9. 方昆凡.公差與配合技術(shù)手冊.北京出版社,1983.6
10. 熊萬武.金屬切削機床夾具設(shè)計手冊.機械工業(yè)出版社, 1984.12
11.王先逵.機械制造工藝學.機械工業(yè)出版社,1995.11
12.中國紡織大學工程圖教研室.畫法幾何及工程制圖.上??萍技夹g(shù)出版社,1997.5
13.金屬切削手冊(第二版) 上海科學技術(shù)出版社,1984.4
14金屬機械加工工藝人員手冊.上??茖W技術(shù)出版社
8.致謝
在設(shè)計過程中,感謝曾一凡老師對我的論文不厭其煩的細心指點。曾一凡老師首先細致地為我解題;當我迷茫于眾多的資料時,他又為我提綱挈領(lǐng),梳理脈絡(luò),使我確立了本文的框架。論文寫作中,每周都得到曾一凡老師的指點。從框架的完善,到內(nèi)容的擴充;從行文的用語,到格式的規(guī)范,曾一凡老師都嚴格要求,力求完美。我再次為曾一凡老師的付出表示感謝。
此次論文的完成還與眾多老師在這四年對我的教導和幫助是分不開的。在此,一并感謝。
值此論文完成之際,我只能用拙筆來表達我誠摯的謝意和由衷的感謝之情,并祝愿多年來在學習、工作、生活等方面給予的關(guān)心支持和幫助的眾多領(lǐng)導、老師、同學身體健康、工作順利、萬事如意!
16
Proceedingsofthe2006IEEE/RSJInternationalConferenceonIntelligentRobotsandSystemsOctober9-15,2006,Beijing,ChinaANovelModularFixtureDesignandAssemblySystemBasedonVRPengGaoliang,LiuWenjianSchool ofMechatronicsEngineeringHarbinInstituteofTechnologyHarbin,150001,CAbstract-Modularfixturesareoneoftheimportantaspectsofmanufacturing.ThispaperpresentsadesktopVRsystemformodularfixturedesign.Thevirtualenvironmentisdesignedandthedesignprocedureisproposed.Itassiststhedesignertomakethefeasibledesigndecisionseffectivelyandefficiently.Ahierarchicaldatamodelisproposedtorepresentthemodularfixtureassembly.Basedonthisstructure,theusercanmanipulatethevirtualmodelspreciselyinVEduringthedesignandassemblyprocesses.Moreover,themachiningsimulationformanufacturinginteractioncheckingisdiscussedandimplemented.Finally,thecasestudyhasdemonstratedthefunctionalityoftheproposedsystem.ComparedwiththeimmersiveVRsystem,theproposedsystemhasofferedanaffordableandportablesolutionformodularfixturesdesign.IndexTerms-Modularfixture,desktopVR,assemblydesign,machiningsimlulation.I.INTRODUCTIONModularfixturesareoneoftheimportantaspectsofmanufacturing.Properfixturedesigniscrucialtoproductqualityintermsofprecision,accuracy,andfinishofthemachinedpart.Modularfixtureisasystemofinterchange-eableandhighlystandardizedcomponentsdesignedtosecurelyandaccuratelyposition,hold,andsupporttheworkpiecethroughoutthemachiningprocess1.Tradition-ally,fixturedesignersrelyonexperienceorusetrial-and-errormethodstodetermineanappropriatefixturingscheme.Withtheadventofcomputertechnology,computeraideddesignhasbeenprevalentintheareaofmodularfixturedesign.Ingeneral,theassociatedfixturedesignactivities,namelysetupplanning,fixtureelementdesign,andfixturelayoutdesignareoftendealtwithatthedownstreamendofthemachinetooldevelopmentlife-cycle.Thesepracticesdonotlendthemselveswelltothebridgingofdesignandmanufacturingactivities.Forexample,veryfewsystemshaveincorporatedthefunctionalityofdetectingmachininginterference.Thisleadstoagapbetweenthefixturedesignandmanufacturingoperationswheretheaspectofcutterpathsisnotconsideredduringthedesignstage2.Asaresult,re-designcannotbeavoidedwhenthecutterisfoundtointerferewiththefixturecomponentsinthemanufactu-ringset-up.Therefore,inordertobringmachiningfixturedesignintothearenaofflexiblemanufacturing,amoresystematicandnaturaldesignenvironmentisrequired.Asasynthetic,3D,interactiveenvironmenttypicallygeneratedbyacomputer,VRhasbeenrecognizedasaverypowerfulhuman-computerinterfacefordecades4.VRholdsgreatpotentialinmanufacturingapplicationstosolveproblemsbeforebeingemployedinpracticalmanufacturingtherebypreventingcostlymistakes.TheadvancesinVRtechnologyinthelastdecadehaveprovidedtheimpetusforapplyingVRtodifferentengineeringapplicationssuchasproductdesign5,assembly6,machiningsimulation7,andtraining8.ThegoalofthispaperistodevelopaVR-basedmodularfixturesdesignsystem(