高中數(shù)學 第1部分 第二章 章末小結 知識整合與階段檢測課件 新人教B版必修1

上傳人:痛*** 文檔編號:48822414 上傳時間:2022-01-15 格式:PPT 頁數(shù):12 大小:502.50KB
收藏 版權申訴 舉報 下載
高中數(shù)學 第1部分 第二章 章末小結 知識整合與階段檢測課件 新人教B版必修1_第1頁
第1頁 / 共12頁
高中數(shù)學 第1部分 第二章 章末小結 知識整合與階段檢測課件 新人教B版必修1_第2頁
第2頁 / 共12頁
高中數(shù)學 第1部分 第二章 章末小結 知識整合與階段檢測課件 新人教B版必修1_第3頁
第3頁 / 共12頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高中數(shù)學 第1部分 第二章 章末小結 知識整合與階段檢測課件 新人教B版必修1》由會員分享,可在線閱讀,更多相關《高中數(shù)學 第1部分 第二章 章末小結 知識整合與階段檢測課件 新人教B版必修1(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、章末小結知識整合與階段檢測核心要點歸納階段質量檢測1關于函數(shù)的概念關于函數(shù)的概念(1)函數(shù)的定義函數(shù)的定義 設集合設集合A是一個非空的數(shù)集,對是一個非空的數(shù)集,對A中的任意數(shù)中的任意數(shù)x,按照某,按照某種確定的法則種確定的法則f,都有唯一確定的數(shù),都有唯一確定的數(shù)y與它對應,則這種對應與它對應,則這種對應關系叫做集合關系叫做集合A上的一個函數(shù),記作上的一個函數(shù),記作yf(x),xA.其中,其中,x叫做自變量,自變量取值的范圍叫做自變量,自變量取值的范圍(數(shù)集數(shù)集A)叫做這個函數(shù)的定叫做這個函數(shù)的定義域因為函數(shù)的值域被定義域和對應法則完全確定,所義域因為函數(shù)的值域被定義域和對應法則完全確定,所以

2、確定一個函數(shù)就只需兩個要素:定義域和對應法則以確定一個函數(shù)就只需兩個要素:定義域和對應法則 (2)對應法則對應法則f可以是解析式、表格、圖象,對應函數(shù)的三可以是解析式、表格、圖象,對應函數(shù)的三種表示方法種表示方法解析法、列表法、圖象法解析法、列表法、圖象法 (3)求定義域的四個準則:分式中分母不為零;偶次求定義域的四個準則:分式中分母不為零;偶次根式中被開方式非負;根式中被開方式非負;x0中中x0;解析式由幾個式子構成;解析式由幾個式子構成時,定義域是使各個式子有意義的自變量取值集合的交集時,定義域是使各個式子有意義的自變量取值集合的交集 (4)求函數(shù)值域常用的方法有:求函數(shù)值域常用的方法有:

3、配方法;配方法;分離常數(shù)法;分離常數(shù)法;圖像法;圖像法;換元法;換元法;單調性法;單調性法;判別式法等判別式法等 (5)分段函數(shù)是一個函數(shù),而它的對應法則表現(xiàn)為多個,分段函數(shù)是一個函數(shù),而它的對應法則表現(xiàn)為多個,依據(jù)自變量的取值區(qū)間來分段定義域是各取值區(qū)間的并集,依據(jù)自變量的取值區(qū)間來分段定義域是各取值區(qū)間的并集,值域是各段函數(shù)值取值區(qū)間的并集值域是各段函數(shù)值取值區(qū)間的并集 (6)函數(shù)的解析式函數(shù)的解析式 函數(shù)的解析式是函數(shù)的一種表示方法函數(shù)的解析式是函數(shù)的一種表示方法.求兩個變量之間求兩個變量之間的函數(shù)關系時,一是要求出它們之間的對應法則,二是求的函數(shù)關系時,一是要求出它們之間的對應法則,二

4、是求出函數(shù)的定義域出函數(shù)的定義域 求函數(shù)解析式的主要方法有:已知函數(shù)解析式的類型求函數(shù)解析式的主要方法有:已知函數(shù)解析式的類型時,可用待定系數(shù)法;已知復合函數(shù)時,可用待定系數(shù)法;已知復合函數(shù)fg(x)的表達式時,的表達式時,可用換元法,此時要注意可用換元法,此時要注意“元元”的取值范圍;若已知抽象函的取值范圍;若已知抽象函數(shù)表達式,則常用解方程組、消參的方法求出數(shù)表達式,則常用解方程組、消參的方法求出f(x) 2函數(shù)的性質函數(shù)的性質 (1)函數(shù)的單調性函數(shù)的單調性 設函數(shù)設函數(shù)yf(x)的定義域為的定義域為A,區(qū)間,區(qū)間MA. 如果取區(qū)間如果取區(qū)間M中的任意兩個值中的任意兩個值x1,x2,改變

