單注液壓機液壓系統(tǒng)設計
單注液壓機液壓系統(tǒng)設計,液壓機,液壓,系統(tǒng),設計
畢業(yè)設計(論文)任務書
I、畢業(yè)設計(論文)題目:單柱液壓機液壓系統(tǒng)設計
II、畢 業(yè)設計(論文)使用的原始資料(數據)及設計技術要求:
設計技術要求:
①液壓機公稱力 25 KN
②液壓系統(tǒng)最大工作壓力 8 Mpa
③滑塊行程 125 MM
④壓頭下行速度 45 mm/s
⑤壓頭上行速度 130 mm/s
III、畢 業(yè)設計(論文)工作內容及完成時間:
1、收集有關資料,寫出開題報告 2周(3.17-3.30)
2、系統(tǒng)方案及液壓系統(tǒng)原理圖設計 2 周(4.6-4.20)
3、油壓缸設計計算 4周(4.21-5.18)
4、系統(tǒng)元件選擇計算 3周(5.19-6.8)
5、撰寫論文 2周(6.9-6.20)
Ⅳ 、主 要參考資料:
[1] 黎啟柏,液壓元件手冊,冶金工業(yè)出版社,2000
[2] 成大光,機械設計手冊,化學工業(yè)出版社,1993
[3]姚永明主編 .非標準設備手冊.上交大版,99.12 第一版
[4] 章宏甲、黃誼,液壓傳動,機械工業(yè)出版社,1993
[5]雷天覺主編. 液壓設計手冊(第七版). 機械工業(yè)出版社, 2006年6月,第七版
[6] Theissen H. Simnlation Von,Hydraulischen Systement mit langen Rohrleitungen,O+P.30,Nr3.1986
1、概述
1.1 液壓傳動發(fā)展概況
液壓傳動相對于機械傳動來說是一門新技術,但如從17世紀中葉巴斯卡提出靜壓傳遞原理、18世紀末英國制成世界上第一臺水壓機算起,也已有二三百年歷史了。近代液壓傳動在工業(yè)上的真正推廣使用只是本世紀中葉以后的事,至于它和微電子技術密切結合,得以在盡可能小的空間內傳遞出盡可能大的功率并加以精確控制,更是近10年內出現的新事物。
本世紀的60年代后,原子能技術、空間技術、計算機技術(微電子技術)等的發(fā)展再次將液壓技術推向前進,使它發(fā)展成為包括傳動、控制、檢測在內的一門完整的自動化技術,使它在國民經濟的各方面都得到了應用。液壓傳動在某些領域內甚至已占有壓倒性的優(yōu)勢,例如,國外今日生產的95%的工程機械、90%的數控加工中心、95%以上的自動線都采用了液壓傳動。因此采用液壓傳動的程度現在已成為衡量一個國家工業(yè)水平的重要標志之一。
當前,液壓技術在實現高壓、高速、大功率、高效率、低噪聲、經久耐用、高度集成化等各項要求方面都取得了重大的進展,在完善比例控制、數字控制等技術上也有許多新成就。此外,在液壓元件和液壓系統(tǒng)的計算機輔助設計、計算機仿真和優(yōu)化以及微機控制等開發(fā)性工作方面,更日益顯示出顯著的成績。
我國的液壓工業(yè)開始于本世紀50年代,其產品最初只用于機床和鍛壓設備,后來才用到拖拉機和工程機械上。自1964年從國外引進一些液壓元件生產技術、同時進行自行設計液壓產品以來,我國的液壓件生產已從低壓到高壓形成系列,并在各種機械設備上得到了廣泛的使用。80年代起更加速了對西方先進液壓產品和技術的有計劃引進、消化、吸收和國產化工作,以確保我國的液壓技術能在產品質量、經濟效益、人才培訓、研究開發(fā)等各個方面全方位地趕上世界水平。
1.2 液壓傳動的工作原理及組成部分
1.2.1 液壓傳動的工作原理
驅動機床工作臺的液壓系統(tǒng),它由油箱、濾油器、液壓泵、溢流閥、開停閥、節(jié)流閥、換向閥、液壓缸以及連接這些元件的油管組成。它的工作原理:液壓泵由電動機帶動旋轉后,從油箱中吸油。油液經濾油器進入液壓泵,當它從泵中輸出進入壓力管后,將換向閥手柄、開停手柄方向往內的狀態(tài)下,通過開停閥、節(jié)流閥、換向閥進入液壓缸左腔,推動活塞和工作臺向右移動。這時,液壓缸右腔的油經換向閥和回油管排回油箱。
如果將換向閥手柄方向轉換成往外的狀態(tài)下,則壓力管中的油將經過開停閥、節(jié)流閥和換向閥進入液壓缸右腔,推動活塞和工作臺向左移動,并使液壓缸左腔的油經換向閥和回油管排回油管。
工作臺的移動速度是由節(jié)流閥來調節(jié)的。當節(jié)流閥開大時,進入液壓缸的油液增多,工作臺的移動速度增大;當節(jié)流閥關小時,工作臺的移動速度減小。
為了克服移動工作臺時所受到的各種阻力,液壓缸必須產生一個足夠大的推力,這個推力是由液壓缸中的油液壓力產生的。要克服的阻力越大,缸中的油液壓力越高;反之壓力就越低。輸入液壓缸的油液是通過節(jié)流閥調節(jié)的,液壓泵輸出的多余的油液須經溢流閥和回油管排回油箱,這只有在壓力支管中的油液壓力對溢流閥鋼球的作用力等于或略大于溢流閥中彈簧的預緊力時,油液才能頂開溢流閥中的鋼球流回油箱。所以,在系統(tǒng)中液壓泵出口處的油液壓力是由溢流閥決定的,它和缸中的油液壓力不一樣大。
如果將開停手柄方向轉換成往外的狀態(tài)下,壓力管中的油液將經開停閥和回油管排回油箱,不輸到液壓缸中去,這時工作臺就停止運動。
從上面的例子中可以得到:
1) 動是以液體作為工作介質來傳遞動力的。
