陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué) 第一章 疊加、疊乘、迭代遞推、代數(shù)轉(zhuǎn)化拓展資料素材 北師大版必修
《陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué) 第一章 疊加、疊乘、迭代遞推、代數(shù)轉(zhuǎn)化拓展資料素材 北師大版必修》由會(huì)員分享,可在線閱讀,更多相關(guān)《陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué) 第一章 疊加、疊乘、迭代遞推、代數(shù)轉(zhuǎn)化拓展資料素材 北師大版必修(12頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 疊加、 疊乘、迭代遞推、代數(shù)轉(zhuǎn)化 已知數(shù)列的遞推關(guān)系式求數(shù)列的通項(xiàng)公式的方法大約分為兩類:一類是根據(jù)前幾項(xiàng)的特點(diǎn)歸納猜想出a的表達(dá)式,然后用數(shù)學(xué)歸納法證明;另一類是將已知遞推關(guān)系,用代數(shù)法、迭代法、換元法,或是轉(zhuǎn)化為基本數(shù)列(等差或等比)的方法求通項(xiàng).第一類方法要求學(xué)生有一定的觀察能力以及足夠的結(jié)構(gòu)經(jīng)驗(yàn),才能順利完成,對(duì)學(xué)生要求高.第二類方法有一定的規(guī)律性,只需遵循其特有規(guī)律方可順利求解.在教學(xué)中,我針對(duì)一些數(shù)列特有的規(guī)律總結(jié)了一些求遞推數(shù)列的通項(xiàng)公式的解題方法. 一、疊加相消. 類型一:形如a=a+ f (n), 其中f (n) 為關(guān)于n的多項(xiàng)式或指數(shù)形式(a)或可裂項(xiàng)成差的分式形
2、式.——可移項(xiàng)后疊加相消. 例1:已知數(shù)列{a},a=0,n∈N,a=a+(2n-1),求通項(xiàng)公式a. 解:∵a=a+(2n-1) ∴a=a+(2n-1) ∴a-a =1 、a-a=3 、…… a-a=2n-3 ∴a= a+(a-a)+(a-a)+…+(a-a)=0+1+3+5+…+(2n-3) =[1+(2n-3)]( n-1)=( n-1)2 n∈N 練習(xí)1:⑴.已知數(shù)列{a},a=1, n∈N,a=a+3 n , 求通項(xiàng)公式a. ⑵.已知數(shù)列{a}滿足a=3,,n∈N,求a. 二、疊乘相約. 類型二:形如.其中f (n) = (p≠0,m≠0
3、,b –c = km,k∈Z)或 =kn(k≠0)或= km( k ≠ 0, 0<m且m ≠ 1). 例2:已知數(shù)列{a}, a=1,a>0,( n+1) a2 -n a2+aa=0,求a. 解:∵( n+1) a2 -n a2+aa=0 ∴ [(n+1) a-na](a+a)= 0 1 / 12 ∵ a>0 ∴ a+a >0 ∴ (n+1) a-na=0 ∴ ∴ 練習(xí)2:⑴已知數(shù)列{a}滿足S= a( n∈N), S是{ a}的前n項(xiàng)和,a=1,求a. ⑵.已知數(shù)列{a}滿足a= 3 na( n∈N),且a=1,求a. 三
4、、逐層迭代遞推. 類型三:形如a= f (a),其中f (a)是關(guān)于a的函數(shù).——需逐層迭代、細(xì)心尋找其中規(guī)律. 例3:已知數(shù)列{a},a=1, n∈N,a= 2a+3 n ,求通項(xiàng)公式a. 解: ∵a= 2 a+3 n ∴ a=2 a+3 n-1 =2(2 a+3 n-2)+3 n-1 = 22(2 a+3 n-3)+23 n-2+3 n-1 =……=2 n-2(2 a+3 )+2 n-33 2+2 n-43 3+2 n-53 4+…+223 n-3+23 n-2+3 n-1 =2 n-1+2 n-23 +2 n-33 2+2 n-43 3+…+223 n-3+23 n-2