VMJFDS).Thisisthefirststeptodevelopanintegratedandimmersiveenvironmentformodularfixturedesign.Thisapplicationhastheadvantagesofmakingthefixturedesigninanaturalandinstructivemanner,providingbettermatchtotheworkingconditions,reducinglead-time,andgenerallyprovidingasignificantenhancementoffixtureproductivityandeconomy.II.OVERVIEWOFTHEPROPOSEDSYSTEMThesystemarchitectureoftheproposeddesktopVRsystemismodularisedbasedonthefunctionalrequirementsofthesystem,whichisshowninFig.1.Atthesystemlevel,threemodulesofproposedsystem,namely,Graphicinterface(GUI),Virtualenvironment(VE)andDatabasemodulesaredesigned.Foreachofthemodules,asetofobjectshasbeenidentifiedtorealizeitsfunctionalrequirements.Thedetailedobjectdesignandimplementationareomittedfromthispaper.Instead,thebriefdescriptionofthesethreemodulesisgivenbelow.1)GraphicInterface(GUI):TheGUIisbasicallyafriendlygraphicinterfacethatisusedtointegratethevirtualenvironmentandmodularfixturedesignactions.2)Virtualenvironment(VE):TheVEprovidestheuserswitha3Ddisplayfornavigatingandmanipulatingthemodelsofmodularfixturesystemanditscomponentsinthevirtualenvironment.AsshowninFig.1,thevirtualenvironmentmodulecomprisestwoparts,namelyassemblydesignenvironmentandmachiningsimulationenvironment.Theuserselectsappropriateelementsandputsdowntheseelementsonthedeskintheassemblydesignarea.Thenheassemblestheselectedelementsonebyonetobuildupthefinalfixturesystemwiththeguidanceofthesystem.1-4244-0259-X/06/$20.00C)2006IEEE2650Authorized licensed use limited to: Nanchang University. Downloaded on December 20, 2009 at 22:44 from IEEE Xplore. Restrictions apply. Fig.1.OverviewofthedesktopVRbasedmodularfixturedesignsystem.3)Database:Thedatabasedepositallofthemodelsofenvironmentandmodularfixtureelements,aswellasthedomainknowledgeandusefulcases.Thereare 5databasesshowninFig.1.Amongthem,knowledge&rulebasegoverningallfixtureplanningprinciplesformsthebrainsofthesystem.III.PROCEDUREOFMODULARFIXTUREDESIGNInthissection,aninstructivemodularfixturedesignprocedurewithinVEispresented.Besidesthe3Ddepththattheusersfeelandthereal-worldlikeoperationprocess,thisprocedurefeaturesintelligenceandintroduction.Duringthedesignprocess,someusefulcasesandsuggestionwillbepresentedtotheuserforreferencebasedonintelligentinferencemethodsuchasCasebasedreasoning(CBR)andRulebasedreasoning(RBR).Furthermore,relativeknowledgeandrulesarepresentedashelppagesthattheusercaneasilybrowsedduringthedesignprocess.OverviewofmodularfixturedesignprocessissummarizedinFig.2.AftertheVEenvironmentisinitialedandtheworkpieceisloaded,thefirststepisfixtureplanning.Inthisstep,theuserfirstdecidesthefixturingscheme,thatisspecifiesthefixturingfacesoftheworkpieceinteractively.Forhelptheusersdecision-making,someusefulcasesaswellastheirfixturingschemewillbepresentedviatheautomaticCBRretrievalmethod.Oncethefixturingfacesareselected,theusermaybeprompttospecifythefixturingpoints.Inthistask,somesuggestionsandrulesaregiven.Afterthefixturingplanning,thenextstepisfixtureFUsdesignstage.Inthisstage,theusermaybetoselectsuitablefixtureelementsandassembletheseindividualpartsintoFUs.Accordingtothespatialinformationofthefixturingpointsinrelationtothefixturebaseandtheworkpiece,sometypicalFUsandsuggestionsmaybepresentedautomatically.Thesewillbehelpfulfortheuser.AftertheplanningandFUsdesignstage,thenextstageisinteractivelyassemblingthedesignedfixtureFUstoconnecttheworkpiecetothebaseplate.Whenthefixtureconfigurationiscompleted,theresultwillbecheckedandevaluatedwithinthemachiningenvironment.Thetasksexecutedinthisenvironmentincludingassemblyplanning,machiningsimulation,andfixtureevaluation.Assemblyplanningisusedtogainoptimalassemblysequenceandassemblypathofeachcomponent.Machiningsimulationisresponsibleformanufacturinginteractiondetection.Fixtureevaluationwillcheckandevaluatethedesignresult.Inconclusion,thewholedesignprocessisinanaturemannerforthebenefitofVE.Moreover,thepresentedinformationofsuggestionandknowledgecanadvisetheuseronhowtomakedecisionsofthebestdesignselection.IV.ASSEMBLY MODELINGOFMODULARFIXTUREA.ModularfixturestructureanalysisAfunctionalunit(FU)isacombinationoffixtureelementstoprovideconnectionbetweenthebaseplateandaworkpiece11.Generally,modularfixturestructuremaybedividedintothreefunctionalunitsaccordingtoitsbasicstructurecharacteristics,namelylocatingunit,clampingunit,andsupportingunit.ThenumberoffixtureelementsinaFUmayconsistofoneormoreelements,inwhichonlyoneelementservesasalocator,supportorclamp.Themajortaskofthemodularfixtureassemblyistoselectthesupporting,locating,clampingandaccessoryelementstogeneratethefixtureFUstoconnecttheworkpiecetothebaseplate.Byanalyzingthepracticalapplicationofmodularfixtures,itisfoundthattheassemblyofmodularfixturesbeginsbyselectingthesuitablefixtureelementstoconstructFUs,thensubsequentlymountingtheseFUsonthebaseplate.Therefore,theFUscanberegardedassubassembliesofmodularfixturesystem.Further,thestructureofmodularfixturesystemcanberepresentedasahierarchalstructureasshowninFig.3.2651Authorized licensed use limited to: Nanchang University. Downloaded on December 20, 2009 at 22:44 from IEEE Xplore. Restrictions apply. UsefTa6*T-siikg&Suggelr,lFixtuieElemenetsrUetrievali0ToolsrKetrieval4Fig.2ModularfixturedesignprocedureinproposedsystemB.HierarchicallystructureddatamodelformodularfixturerepresentationinVEItiscommonthatthecorrespondingvirtualenvironmentmaycontainmillionsofgeometricpolygonprimitives.Overthepastyears,anumberofmodelsub-divisionschemes,suchasBSP-tree10andOctrees,havebeenproposedtoorganizelargepolygonalmodels.However,formodularBa1I_1HsreplalteBansepla1nteElements*LocatngElementsL,catingUnitsAccessoryEllementsClamnpingElemnents!ClampingUnitsSupportingElemntsSupportingUfnitsAccessoryElementsFig.3Hierarchicalstructureofmodularfixturesystemdesignapplications,thesceneisalsodynamicallychanging,duetointeractions.Forexample,indesignprocess,thepartobjectmaychangeitsspatialposition,orientationandassemblyrelations.Thisindicatesthatastaticrepresentation,suchasBSP-tree,isnotsufficient.Furthermore,theabovemodelscanonlyrepresentthetopologystructureoffixturesysteminthecomponentlevel.However,totheassemblyrelationshipamongfixturecomponents,whichreferstothematingrelationshipbetweenassemblyfeaturesthatisnotconcerned.Inthissection,wepresentahierarchicallystructuredandconstraint-baseddatamodelformodularfixturesystemrepresentation,real-timevisualizationandprecise3DmanipulationinVE.AsshowninFig.4,thehigh-levelcomponentbasedmodelisusedforinteractiveoperationsinvolvingassembliesordisassembles.Itprovidesbothtopologicalstructureandlinkrelationsbetweencomponents.Theinformationrepresent-edinthehigh-levelmodelcanbedividedintotwotypes,ponentobjectsandassemblyrelationships.Componentobjectscanbeasubassemblyorapart.Asubassemblyconsistsofindividualpartsandassemblyrelationshipsbetweentheparts.ComponentLevel(PtPartSSubassemblyAssemblyrelationshipFeatureLevelFt3FeatureFeaturematingrelationshipt