2)液壓傳動用液體的壓力能來傳遞動力,它與利用液體動能的液力傳
動是不相同的。
3)壓傳動中的工作介質是在受控制、受調節(jié)的狀態(tài)下進行工作的,
因此液壓傳動和液壓控制常常難以截然分開。
1.2.2 液壓傳動的組成部分
液壓傳動裝置主要由以下四部分組成:
1)能源裝置——把機械能轉換成油液液壓能的裝置。最常見的形式就是液壓泵,它給液壓系統(tǒng)提供壓力油。
2)執(zhí)行裝置——把油液的液壓能轉換成機械能的裝置。它可以是作直線運動的液壓缸,也可以是作回轉運動的液壓馬達。
3)制調節(jié)裝置——對系統(tǒng)中油液壓力、流量或流動方向進行控制或調節(jié)的裝置。例
如溢流閥、節(jié)流閥、換向閥、開停閥等。這些元件的不同組合形成了不同功能的液壓系統(tǒng)。
4)輔助裝置——上述三部分以外的其它裝置,例如油箱、濾油器、油管等。它們對
保證系統(tǒng)正常工作也有重要作用。
1.3 液壓傳動的優(yōu)缺點
液壓傳動有以下一些優(yōu)點:
1) 在同等的體積下,液壓裝置能比電氣裝置產生出更多的動力,因為
液壓系統(tǒng)中的壓力可以比電樞磁場中的磁力大出30~40倍。在同等的功率下,液壓裝置的體積小,重量輕,結構緊湊。液壓馬達的體積和重量只有同等功率電動機的12%左右。
2) 液壓裝置工作比較平穩(wěn)。由于重量輕、慣性小、反應快,液壓裝置
易于實現快速啟動、制動和頻繁的換向。液壓裝置的換向頻率,在實現往復回轉運動時可達500次/min,實現往復直線運動時可達1000次/min。
3) 液壓裝置能在大范圍內實現無級調速(調速范圍可達2000),它還
可以在運行的過程中進行調速。
4) 液壓傳動易于自動化,這是因為它對液體壓力、流量或流動方向易
于進行調節(jié)或控制的緣故。當將液壓控制和電氣控制、電子控制或氣動控制結合起來使用時,整個傳動裝置能實現很復雜的順序動作,接受遠程控制。
5) 液壓裝置易于實現過載保護。液壓缸和液壓馬達都能長期在失速狀
態(tài)下工作而不會過熱,這是電氣傳動裝置和機械傳動裝置無法辦到的。液壓件能自行潤滑,使用壽命較長。
6) 由于液壓元件已實現了標準化、系列化和通用化,液壓系統(tǒng)的設計、
制造和使用都比較方便。液壓元件的排列布置也具有較大的機動性。
7) 用液壓傳動來實現直線運動遠比用機械傳動簡單。
液壓傳動的缺點是:
1) 液壓傳動不能保證嚴格的傳動化,這是由液壓油液的可壓縮性和泄
漏等原因造成的。
2) 液壓傳動在工作過程中常有較多的能量損失(摩擦損失、泄漏損失
等),長距離傳動時更是如此。
3) 液壓傳動對油溫變化比較敏感,它的工作穩(wěn)定性很易受到溫度的影
響,因此它不宜在很高或很低的溫度條件下工作。
4) 為了減少泄漏,液壓元件在制造精度上的要求較高,因此它的造價
較貴,而且對油液的污染比較敏感。
5) 液壓傳動要求有單獨的能源。
6) 液壓傳動出現故障時不易找出原因。
總的說來,液壓傳動的優(yōu)點是突出的,它的一些缺點有的現已大為改善,有的將隨著科學技術的發(fā)展而進一步得到克服。
2、液壓系統(tǒng)設計
2.1 明確設計要求,制定基本方案
2.1.1 設計要求
設計要求是進行每項工程設計的依據。在制定基本方案并進一步著手進行液壓系統(tǒng)各部分設計之前,必須把設計要求以及與該設計內容有關的其他方面的情況了解清楚。
⑴單柱液壓機主機概況:
①液壓機公稱力 25 KN
②液壓系統(tǒng)最大工作壓力 8 Mpa
③骨塊行程 125 MM
④壓頭下行速度 45 mm/s
⑤壓頭上行速度 130 mm/s
⑵ 液壓系統(tǒng)要完成以下動作循環(huán):
2.1.2 制定液壓系統(tǒng)基本方案
2.1.2.1 確定液壓執(zhí)行元件的形式
在本設計中,液壓缸是液壓系統(tǒng)中的執(zhí)行元件,它是一種把液體的壓力能轉換成機械能以實現直線往復運動的能量轉換裝置。液壓缸結構簡單,工作可靠,在液壓系統(tǒng)中得到了廣泛的應用。
液壓缸按其結構形式,可以分為活塞缸、柱塞缸兩類?;钊缀椭椎妮斎霝閴毫土髁浚敵鰹橥屏退俣?。
液壓缸除了單個地使用外,還可以組合起來或和其它機構相結合,以實現特殊的功能。
根據參考文獻[2]表37.5-1
我們選擇活塞缸類中的單桿活塞液壓缸,其特點及適用場合見表2-1。
表2-1
名稱
特點
適用場合
單桿活塞液壓缸
有效工作面積大,雙向不對稱
往返不對稱的直線運動等
2.1.2.2 確定液壓執(zhí)行元件運動控制回路
1)為了實現液壓缸的進和退,我們選擇電磁換向閥作為液壓系統(tǒng)的方向控制閥。
電磁換向閥的基本工作原理是通過電磁鐵控制滑閥閥芯的不同位置,以改變油液的流動方向。當電磁鐵斷電時,滑閥由彈簧保持在中間位置或初始位置(脈沖式閥除外)。若推動故障檢查按鈕可使滑閥閥芯移動。電磁換向閥在液壓系統(tǒng)中的作用是用來實現液壓油路的換向、順序動作及卸荷等。由于電磁鐵的推力有限,電磁換向閥應用在流量不大的液壓系統(tǒng)中。
2)為了實現其工進,可以選擇調速閥或節(jié)流閥作為速度控制閥。