5、+3 n-1 練習(xí)3:⑴.若數(shù)列{a}中,a=3,且a=a(n∈N),求通項(xiàng)a. ⑵.已知數(shù)列{a}的前n項(xiàng)和S滿足S=2a+,n∈N,求通項(xiàng)a. 四、運(yùn)用代數(shù)方法變形,轉(zhuǎn)化為基本數(shù)列求解. 類型四:形如= ,(pq ≠ 0).且的數(shù)列,——可通過倒數(shù)變形為基本數(shù)列問題. 當(dāng)p = -q時(shí),則有: 轉(zhuǎn)化為等差數(shù)列; 當(dāng)p ≠ -q時(shí),則有:.同類型五轉(zhuǎn)化為等比數(shù)列. 例4:若數(shù)列{a}中,a=1,a= n∈N,求通項(xiàng)a. 解: ∵ 又 ∴ , ∴ ∴ ∵ ∴數(shù)列{ a}是首項(xiàng)為1,公差為的等差數(shù)列. ∴=1+ ∴a= n∈
6、N 練習(xí)4:已知f (n) = ,數(shù)列{ a}滿足 a=1,a=f (a),求a. 類型五:形如a=pa+ q ,pq≠0 ,p、q為常數(shù). 當(dāng)p =1時(shí),為等差數(shù)列; 當(dāng)p ≠1時(shí),可在兩邊同時(shí)加上同一個(gè)數(shù)x,即a+ x = pa+ q + x a+ x = p(a+ ), 令x = ∴x = 時(shí),有a+ x = p(a+ x ), 從而轉(zhuǎn)化為等比數(shù)列 {a+ } 求解. 例5:已知數(shù)列{a}中,a=1,a= a+ 1,n= 1、2、3、…,求通項(xiàng)a. 解:∵ a= a+ 1 a-2 =(a -2) 又∵a-2 = -1≠0 ∴數(shù)列{ a-2}首項(xiàng)為-1,公比
7、為的等比數(shù)列. ∴ a-2 = -1 即 a= 2 -2 n∈N 練習(xí)5:⑴.已知 a=1,a= 2 a+ 3 (n = 2、3、4…) ,求數(shù)列{a}的通項(xiàng). ⑵. 已知數(shù)列{a}滿足a= ,a=,求a. 類型六:形如a=pa+ f (n),p≠0且 p為常數(shù),f (n)為關(guān)于n的函數(shù). 當(dāng)p =1時(shí),則 a=a+ f (n) 即類型一. 當(dāng)p ≠1時(shí),f (n)為關(guān)于n的多項(xiàng)式或指數(shù)形式(a)或指數(shù)和多項(xiàng)式的混合形式. ⑴若f (n)為關(guān)于n的多項(xiàng)式(f (n) = kn + b或kn+ bn + c,k、b、c為常數(shù)),——可用待定系數(shù)法轉(zhuǎn)化為等比數(shù)列
8、. 例6:已知數(shù)列{ a}滿足a=1,a= 2a+n,n∈N求a. 解:令a+ x[a(n+1)+ b(n+1) + c] = 2(a+ an+ bn + c) 即 a= 2 a+ (2a–ax)n+ (2b -2ax – bx)n +2c –ax –bx – cx 比較系數(shù)得: 令x = 1,得: ∴ a+ (n+1)+2(n+1) + 3 = 2(a+ n+2n + 3) ∵ a+1+21+3 = 7 令b= a+ n+2n + 3 則 b= 2b b= 7 ∴數(shù)列{ b}為首項(xiàng)為7,公比為2德等比數(shù)列 ∴ b= 7 2 即 a+ n+2n + 3 =
9、7 2 ∴ a= 7 2-( n+2n + 3 ) n∈N ⑵若f (n)為關(guān)于n的指數(shù)形式(a). ①當(dāng)p不等于底數(shù)a時(shí),可轉(zhuǎn)化為等比數(shù)列; ②當(dāng)p等于底數(shù)a時(shí),可轉(zhuǎn)化為等差數(shù)列. 例7:(同例3)若a=1,a= 2 a+ 3,(n = 2、3、4…) ,求數(shù)列{a}的通項(xiàng)a. 解: ∵ a= 2 a+ 3 ∴ 令a+ x3= 2(a+x3) 得 a= 2 a-x3 令-x3= 3 x = -1 ∴ a-3= 2(a-3) 又 ∵ a-3 = - 2 ∴數(shù)列{}是首項(xiàng)為-2,公比為2的等比數(shù)列. ∴=-22 即a= 3-2 n∈N 例8:數(shù)列{ a}