-tPolygonLevelFZ-ll.PolygonFig.4ThehierarchicalstructuredatamodelinVEThemiddle-levelfeaturebasedmodelisbuiltuponfeaturesandfeatureconstraints.Ingeneral,theassemblyrelationshipoftentreatedasthematingrelationshipsbetweenassemblyfeatures.Thusthefeaturebasedmodelisusedtodescribetheassemblyrelationshipandprovidesnecessaryinformationforspatialrelationshipcalculatingduringassemblyoperation.Inthismodel,onlythefeaturerelationshipsbetweentwodifferentcomponentsareconsidered.Therelationshipbetweenfeaturesofoneelementwillbediscussedinfeaturebasedmodularfixtureelementmodelingbelow.Thelow-levelpolygonbasedmodelcorrespondstotheabovetwolevelmodelsforreal-timevisualizationandinteraction.Itdescribestheentiresurfaceasaninter-connectedtriangularsurfacemesh.Moreabouthowthepolygonsorganizedofasingleelementwillbediscussedisthenextsection.C.ModularfixtureelementsmodelingAsweknow,inVE,thepartisonlyrepresentedasanumberofpolygonprimitives.Thisresultinthetopological2652Authorized licensed use limited to: Nanchang University. Downloaded on December 20, 2009 at 22:44 from IEEE Xplore. Restrictions apply. relations-hipsandparametricinformationarelostduringthetranslationprocessofmodelsfromCADsystemstoVRsystems.However,thisimportantinformationisnecessaryindesignandassemblyprocess.Inordertofulfilltherequirements,wepresentamodelingschemeforfixtureelementsrepresentationinthissection.Themodularfixtureelementsarepre-manufacturedpartswithstandarddimensions.Afterthefixturingschemedesigned,theleftjobistoselectsuitablestandardelementsandassembletheseelementstoformafixturesysteminafeasibleandeffectivemanner.Therefore,intheproposedsystem,onlytheassemblyfeaturesofthefixtureelementsneedtobeconsidered.Inthispaperanassemblyfeatureisdefinedasapropertyofafixtureelement,whichprovidesrelatedinformationrelevanttomodularfixturedesignandassembly/disassembly.Thefollowingeightfunctionfacesaredefinedasassemblyfeaturesoffixtureelements:supportingfaces,supportedfaces,locatingholes,counterboreholes,screwholes,fixingslots,andscrewbolts.Besidestheinformationaboutthefeatureliketypeanddimension,otherparameters,i.e.therelativepositionandorientationofthefeatureintheelementslocalcoordinatesystemarerecordedwiththegeometricmodelinthefixtureelementdatabase.Whenoneelementassembleswithanother,theinformationaboutthematedfeaturesisretrievedandusedtodecidethespatialrelationshipofthetwoelements.MoreinformationabouttheassemblyfeaturesandtheirmatingrelationshiparediscusseddetailedinRef1.D.ConstraintbasedfixtureassemblyinVE1)AssemblyrelationshipbetweenfixtureelementsMatingrelationshipshavebeenusedtodefineassemblyrelationshipsbetweenpartcomponentsinthefieldofassembly.Accordingtotheassemblyfeaturessummarizedintheabovesection,therearefivetypesofmatingrelationshipsbetweenfixtureelements.Namelyagainst,fit,screwfit,across,andT-slotfit,whichareillustratedinFig.5.Basedonthesematingrelationships,wecanreasonthepossibleassemblyrelationshipofanytwoassembledfixtureelements.2)AssemblyrelationshipreasoningIngeneral,theassemblyrelationshipoftwoassembledpartisrepresentedasthematedassemblyfeaturepairsofthem.Intheabovesection,wedefinedfivebasicmatingrelationshipsbetweenfixtureelements.Therefore,itisenabledtodecidethepossibleassemblyrelationshipsthroughfindingthepossiblematingassemblyfeaturepairs.Thesepossibleassemblyrelationshipsaresavedinassemblyrelationshipsdatabase(ARDB)forfixtureassemblyinnextstage.However,whenthefixtureiscomplicatedandthenumbersofcompositefixtureelementsislarge,thepossibleassemblyrelationshipsaretoomuchtotakemuchtimeforreasoningandtreating.Toavoidthissituation,wefirstdecidethepossibleassembledelementspairs.Thatistoavoidreasoningtheassemblyrelationshipbetweenaclampandthebaseplate,fortheyneverwereassembledtogether.Inthisstage,somerulesareutilizedtofindthepossibleassembledelementspairs.ThealgorithmofassemblyrelationshipsreasoningissimilartowhatdiscussedinRef12.Thusthedetaileddescriptionofthealgorithmisomittedfromthispaper.