節(jié)流閥的調節(jié)應該輕便、準確。在小流量調節(jié)時,如通流截面相對于閥心位移的變化率較小,則調節(jié)的精確性較高。調節(jié)節(jié)流閥的開口,便可調節(jié)執(zhí)行元件運動速度的大小。
而調速閥的工作原理:液壓泵出口(即調速閥進口)壓力,由溢流閥調整,基本上保持恒定。調速閥出口處的壓力由活塞上的負載決定。所以當負載增大時,調速閥進出口壓差將將減小。
調速閥在液壓系統(tǒng)中的應用和節(jié)流閥相仿,它適用于執(zhí)行元件負載變化大而運動速度要求穩(wěn)定的系統(tǒng)中。
因此,在本設計中選擇調速閥作為速度控制閥。
2.1.2.3 液壓源系統(tǒng)
液壓系統(tǒng)的工作介質完全由液壓源來提供,液壓源的核心是液壓泵。在無其它輔助油源的情況下,液壓泵的供油量要大于系統(tǒng)的需油量,多余的油經溢流閥流回油箱, 溢流閥同時起到控制并穩(wěn)定油源壓力的作用。
為節(jié)省能源提高效率,液壓泵的供油量盡量與系統(tǒng)所需流量相匹配。
油液的凈化裝置是液壓源中不可缺少的。在此,我們在泵的小口裝上粗濾油器。(進入系統(tǒng)的油液根據被保護元件的要求,通過相應的精濾油器再次過濾。為防止系統(tǒng)中雜質流回油箱,可在回油路上設置磁過濾器或其他型式的濾油器。根據液壓設備所處環(huán)境及對溫升的要求,還要考慮加熱、冷卻等措施。
2.2 液壓系統(tǒng)各液壓元件的確定
2.2.1 液壓介質的選擇
液壓介質應具有適宜的粘度和良好的粘溫特性;油膜強度要高,具有較好的潤滑性能;能抗氧化,穩(wěn)定性好;腐蝕作用小,對涂料、密封材料等有良好的適應性;同時液壓介質還應具有一定的消泡能力。
選擇液壓介質時,除專用液壓油外,首先是介質種類的選擇。根據液壓系統(tǒng)對介質是否有抗燃性的要求,決定選用礦油型液壓油或抗燃型液壓液。
其次,應根據系統(tǒng)中所用液壓泵的類型選用具有合適粘度的介質。
最后,還應考慮使用條件等因素,如環(huán)境溫度、工作壓力、執(zhí)行機構速度等。當工作溫度在60℃以下,載荷較輕時,可選用機械油;工作溫度超過60℃時,應選用汽輪機油或普通液壓油。若設備在很低溫度下啟動時須選用低凝液壓油。
據參考文獻[2]表37.3-12 中各普通液壓油質量指標及應用以及本設計中單柱液壓機液壓系統(tǒng)的要求選用N32號普通液壓油,其各項質量指標見表2-2。
表2-2
名稱
N32號普通液壓油
代號 / 原牌號
YA-N32 / 20號
運動粘度 mm2/s (40℃)
28.8~35.2
運動粘度 mm2/s (50℃)
17~23
粘度指數≥
90
抗氧化安定性(酸值達2mgKOH/g)≥ h
1000
凝點≤ ℃
-10
閃點(開口)≥ ℃
170
防銹性(蒸鎦水法)
無銹
臨界載荷≥ N
600
抗泡沫性(93℃)≤ ml
起泡 50 / 消泡 0
抗磨性(四球,DB) N
800
應用
適用于環(huán)境溫度0~40℃的各類中高壓系統(tǒng)(適用工作壓力為6.3-2.1MPa
2.2.2 擬定液壓系統(tǒng)圖
在這種單柱液壓機上,實現了“工進 → 快退 → 停止”的動作循環(huán)(見圖2-1)。可以進行沖剪、彎曲、翻邊、裝配、冷擠、成型等多種加工工藝。表2- 3 示此單柱液壓機的動作循環(huán)表,圖2-2則是這種液壓機的液壓系統(tǒng)圖,其滑塊的工作情況如圖所示。
圖2-1 單柱液壓機動作循環(huán)圖
圖2-2 單柱液壓機液壓系統(tǒng)圖
進油路 液壓泵1 → 電磁換向閥2(左位)→ 單向調速閥3 → 液壓油缸4上腔
回油路 液壓油缸4下腔 → 單向順序閥5 → 電磁換向閥2(右位)→ 油箱7
表2-3 單柱液壓機液壓系統(tǒng)的動作循環(huán)表
動作名稱
信號來源
電磁換向閥2的工作狀態(tài)
滑塊
工進
1YA通電
左位
快退
2YA通電
右位
2.3 液壓系統(tǒng)主要參數計算
2.3.1 選系統(tǒng)工作壓力
壓力的選擇要根據載荷大小和設備類型而定。還要考慮執(zhí)行元件的裝配空間、經濟條件及元件供應情況等的限制。在載荷一定的情況下,工作壓力低,勢必要加大執(zhí)行元件的結構尺寸,對某些設備來說,尺寸要受到限制,從材料消耗角度看也不經濟;反之,壓力選得太高,對泵、缸、閥等元件的材質、密封、制造精度也要求很高,必然要提高設備成本。一般來說,對于固定的尺寸不太受限的設備,壓力可以選低一些,行走機械重載設備壓力要選得高一些。
公稱力為2500KN的單柱液壓機屬小型液壓機類型,一般情況下,載荷不會太高,參考資料[2]表37.5-3,初步確定系統(tǒng)工作壓力為4MPa。
2.3.2 液壓缸主要參數的確定
2.3.2.1 液壓缸設計中應注意的的問題
液壓缸的設計和使用正確與否,直接影響到它的性能和易否發(fā)生故障。在這方面,經常碰到的是液壓缸安裝不當、活塞桿承受偏載、液壓缸或活塞下垂以及活塞桿的壓桿失穩(wěn)等問題。所以,在設計液壓缸時,必須注意如下幾點:
1)盡量使活塞桿在受拉狀態(tài)下承受最大負載,或受壓狀態(tài)下具有良好的縱向穩(wěn)定性。
2)考慮液壓缸行程終了處的制動問題和液壓缸的排氣問題。缸內如無緩沖裝置和排氣裝置,系統(tǒng)中需有相應的措施。但是并非所有的液壓缸都要考慮這些問題。