10、中,a=5且a=3a+ 3-1 (n = 2、3、4…) 試求通項(xiàng)a. 解: a=3a+ 3-1 a 3 {}是公差為1的等差數(shù)列. =+() = +() = n + a= ( n∈N ⑶若f (n)為關(guān)于n的多項(xiàng)式和指數(shù)形式(a)的混合式,則先轉(zhuǎn)換多項(xiàng)式形式在轉(zhuǎn)換指數(shù)形式.例如上面的例8. 練習(xí)6:⑴.已知數(shù)列{a}中a= 1,a= 3 a+ n ,; 求{a}的通項(xiàng). ⑵設(shè)a為常數(shù),且a= 3-2 a (n∈N且n ≥ 2 ). 證明:對(duì)任意n ≥ 1,a= [3+ (-1)2] +(-1)2a. 類型七:形如a= p a+ q a( pq
11、≠ 0, p、q為常數(shù)且p+ 4q > 0 ),——可用待定系數(shù)法轉(zhuǎn)化為等比數(shù)列. 例9: 已知數(shù)列{a}中a= 1, a= 2且 ,; 求{a}的通項(xiàng). 解:令a+x a= (1+x) a+ 2 a a+x a= (1+x)( a+ a) 令x = x+ x – 2 = 0 x = 1或 -2 當(dāng)x = 1時(shí),a+ a=2(a+ a) 從而a+ a= 1 + 2 = 3 ∴數(shù)列{ a+ a}是首項(xiàng)為3且公比為2的等比數(shù)列. ∴ a+ a= 3 …… …… ① 當(dāng)x = - 2時(shí), a- 2a= - (a-2a) , 而 a- 2a= 0
12、 ∴ a- 2a= 0 …… …… ② 由①、②得: a= 2 , 練習(xí)7:⑴已知: a= 2, a= , ,(n = 1、2、3、……),求數(shù)列{ a}的通項(xiàng). ⑵已知數(shù)列:1、1、2、3、5、8、13、……,根據(jù)規(guī)律求出該數(shù)列的通項(xiàng). 五、數(shù)列的簡(jiǎn)單應(yīng)用. 例10:設(shè)棋子在正四面體ABCD的表面從一個(gè)頂點(diǎn)移向另外三個(gè)頂點(diǎn)時(shí)等可能的.現(xiàn)拋擲骰子,根據(jù)其點(diǎn)數(shù)決定棋子是否移動(dòng),若投出的點(diǎn)數(shù)是奇數(shù),則棋子不動(dòng);若投出的點(diǎn)數(shù)是偶數(shù),棋子移動(dòng)到另外一個(gè)頂點(diǎn).若棋子初始位置在頂點(diǎn)A,則:
13、 ⑴投了三次骰子,棋子恰巧在頂點(diǎn)B的概率是多少? ⑵投了四次骰子,棋子都不在頂點(diǎn)B的概率是多少? ⑶投了四次骰子,棋子才到達(dá)頂點(diǎn)B的概率是多少? 分析:考慮最后一次投骰子分為兩種情況 ①最后一次棋子動(dòng);②最后一次棋子不動(dòng). 解:
14、∵ 事件投一次骰子棋子不動(dòng)的概率為;事件投一次骰子棋子動(dòng)且到達(dá)頂點(diǎn)B的概率為 =. ⑴.投了三次骰子,棋子恰巧在頂點(diǎn)B分為兩種情況 ①.最后一次棋子不動(dòng),即前一次棋子恰在頂點(diǎn)B;②.最后一次棋子動(dòng),且棋子移動(dòng)到B點(diǎn). 設(shè)投了i次骰子,棋子恰好在頂點(diǎn)B的概率為p,則棋子不在頂點(diǎn)B的概率為(1- p).所以,投了i+1次骰子,棋子恰好在頂點(diǎn)B的概率:p= p+ (1- p) i = 1、2、3、4、…… ∴ p= + p ∵ p= = ∴ p= ∴ p= ⑵.投了四次骰子,棋子都不在頂點(diǎn)B,說明前幾次棋子都不在B點(diǎn),應(yīng)分為兩種情況 ①最后一次棋子不動(dòng);②最后一次棋子動(dòng),且不
15、到B點(diǎn). 設(shè)投了i次骰子,棋子都不在頂點(diǎn)B的概率為,則投了i+1次骰子,棋子都不在頂點(diǎn)B的概率為:= + (1﹣) i = 1、2、3、4、…… 即:= 又∵= +(1﹣) = ∴ = () ⑶.投了四次骰子,棋子才到達(dá)頂點(diǎn)B;說明前三次棋子都不在B點(diǎn),最后一次棋子動(dòng)且 到達(dá)頂點(diǎn)B.設(shè)其概率為P則: P = = ()= 答:(略). 例11:用磚砌墻,第一層(底層)用去了全部磚塊的一半多一塊;第二層用去了剩下的一半多一塊,…,依次類推,每層都用去了上層剩下的一半多一塊.如果第九層恰好磚塊用完,那么一共用了多少塊磚? 分析:本題圍繞兩個(gè)量