(a)AIlai.ns.2l.I.FLIiI7Fd)Asicmie1f-isxktElmnFig.5Fivebasicmatingrelationshipsbetweenfixtureelements3)Constraint-basedfixtureassemblyAftercarryingouttheassemblyrelationshipsreasoning,allpossibleassemblyrelationshipsoftheselectedelementsareestablishedandsavedinARDB.Basedontheserelationships,thetraineecanassembletheseindividualpartstoafixturesystem.ThissectionisaboutthediscussionofinteractiveassemblyoperationinVE.TheprocessofasingleassemblyoperationispresentedinFig.5andillustratedbytwosimplepartsassemblyasshowninFig.6.Ingeneral,theassemblyoperationprocessisdividedintothreesteps,namelyassemblyrelationshiprecognizing,constraintanalysisandapplying,constraint-basedmotion.Firstly,thetraineeselectsanelementandmovesittotheassembledcomponent.Onceaninferencebetweentheassemblingandassembledcomponentisdetectedduringthemoving,theinferredfeaturesischecked.IfthetwofeaturesisoneoftheassemblyrelationshipsinARDB,theywillbehighlightedandwillawaittheusersconfirmation.Onceitisconfirmed,therecognizedassemblyrelationshipwillbeappliedbyconstraintanalyzingandsolving,thatisadjustthetranslationandorientationoftheassemblingelementtosatisfythepositionrelationshipofthesetwocomponents,aswellasapplythenewconstrainttotheassemblingelement.Whenthenewconstraintisapplied,themotionoftheassemblingelementwillbemappedintoaconstraintspace.Thisisdonebytransferring3Dmotiondatafromtheinputdevicesintotheallowablemotionsoftheobject.Theconstraint-basedmotionnotonlyensuresthattheprecisepositionsofacomponentcanbeobtained,butalsoguaranteethattheexistingconstraintswillnotbeviolatedduringthefutureoperations.Theassemblingelementwillreachtothefinalpositionthroughsuccessionassemblyrelationshiprecognizingandconstraintapplying.2653Ii1-114-(b)F.tAuthorized licensed use limited to: Nanchang University. Downloaded on December 20, 2009 at 22:44 from IEEE Xplore. Restrictions apply. NOAssemblyrelationshipIispossiblecheckingelatioohship?Fig.6ProcessofassemblyconstraintestablishmentNoV.MACHININGSIMULATIONA.ManufacturinginteractionsDuringthemachiningprocess,therearemanytypesofmanufacturinginteractionsassociatedwiththefixturemayoccur.Theseinteractionscanbedividedintotwobroadcategoriesillustratedbelow,namelystaticinteractionsanddynamicinteractions.1)Staticinteractionsrefertotheinterferencebetweenfixturecomponents,theinterferencebetweenfixturecomponentsandmachinetool,andtheinterferencebetweenfixturecomponentsandmachingfeatureofworkpieceduringtheworkpiecesetup.2)Dynamicinteractionsrefertothetool-fixtureinteractions,whichoccurwithinasingleoperationwhenthetoolandthefixtureusedinthatoperationmaycollideduringcutting.Generally,theaspectsofmachiningprocessandcutterpathsarenotconsideredduringthefixturedesignstage.Asaresult,theseinteractionsmayoftenoccurduringthepracticalmanufacturing.Thusthehumanmachinistshavetospendmuchoftheirtimeidentifyingtheseinteractionsandresolvingthem.Itisoftenresultsinmodificationorre-designoffixturesystem.Thatistediousandtimecostly.B.InterferencedetectionAlthoughthecurrentlycommercialsoftware,likeVERICUT,cansimulatesNCmachiningtodetecttoolpatherrorsandinefficientmotionpriortomachininganactualworkpiece.Itisavailabletoeliminateerrorsthatcouldruinthepart,damagethefixture,breakthecuttingtool,orcrashthemachineduringthepartprogrammingstage.However,thesesoftwareareexpensiveandorientedtoNCprogram-mertherebynotsuitableforfixturedesigners.Duringthefixturedesignstage,itshouldbeensuredthattheassociatedfixtureinteractionscanbeavoided.Inthissystem,afterthefixtureconfigurationiscomplete,themachiningsimulationmoduleispresentedtotheusertoidentifytheinteractionsandresolvethem.Withinthemachiningsimulationenvironment,the3Ddigitalmodelofmachinetoolispresented.Thecanassemblethefixturecomponentsontheworkbenchandsetuptheworkpiece,justaswhatthemachiningengineersdointheactualsite.Duringthesetup,thefixturecomponentsandtheworkpiecearemovetotheirassemblypositionundermanipulation.Theinterferencecheckingmoduleiscarriedout.Ifinterferenceoccurs,theinferredobjectwillbehighlight.Itispossibletoadjusttheassemblysequenceorassemblypathsothattheinterferencecanbeavoided.However,ifitcannot,thentheusermustchangetheelementorfixtureunit.Aftertheworkpiecesetup,themovementofthecutterissimulatedaccordingtothegeneratedcuttingtoolpathfromCAMsystem.ForthebenefitofVR,thesolid,dynamic,3Dgraphicalrepresentationallowsforsuperioron-screenvisualisationofthemotionofthecutter.Therefore,toolpathsimulationallowstheusercloseinspectionandprovidesinformationofinterferenceifoccur.VI.IMPLEMENTATIONOFPROPOSEDSYSTEMANDACASESTUDYA.DesktopVRsysteminterfaceInordertoprovidetheend,thefixturedesignengineer,withanaturalinterfaceformoreefficientdesignpurposes.TheGUIisdesignedwiththereferencetotheimmersiveVRsoftwarebyhidingmostofthewindowscomponents.TheGUI(Fig.7)consistsofamainVRdisplaywindow,aright-handtoolbarandabottomoutputstatusbar.Theinteractionbetweenthesystemandtheusersisimplementedviamouseandkeyboardinput.Thetoolbarprovidestheoverallfunctionsofdevelopedsystem.Fig.7GUIoftheproposedmodularfixturedesignsystemB.AcasestudyThedevelopeddesktopVRbasedmodularfixturedesignsystemisexplainedwithacasestudy.AworkpiecetobemachinedisshowninFig.6.Facemillingistobeperformedonthetopface,thenfollowedbyfinishingthetwocounter-boreholes.Theuserdesignsamodularfixturesystemforthisworkpiecestepbystepwiththeguidanceofthesystem.Thefixtureplanningmodulehasbeenappliedtoreachafeasibledesignsolutionefficiently.Inthismodule,thelocating,clampingandsupportingfaces,aswellasthelocating,supporting,andclampingpointswillbedetermined2654Authorized licensed use limited to: Nanchang University. Downloaded on December 20, 2009 at 22:44 from IEEE Xplore. Restrictions apply. accordinglybasedonthesknowledgeandthefixturingheuristicrules.Afterthat,theuserexploresintheelementsdepositingareaandselectstheappropriatefixtureelementstofulfillthefixturingspatialrequirementatvariouspoints.Whenfinished,theusermovestotheassemblydesignareaandputsdowntheselectedelementsonthedesk,asshowninFig.8(a).Thenexttaskisassemblytheselectedelementstocompletethefixtureconfiguration.Inthevirtualenvironment,theusercanassemblethefixtureelementsinanaturalmanner.AsshowninFig.8(b),thefinalconfigurationofmodularfixturesystemfortheexampleworkpieceisformed.Whenthefixtureconfigurationiscompleted,thenextphaseismachiningsimulationforinferencedetection.AsshowninFig.9(a)andFig.9(b),theconstructedfixturesystemismountedonthetableofaCNCmachineandthesimulati
收藏