3)正確確定液壓缸的安裝、固定方式。如承受彎曲的活塞桿不能用螺紋連接,要用止口連接。液壓缸不能在兩端用鍵或銷定們,只能在一端定位,為的是不致阻礙它在受熱時的膨脹。如沖擊載荷使活塞桿壓縮,定位件須設
置在活塞桿端,如為拉伸則設置在缸蓋端。
4) 液壓缸各部分的結構需根據推薦的結構形式和設計標準進行設計,盡可能做到
結構簡單、緊湊,加工、裝配和維修方便。
2.3.2.2 液壓缸主要參數的確定
鑒于液壓系統(tǒng)的最大工作壓力P1=8Mpa>7Mpa由參考文獻[1]表5-2推薦初定d=0.7D
取液壓缸=0.9 則此時活塞所受推力
N
由式 (2-1)
=69.45 cm2
(2-2)
=9.38 cm
則d= 0.7·D =6.07 cm
參考文獻[2]表37.5-8及表37.5-9對這些直徑圓整成就近標準值時
得: D =100 mm
d =70 mm
由此求得液壓缸兩腔的實際有效面積為:
cm2
cm2
2.3.3 液壓缸強度校核
液壓缸的缸筒壁厚δ、活塞桿直徑d和缸蓋處固定螺栓直徑在高壓系統(tǒng)中必須進行強度校核。
?。阂簤焊撞牧蠟?5#鋼,無縫鋼管
活塞桿材料45#鋼
2.3.3.1 壁厚強度校核
根據參考文獻[2]表37.7-64及表37.7-65選擇液壓缸外徑為121mm即液壓缸壁厚δ=10.5mm
對于本系統(tǒng):
< 10 為厚壁
按壁筒計算:
(2-3)
式中,D為缸筒內徑;Py為缸筒試驗壓力,當缸的額定壓力
Pn ≤ 16Mpa時,
取Py=1.5 Pn ;為缸筒材料的許用應力,,為材料抗拉強度,n為安全系數,一般取n = 5 。
所以:
Py=1.5×4=6 Mpa
(2-4)
式中 N/mm2
n = 5
則 N/m2
得 mm
∴ mm>
故缸體壁厚強度滿足。
2.3.3.2 液壓缸內活塞桿直徑校核
活塞桿的直徑d按下式進行校核
(2-5)
式中,F為活塞桿上的作用力;為活塞桿材料的許用應力,
則 :
mm < d
故活塞桿強度滿足。
2.3.3.3 液壓缸蓋固定螺栓直徑計算
液壓缸蓋固定螺栓直徑按下式計算:
(2-6)
式中,F為液壓缸負載;Z為固定螺栓個數;K為螺紋擰緊系數;
K=1.12~1.5,取K=1.3;
MPa
則:
mm
取 ds=10 mm
2.3.4 液壓缸穩(wěn)定性校核
活塞桿受軸向壓縮負載時,它所承受的力F不能超過使它保持穩(wěn)定工作所允許的臨界負載Fk,以免發(fā)生縱向彎曲,破壞液壓缸的正常工作。Fk的值與活塞桿材料性質、截面形狀、直徑和長度以及液壓缸的安裝方式等因素有關?;钊麠U穩(wěn)定性的校核依下式進行:
(2-7)
式中,nk為安全系數,一般取nk = 2 ~ 4,這里取nk = 4。
當活塞桿的細長比 > 時
(2-8)
當活塞桿的細長比 > 時,且
= 20 ~ 120 時,則
(2-9)
式中,l為安裝長度,其值與安裝方式有關,見表2-1,為活塞桿橫截面最小回轉半徑, ;為柔性系數,其值見表2-2;為由液壓缸支承方式決定的末端系數,其值見表2-4;E為活塞桿材料的彈性模量,對鋼取E=2.06×1011N/M2;J為活塞桿橫截面慣性矩;A為活塞桿橫截面積,f為由材料強度決定的實驗值,為系數,具體數值均見表2-5。
表2-4 液壓缸支承方式和末端系數ψ2的值
支承方式
支承說明
末端系數ψ2
一端自由一端固定
1/4
兩端鉸接
1
一端鉸接一端固定
2
兩端固定
4
表2-5 f、a、ψ1的值
材料
f ×108 N/M2
ψ1
鑄鐵
5.6
80
鍛鐵
2.5
110
軟鋼
3.4
90
硬鋼
4.9
85
由此,根據實際設計的可得:
N/M2 ;
(2-10)
而l>125mm, 取l=175mm
<
則活塞桿穩(wěn)定性按式:
進行校核。
代入數據:
N
而 (2-11)
式中,FW為活塞所受最大推力
Pmax為系統(tǒng)最大壓力為8Mpa 。
A1為液壓缸無活塞桿腔的截面積,A1 = 78.5 cm2
FW = 8×106×7.85×10-3 = 6.28×104 N
顯然,FW <
所以,活塞桿穩(wěn)定性滿足。
2.3.5 計算液壓缸實際所需流量
根據最終確定的液壓缸的結構尺寸及其運動速度或轉速,計算出液壓缸實際所需流量,見表2-6。
表2 – 6 液壓缸實際所需流量
工況
活塞下行(工進)
活塞上行(快退)
運動速度10-2 m/s
= 4.5
= 13
結構參數 10-3 m2
A1 = 7.85
A2 = 4.0
流量 10-4 m3/s
Q1 = 3.53
Q2 = 5.21
計算公式
Q = A
2.3.6 繪制液壓缸工況圖
圖2-3液壓缸工況圖
2.4 液壓閥的選擇
2.4.1 液壓閥的作用
液壓閥是用來控制液壓系統(tǒng)中油液的流動方向或調節(jié)其壓力和流量的,因此它可以分為方向閥、壓力閥和流量閥三大類。一個形狀相同的閥,可以因為作用機制的不同,而具有不同的功能。壓力閥和流量閥利用通流截面的節(jié)流作用控制著系統(tǒng)的壓力和流量,而方向閥則利用通流通道的更換控制著油液的流動方向。這就是說,盡管液壓閥存在著各種各樣不同的類型,它們之間還是保持著一些基本共同之點。例如:
1)在結構上,所有的閥都由閥體、閥心(座閥或滑閥)和驅使閥心動作的元、部件(如彈簧、電磁鐵)組成。
2)在工作原理上,所有閥的開口大小,閥進、出口間的壓差以及流過閥的流量之間的關系都符合孔口流量公式,僅是各種閥控制的參數各不相同而已。
2.4.2 液壓閥的基本要求
液壓系統(tǒng)中所用的液壓閥,應滿足如下要求:
1)動作靈敏,使用可靠,工作時沖擊和振動小。
2)油液流過時壓力損失小。
3)密封性能好。
4)結構緊湊,安裝、調整、使用、維護方便,通用性大。
2.4.3 液壓閥的選擇
1)閥的規(guī)格,根據系統(tǒng)的工作壓力和實際通過該閥的最大流量,選擇有定型產品的閥件。溢流閥按液壓泵的最大流量選取;選擇節(jié)流閥和調速閥時,要考慮最小穩(wěn)定流量應滿足執(zhí)行機構最低穩(wěn)定速度的要求。
控制閥的流量一般要選得比實際通過的流量大一些,必要時也允許有20%以內的短時間過流量。
2)閥的型式,按安裝和操作方式選擇。
本系統(tǒng)工作壓力在4MPa左右,所以液壓閥均選用中壓閥。所選閥的規(guī)格型號見表2-7。
表2-7 25KN單柱液壓機液壓閥名細表
名稱
選用規(guī)格
單向調速閥
AQF3-E10B
電磁溢流閥
YDF3-E10B-B
電磁換向閥
34DF30-E10B-D
單向順序閥
AXF3-E10B
3 液壓泵站及其輔助裝置
在本設計中,我們將采用集成塊的聯接方式來進行液壓系統(tǒng)的裝配。其集成塊單元回路圖見圖3-1;
圖3-1 集成塊單元回路圖
3.1 液壓泵站
3.1.1 液壓泵站概述及液壓泵站油箱容量系列標準
3.1.1.1 液壓泵站的概述
目前我國生產液壓泵站的廠家很多,液壓泵站的種類也繁多,但多數廠家根據用戶的具體要求設計和制造,尚未完全系列化、標準化?,F在只有液壓泵站的油箱公稱容量系列有國家標準。
3.1.1.2 液壓泵站油箱公稱容量系列(GB 2876—81)
表3-1 油箱容量GB 2876-81 L
4
6.3
10
25
40
63
100
160
250
315
400
500
630
800
1000
1250
1600
2000
3150
4000
5000
6300
3.1.2 各系列液壓泵站的簡述
詳細資料見參考文獻[2]37篇第10章。
3.1.2.1 YZ系列液壓泵站
YZ系列液壓泵站,油箱容量有25~6300L等18種規(guī)格。選用各種不同的泵,得到各種不同流量、壓力的規(guī)格。外形結構上有上置式(有立式及臥式)和非上置式。
YZ系列液壓泵站生產廠有:上海高行液壓件廠、長沙液壓件廠、南京液壓件三廠等。
3.1.2.2 YG型液壓柜
YG型液壓柜規(guī)格性能為油箱容量250~350L,壓力6.3MPa,流量有40、63和100L/ min。上海液壓件一廠生產。
3.1.2.3 YZS型液壓站
YZS型液壓泵站,油箱容量100L,壓力6.3MPa,流量16L/min。常州液壓件廠生產。
3.1.2.4 YGC型液壓柜
YGC型液壓柜油箱容量160L,壓力6.3MPa,流量有12、25L/min,由北京椿樹機械廠生產。
3.1.2.5 CJZ型液壓站
CJZ型液壓泵站油箱容量有100L與160L兩種,壓力為5MPa,流量為20~63L/min范圍。有定量泵與變量泵兩種型式,成都液壓元件一廠生產。
3.1.2.6 YH型液壓站
YH型液壓站油箱容量120~2000L,壓力為14 MPa,流量在10~250L/min范圍,由沈陽重型機器廠生產。
3.1.2.7 SE型液壓泵站
SE型液壓泵站油箱容量1400L,壓力7 MPa,流量6.75m3/s,上海冶金設計院設計。
3.1.2.8 上重型液壓站
上海重型機器廠液壓站油箱容量1200L與2200L兩種,1200L的工作壓力為1.5 MPa,2200L的為5 MPa,流量均為320L/min。
3.2 液壓泵
3.2.1 液壓泵的選擇
液壓泵是一種能量轉換裝置,它把驅動電機的機械能轉換成輸到系統(tǒng)中去的油液的壓力能,供液壓系統(tǒng)使用。
液壓泵的工作壓力是指泵實際工作時的壓力。液壓泵的額定壓力是指泵在正常工作條件下按試驗標準規(guī)定的連續(xù)運轉的最高壓力,超過此值就是過載。液壓泵的額定流量是指在正常工作條件下,按試驗標準規(guī)定必須保證的流量,亦即在額定轉速和額定壓力下由泵輸出的流量。
(1)液壓泵工作壓力的確定
(3-1)
P1是液壓缸的工作壓力,對于本系統(tǒng):
MPa
是泵到液壓缸間總的管路損失。由系統(tǒng)圖可見,從泵到液壓缸之間串接有一個單向調節(jié)器速閥和一個電磁換向閥,取= 0.6MPa
液壓泵工作壓力為:
PP = 4.4 + 0.6 = 5 MPa
(2) 液壓泵流量的確定
(3-2)
由工況圖看出,系統(tǒng)最大流量發(fā)生在快退工況,m3/s,泄漏系數 K = 1.2,
求得液壓泵流量:
m2/s (37.8 L/mm)
選用YB1-40 型雙聯葉片泵。