16、即每層的磚塊數(shù)a和剩下的磚塊數(shù)b,關(guān)鍵是找出a和b的關(guān)系式,通過方程(組)求解. 解:設(shè)第i層所用的磚塊數(shù)為a,剩下的磚塊數(shù)為b(i = 1、2、3、4、…… )則b= 0,且設(shè)b為全部的磚塊數(shù),依題意,得 a=b+ 1,a=b+ 1,…… a=b+ 1 … … … … ① 又 b= a+ b … … … … … ② 聯(lián)立①②得 b-b=b+ 1 即b=b- 1 ∴ b+ 2 =(b+ 2) ∴ b+2 = ()(b+ 2 ) ∴ b+2 = 22 ∴ b= 1022 練習(xí)8:⑴十級(jí)臺(tái)階,可以一步上一級(jí),也可
17、以一步上兩級(jí);問上完十級(jí)臺(tái)階有多少種不同走法? ⑵. 三角形內(nèi)有n個(gè)點(diǎn),由這n個(gè)點(diǎn)和三角形的三個(gè)頂點(diǎn),這n + 3個(gè)點(diǎn)可以組成多少個(gè)不重疊(任意兩個(gè)三角形無重疊部分)的三角形? ⑶.甲、乙、丙、丁四人傳球,球從一人手中傳向另外三個(gè)人是等可能的.若開始時(shí)球在甲的手中.若傳了n次球,球在甲手中的概率為a;球在乙手中的概率為b.(n = 1、2、3、4、…… ). ①問傳了五次球,球恰巧傳到甲手中的概率a和乙手中的概率b分別是多少? ②若傳了n次球,試比較球在甲手中的概率a與球在乙手中的概率b的大小. ③傳球次數(shù)無限多時(shí),球在誰手中的概率大? 參考答案 練習(xí)1:⑴. a=(
18、3 n-1) ⑵. a= 練習(xí)2:⑴. a= n -1 ⑵. a= 練習(xí)3:⑴. a= 3 (提示:可兩邊取對(duì)數(shù)) ⑵. a= [2+ (-1)] 練習(xí)4:a= 練習(xí)5:⑴ a= 2-3 ⑵ a= 練習(xí)6:⑴可得a+(n+1)+= 3(a+n +) 從而a=3-(n +) ⑵ (略) 練習(xí)7:⑴a= 3 - , ⑵由已知得a= a+ a a=[()-()] 練習(xí)8:⑴∵a= a+ a, a= 1,a= 2,∴a= 89 ⑵∵a= a+ 2 ,a= 3 ∴a= 2n+1 ⑶①∵a=(1 - a) b= (1 - b) a= 0 b= ∴a= ; b= . ②可解得a= - b= + ∴當(dāng)n為奇數(shù)時(shí), a<>b ③當(dāng)n → ∞時(shí),a→,b→ 故球在各人手中的概率一樣大. 希望對(duì)大家有所幫助,多謝您的瀏覽!
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 滅火器殼模具設(shè)計(jì).doc
- 滅火器殼工程圖.DWG
- 滅火器殼2工程圖.DWG
- 滅火器殼.dwg
- 6.dwg
- 5.DWG
- 3.dwg
- 裝配圖.gif
- 多功能跑步機(jī)設(shè)計(jì).doc
- 2017_2018年高中生物第五章細(xì)胞的能量供應(yīng)和利用第4節(jié)能量之源__光與光合作用課時(shí)作業(yè)新人教版必修120170719347.doc
- 2017_2018年高中生物第五章細(xì)胞的能量供應(yīng)和利用第4節(jié)能量之源__光與光合作用課件新人教版必修120170719348.ppt
- 2017_2018年高中生物第五章細(xì)胞的能量供應(yīng)和利用第4節(jié)能量之源__光與光合作用訓(xùn)練新人教版必修120170719346.doc
- 2017_2018年高中生物第五章細(xì)胞的能量供應(yīng)和利用第3節(jié)ATP的主要來源__細(xì)胞呼吸課時(shí)作業(yè)新人教版必修120170719350.doc
- 2017_2018年高中生物第五章細(xì)胞的能量供應(yīng)和利用第3節(jié)ATP的主要來源__細(xì)胞呼吸課件新人教版必修120170719351.ppt
- 2017_2018年高中生物第五章細(xì)胞的能量供應(yīng)和利用第3節(jié)ATP的主要來源__細(xì)胞呼吸訓(xùn)練新人教版必修120170719349.doc