5、量,改變量xx2x10,則當,則當yf(x2)f(x1)0(0)時,就稱函數(shù)時,就稱函數(shù)yf(x)在在區(qū)間區(qū)間M上是增上是增(減減)函數(shù)函數(shù) 如果一個函數(shù)在某個區(qū)間如果一個函數(shù)在某個區(qū)間M上是增函數(shù)或是減函數(shù),上是增函數(shù)或是減函數(shù),就說這個函數(shù)在這個區(qū)間就說這個函數(shù)在這個區(qū)間M上具有單調性,區(qū)間上具有單調性,區(qū)間M稱為單調稱為單調區(qū)間區(qū)間 若函數(shù)若函數(shù)yf(x)在在a,b上遞增,則上遞增,則f(a)、f(b)分別為分別為yf(x)在在a,b上的最小值、最大值;若函數(shù)上的最小值、最大值;若函數(shù)yf(x)在在a,b上遞減,則上遞減,則f(a)、f(b)分別為分別為yf(x)在在a,b上的最大值、上

6、的最大值、最小值最小值 (2)函數(shù)的奇偶性函數(shù)的奇偶性 設函數(shù)設函數(shù)yf(x)的定義域為的定義域為D,如果對,如果對D內的任意一個內的任意一個x,都有,都有xD,且,且f(x)f(x)(或或f(x)f(x),則這個,則這個函數(shù)叫做奇函數(shù)叫做奇(或偶或偶)函數(shù)函數(shù) 奇偶函數(shù)圖象特點:奇偶函數(shù)圖象特點: 如果一個函數(shù)是奇函數(shù),則這個函數(shù)的圖象是以坐標原如果一個函數(shù)是奇函數(shù),則這個函數(shù)的圖象是以坐標原點為對稱中心的中心對稱圖形;反之,如果一個函數(shù)的圖象點為對稱中心的中心對稱圖形;反之,如果一個函數(shù)的圖象是以坐標原點為對稱中心的中心對稱圖形,則這個函數(shù)是奇是以坐標原點為對稱中心的中心對稱圖形,則這個函

7、數(shù)是奇函數(shù)函數(shù) 如果一個函數(shù)是偶函數(shù),則它的圖象是以如果一個函數(shù)是偶函數(shù),則它的圖象是以y軸為對稱軸的軸為對稱軸的對稱圖形;反之,如果一個函數(shù)的圖象是以對稱圖形;反之,如果一個函數(shù)的圖象是以y軸為對稱軸的對軸為對稱軸的對稱圖形,則這個函數(shù)是偶函數(shù)稱圖形,則這個函數(shù)是偶函數(shù) 3二次函數(shù)二次函數(shù)二次函數(shù)解析式的三種形式:二次函數(shù)解析式的三種形式:一般式:一般式:yax2bxc(a0);頂點式:頂點式:ya(xh)2k(a0),其中,其中(h,k)為頂點;為頂點; 兩根式:兩根式:ya(xx1)(xx2)(a0),其中,其中(x1,0),(x2,0)是是函數(shù)的圖象與函數(shù)的圖象與x軸的兩個交點坐標,并

8、且只有拋物線與軸的兩個交點坐標,并且只有拋物線與x軸有軸有交點時才可寫出兩根式交點時才可寫出兩根式 (2)研究二次函數(shù)的性質,主要包括圖象的開口方向、頂研究二次函數(shù)的性質,主要包括圖象的開口方向、頂點坐標、對稱軸、單調區(qū)間、最大值和最小值點坐標、對稱軸、單調區(qū)間、最大值和最小值 4函數(shù)的應用舉例函數(shù)的應用舉例(實際問題的解法實際問題的解法)解決應用問題的一般程序解決應用問題的一般程序(1)審題:弄清題意,分清條件和結論,理順數(shù)量關系;審題:弄清題意,分清條件和結論,理順數(shù)量關系; (2)建模:將文字語言轉化成數(shù)學語言,利用相應的數(shù)學建模:將文字語言轉化成數(shù)學語言,利用相應的數(shù)學知識建模型;知識

9、建模型; (3)求模:求解數(shù)學模型,得到數(shù)學結論;求模:求解數(shù)學模型,得到數(shù)學結論; (4)還原:將用數(shù)學方法得到的結論,還原為實際問題的還原:將用數(shù)學方法得到的結論,還原為實際問題的結果結果 求解函數(shù)應用問題的思路和方法,我們可以用示意圖表求解函數(shù)應用問題的思路和方法,我們可以用示意圖表示為示為 5函數(shù)與方程函數(shù)與方程 函數(shù)函數(shù)yf(x)的零點就是方程的零點就是方程f(x)0的實數(shù)根的實數(shù)根.從圖象從圖象上來看,也就是函數(shù)上來看,也就是函數(shù)yf(x)的圖象與的圖象與x軸交點的橫坐軸交點的橫坐標所以方程標所以方程f(x)0有實數(shù)根有實數(shù)根函數(shù)函數(shù)yf(x)的圖象與的圖象與x軸有交點軸有交點函數(shù)函數(shù)yf(x)有零點有零點

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!