雙聯葉片泵是在一個泵體內安裝兩個雙作用葉片泵,用同一個傳動軸驅動。安裝大小不同的單泵,可以得到兩種大小不同的流量,以適應液壓系統(tǒng)各種不同速度的要求。雙作用葉片泵的工作原理是泵由轉子、定子、葉片、配油盤和端蓋等件所組成。定子的內表雙作用葉片泵的工作原理:面是由兩段長半徑圓弧、兩段短半徑圓弧和四段過渡曲線八個組成,且定子和轉子是同心的。葉片在轉子的槽內可靈活滑動,在轉子轉動時的離心力以及通入葉片根部壓力油的作用下,葉片頂部貼緊在定子內表面上,于是兩相鄰葉片、配油盤、定子和轉子間便形成了一個個密封的工作腔。在轉子順時針方向旋轉的情況下,密封工作腔的容積在左上角和右下角處逐漸增大,為吸油區(qū);在左下角和右上角處逐漸減小,為壓油區(qū);吸油區(qū)和壓油區(qū)之間有一段封油區(qū)把它們隔開。這種泵的轉子每轉一轉,每個密封工作腔完成吸油和壓油動作各兩次,所以稱為雙作用葉片泵。泵的兩個吸油區(qū)和兩個壓油區(qū)是徑向對稱的,作用在轉子上的液壓力徑向平衡,所以又稱為平衡式葉片泵。
3.2.2 液壓泵裝置
液壓泵裝置是指將電能轉變?yōu)橐簤耗芩枰脑O備、元件及其輔助元件。具體而言,主要指電機、聯軸器、液壓泵、吸油管、排油管以及吸油管口的濾油器。正確地設計尤其是正確地安裝液壓泵裝置,是液壓系統(tǒng)正常工作的重要保證,必須予以足夠的重視。
3.2.2.1 液壓泵的安裝方式
金屬切削機床的液壓站,多用定量或限壓式變量葉片泵。變量葉片泵僅能臥式安裝,
而定量葉片泵,無論是單泵還是雙聯泵,都可以有立式和臥式兩種安裝方式。齒輪泵與柱塞泵一般為臥式安裝。臥式安裝的液壓泵,其位置又可分為上置式與非上置式兩種。上置式指液壓泵裝置安裝在油箱上,立式安裝的液壓泵皆為上置式。
安裝液壓泵應注意的問題:
⑴ 為了防止振動與保證液壓泵的使用壽命,液壓泵必須牢固地緊固在箱蓋或基礎上,注意經常檢查連接螺釘是否松動。
⑵ 調整好液壓泵與電機的聯軸器,使二者同心,用手撥動聯軸器時不能有松緊不一致的現象。
⑶ 在有條件的情況下,盡量將液壓泵(齒輪泵、定量葉片泵、螺桿泵)安裝在油
液內。
⑷ 液壓泵吸油管路的安裝必須注意密封可靠及油管插入油液有足夠的深度,以防止空氣被吸入液壓泵。
⑸ 安裝液壓泵時,應注意各類液壓泵的吸油高度,正確確定液壓泵與油液液面的距離。各類液壓泵的吸油高度見表3-2:
表3-2 各類油泵吸油高度
油泵類型
齒輪泵
葉片泵
柱塞泵
螺桿泵
吸油高度(mm)
300~400
不大于500
不大于500
500~1000
3.2.2.2 液壓泵與電機的聯接
液壓泵與電機之間的聯軸器,一般用簡單型彈性圈柱銷聯軸器或彈性圈柱銷聯軸器,其二者的共同特點是傳遞扭矩范圍較大,轉速較高,彈性好,能緩沖扭矩急劇變化引起的振動,能補償軸位移。但在使用中應定期檢查彈性圈,發(fā)現其損壞后及時更換。上述兩種聯軸器中,簡單型彈性圈柱銷聯軸器的結構簡單,裝卸方便,使用壽命較長,幫比彈性圈柱銷聯軸器用得多些。應用上述二種聯軸器時,一定要注意彈性圈材料必須用耐油橡膠。
安裝聯軸器的技術要求是:
⑴ 半聯軸器I盡量做主動件。
⑵ 半聯驗算其他工況時,液壓泵的驅動功率均小于此值。查產品樣本,選用5.5KW 的電動機。
注射機在整個動作循環(huán)中,系統(tǒng)的壓力和流量都是變化的,所需功率變化較大,為滿足整個工作循環(huán)的需要,按較大功率段來確定電動機功率。
由前面的計算已知泵的供油壓力應為 PP = 5MPa,取泵的總效率
ηP = 0.65,泵的總驅動功率為
轂強度。
⑶ 最大同軸度偏差不大于0.1mm(上海機床廠經驗數據),軸線傾斜角不大于40′。
軸器與電動機軸配合時采用配合,與其他軸端則采用低于的配合,否則應驗算輪轂強度。
⑶ 最大同軸度偏差不大于0.1mm(上海機床廠經驗數據),軸線傾斜角不大于40′。
3.3 電動機功率的確定
注射機在整個動作循環(huán)中,系統(tǒng)的壓力和流量都是變化的,所需功率變化較大,為滿足整個工作循環(huán)的需要,按較大功率段來確定電動機功率。
由前面的計算已知泵的供油壓力應為 PP = 5MPa,取泵的總效率
ηP = 0.65,泵的總驅動功率為
(3-3)
KW
驗算其他工況時,液壓泵的驅動功率均小于此值。查產品樣本,選用5.5KW 的電動機。
3.4 液壓管件的確定
3.4.1 油管內徑確定
由于本系統(tǒng)并未對油管內油液的流速作出規(guī)定,因此在整個系統(tǒng)中只需保證各處的流量滿足要求即可。初定泵吸油管處流速為1m/s,則由式 計算得d = 8mm,由于油管的管徑不宜選得過大,以免使液壓裝置的結構龐大;但也不能選得過小,以免使管內液體流速加大,系統(tǒng)壓力損失增加或產生振動和噪聲,影響正常工作。在強度保證的情況下,管壁可盡量選得薄些。薄壁易于彎曲,規(guī)格較多,裝接較易,采用它可減少管系接頭數目,有助于解決系統(tǒng)泄漏問題??紤]到與各液壓閥的連接,也為了盡量減少管路中油壓的損失,故統(tǒng)一取油管內徑為10mm。
3.4.2 管接頭
管接頭是油管與油管、油管與液壓件之間的可拆式連接件,它必須具有裝拆方便、連接牢固、密封可靠、外形尺寸小、通流能力大、壓降小、工藝性好等各項條件。
液壓系統(tǒng)中的泄漏問題大部分都出現在它管系中的接頭上,為此對管材的選用,接頭形式的確定(包括接頭設計、墊圈、密封、箍套、防漏涂料的選用等),管系的設計(包括彎管設計、管道支承點和支承形式的選取等)以及管道的安裝(包括正確的運輸、儲存、清洗、組裝等)都要慎審從事,以免影響整個液壓系統(tǒng)的使用質量。
3.5 濾油器的選擇
3.5.1 濾油器的作用及過濾精度
濾油器在液壓系統(tǒng)中,濾除外部混入或者系統(tǒng)運轉中內部產生的液壓油中的固體雜質,使液壓油保持清潔,延長液壓元件使用壽命,保證液壓系統(tǒng)的工作可靠性。一般認為75%以上液壓系統(tǒng)故障是由于液壓油的污染所造成的。因此濾油器對液壓系統(tǒng)來說,是不可少的重要組成部分。
濾油器的過濾精度用從液壓油中過濾掉的雜質的顆粒大小表示,一般可分為粗濾油器、普通濾油器、精密濾油器和特精濾油器四種,它們分別能濾去大于100μm、10~100μm、5~10μm和1~5μm大小的雜質。液壓系統(tǒng)壓力越高,要求液壓元件的滑動間隙越小,因些系統(tǒng)壓力越高,要求的過濾精度也越高,其關系見表3-3:
表3-3 過濾精度與液壓系統(tǒng)壓力的關系
系統(tǒng)類別
一般液壓系統(tǒng)
伺服系統(tǒng)
壓力 MPa
< 7
>7
35
21
顆粒大小μm
≤25~50
<25
<10
<5
濾油器按其濾心材料的過濾機制來分,有表面型濾油器、深度型濾油器和吸附型濾油器三種。
3.5.2 選用和安裝
選用濾I油器時,要考慮下列幾點:
1) 過濾精度應滿足預定要求。
2) 能在較長時間內保持足夠的通流能力。
3) 濾心具有足夠的強度,不因液壓的作用而損壞。
4) 濾心抗腐蝕性能好,能在規(guī)定的溫度下持久地工作。
5) 濾心清洗或更換簡便。
因此,濾油器應根據液壓系統(tǒng)的技術要求,按過濾精度、通流能力、工作壓力、油液粘度、工作溫度等條件來選定其型號。
在本設計中,選用網式濾油器,它具有結構簡單、通油能力大、阻力小、易清洗等特點。網式濾油器屬于粗濾油器,一般安裝在液壓泵的吸油路上,
這種安裝方式主要作用是保護液壓泵。
3.6 油箱及其輔件的確定
3.6.1 油箱
油箱在液壓系統(tǒng)中除了儲存油液外,還起著散發(fā)油液中的熱量(在周圍環(huán)境溫度較低的情況下則是保持油液中熱量)、分離油液中的氣泡、沉淀固體雜質等作用。油箱中安裝有很多輔件,如空氣濾清器及液位計等。
3.6.1.1 油箱的設計要點
設計油箱時應考慮如下幾點:
a .油箱必須有足夠大的容積。以滿足散熱要求,停車時能容納液壓系統(tǒng)中所有的油;而工作時又保持適當的油位要求等。
b. 吸油管及回油管應插入最低油位以下。以防止吸油管吸入空氣;回油管飛濺產生氣泡。管口一般與油箱底、箱壁的距離不小于管徑的3倍。吸油管應安裝80或100μm的網式或線隙式濾油器,安裝位置要便于裝卸或清洗濾油器?;赜凸芸谛鼻?5°角并面向箱壁,以防回油沖擊油箱底部的沉積物。
c. 吸油管和回油管的距離盡可能遠一點,中間要設置隔板,使油液在油箱中流動速度緩慢一點,時間長一些,這樣能提高散熱、分離空氣及沉淀雜質的效果。
d. 為了保持油液清潔,油箱應有密封的頂蓋,頂蓋上應沒有帶濾油網的注油口及帶空氣濾清器的通氣孔,注油及通氣一般都由一個空氣濾清器來完成。為了便于放掉油,油箱底應有一定傾斜度,最低處設放油閥。
e. 箱壁上應考慮安裝液面指示器、冷卻器。加熱器及溫度計等位置。
f.油箱也可以設計成完全密封的充壓式油箱,用以改善液壓的吸油狀況。一般充氣壓力為0.07~0.1MPa。
根據以上六點設計要點以及對照本設計的需要,繪制油箱簡圖如下:
圖3-1 油箱簡圖
3.6.1.2 油箱容量的確定
初始設計時,先按經驗確定油箱的容量,待系統(tǒng)確定后,再按散熱的要求進行校核。
經驗公式為:
m3 (3-4)
式中, —— 液壓泵每分鐘排出壓力油的容積 m3
—— 經驗系數,見表3-4
表3-4 經驗系數
系統(tǒng)
類型
行走
機械
低壓
系統(tǒng)
中壓
系統(tǒng)
鍛壓 機械
冶金
機械
1 ~ 2
2 ~ 4
5 ~ 7
6 ~ 12
10
在確定油箱尺寸時,一方面要滿足系統(tǒng)供油的要求,還要保證執(zhí)行元件全部排油時,油箱不能溢出,以及系統(tǒng)中最大可能充滿油時,油箱的油位不低于最低限度。
初始設計時,先按經驗公式確定油箱的容量,待系統(tǒng)確定后,再按散熱的要求進行校核。
由此初定油箱容積取為200L,其結構參數如表3-5:
表3-5 油箱結構參數
長 mm
80
箱蓋厚度 mm
15
寬 mm
50
箱底厚度 mm
4
高 mm
50
箱底傾角 mm
15°
3.6.1.3 確定油箱的有效容積
按經驗公式(3-4)來初步確定油箱的有效容積:
已知所選泵的總流量37.8 L/min,這樣,液壓泵每分鐘排出壓力油的體積37.8L。參照表3-3,取 = 5,算得有效容積為:
V = 5×37.8 =189 L
3.6.2 空氣濾清器
一般在油箱蓋上應設置空氣濾清器,它包括空氣濾清裝置和注油過濾網。在此,我們選擇EF2-32 型空氣濾清器,其技術性能見表3-6:
表3-6 EF2-32型空氣濾清器技術性能表
規(guī)格
EF2-32
加油流量L/min
14
空氣流量L/min
100
油過濾面積 cm2
120
螺釘(四只均布)mm
M4×10
空氣過濾精度mm
0.279
油過濾精度
125μm(120目/英寸)
3.6.3 油標
在油箱側壁上一般應設置油標,以此作為油箱中油位的指示器??紤]到控制油箱溫度的重要性,選擇YWZ型帶溫度計的液位指示器。
4 液壓缸的設計計算
4.1 液壓缸的基本參數的確定
在2-3節(jié)中,我們已經對液壓執(zhí)行元件即液壓缸的基本參數作過計算并校核,其各參數見表4-1:
表4-1 液壓缸的基本參數
缸徑D mm
100
活塞桿直徑d mm
70
最大行程L mm
125
缸體壁厚δ mm
20.5
公稱力F KN
125
4.2 液壓缸主要零件的結構、材料及技術要求
4.2.1 缸體
4.2.1.1 缸體端部聯接結構
缸體端部的聯接結構見表4-2:
表4-2 缸體端部聯接型式
連接方式
特點
焊接
結構簡單,尺寸小,重量輕,使廣泛
缸體焊后可能變形,且內徑不易加工。
主要用于柱塞式液壓缸
螺紋聯接
徑向尺寸小,重量較輕,使用廣泛
缸體外徑需加工,且應與內徑同軸;裝卸需專用工具;
安裝時應防止密封圈扭曲
法蘭聯接
結構較簡單,易加工,易裝卸,使用廣泛
徑向尺寸較大,重量比螺紋聯接的大。
非焊接式法蘭的缸體端部鐓粗
拉桿聯接
結構通用性好。缸體加工容易,裝卸方便,應用較廣
表4-2 缸體端部聯接型式
連接方式
特點
拉桿聯接
外形尺寸大,重量大。用于載荷較大的雙作用缸
半
外半環(huán)
重量比拉桿聯接輕,缸體外徑需加工
環(huán)
半環(huán)槽削弱了缸體,為此缸體壁厚應加厚
聯
內半環(huán)
結構緊湊,重量輕
接
安裝時端部進入缸體較深,密封圈有可能被進油孔邊緣擦傷
鋼絲聯接
結構簡單,尺寸小,重量輕
注:1.對于固定機械,若尺寸與重量沒有特殊要求時,建議采用法蘭聯接或拉桿聯接。
2.對于活動機械,若尺寸和重量有特殊要求時,推薦采用外螺紋聯接或外半環(huán)聯接。
詳細資料見參考文獻[2]表37.7-46
4.2.1.2 缸體的材料
液壓缸缸體的常用材料為20、35、45號無縫鋼管。因20號鋼的機械性能略低,且不能調質,應用較少。當缸筒與缸底、缸頭、管接頭或耳軸等件需焊接時,則應采用焊接性能較好的35號鋼,粗加工后調質。一般情況下,均采用45號鋼,并應調質到241~285HB。
缸體毛坯也可采用鍛鋼、鑄鋼或鑄鐵件。鑄鋼可采用ZG35B等材料,鑄鐵可采用HT200~HT350間的幾個牌號或球墨鑄鐵。
特殊情況下,可采用鋁合金等材料。
4.2.1.3 缸體的技術要求(圖4-1和圖4-2)
⑴ 缸體內徑采用H8、H9配合。表面粗糙度:當活塞采用橡膠密封圈密封時,為0.1~0.4μm,當活塞用活塞環(huán)密封時,為0.2~0.4μm。且均需珩磨。
⑵ 缸體內徑φAL(圖4-1)的圓度公差值可按9、10或11級精度選取,圓柱度公差值應按8級精度選取。
⑶ 缸體端面T(圖4-1)的垂直度公差值可按7級精度選取。
圖4-1 缸體
(4)當缸體與缸頭采用螺紋聯接時,螺紋應取為6級精度的公制螺紋。
⑸ 當缸體帶有耳環(huán)或銷軸(圖4-2)時,孔徑D1或軸徑d2的中心線對缸體內孔軸線的垂直度公差值應按9級精度選取。
圖4-2 耳環(huán)型、銷軸型缸體
⑹ 為了防止腐蝕和提高壽命,缸體內表面應鍍以厚度為30~40μm的鉻層,鍍后進行珩磨或拋光。
4.3 缸蓋
4.3.1 缸蓋的材料
液壓缸的缸蓋可選用35、45號鍛鋼或ZG35、ZG45鑄鋼或HT200、HT300、HT350鑄鐵等材料。
當缸蓋本身又是活塞桿的導向套時,缸蓋最好選用鑄鐵。同時,應在導向表面上熔堆黃銅、青銅或其他耐磨材料。如果采用在缸蓋中壓入導向套的結構時,導向套材料則應為耐磨鑄鐵、青銅或黃銅等。
4.3.2 缸蓋的技術要求(圖4-3)
⑴ 直徑d(基本尺寸同缸徑)、D2(活塞桿的緩沖孔)、D3(基本尺寸同活塞桿密封圈外徑)的圓柱度公差值,應按9、10或者11級精度選取。
圖4-3 缸蓋
⑵ D2、D3與d的同軸度公差值為0.03mm。
⑶ 端面A、B與直徑d軸心線的垂直度公差值,應按7級精度選取。
⑷ 導向孔的表面粗造度為1.25μm。
4.4 活塞
4.4.1 活塞與活塞桿的聯接型式
活塞與活塞桿的聯接型式見表4-3:
表4-3 活塞桿聯接型式
聯接方式
備注
整體聯接
用于工作壓力較大,而活塞直徑又較小的情況
螺紋聯接
常用的聯接方式
半環(huán)聯接
用于工作壓力、機械振動較大的情況
注:詳細資料見參考文獻[2]表37.7-47
4.4.2 活塞與缸體的密封
活塞與缸體的密封結構,隨工作壓力、環(huán)境溫度、介質等條件的不同而不同。常用的密封結構見表4-4:
表4-4 活塞與缸體的密封結構
密封形式
備注
間隙密封
用于低壓系統(tǒng)中的液壓缸活塞的密封
活塞環(huán)密封
適用于溫度變化范圍大,要求摩擦力小、壽命長的
活塞的密封
O型
密封性能好,摩擦系數小;安裝空間小,
密
密封圈
廣泛用于固定密封和運動密封
封
Y型密封圈
用在20MPa壓力下、往復運動速度較高的液壓缸密封
圈
YX型密封圈
耐高壓、耐磨性好,低溫性能好,逐漸取代Y型 密封圈
密
V型密封圈
可用于50MPa壓力下,耐久性好,但摩擦阻力大
封
U型密封圈
用于32MPa以下的系統(tǒng)中,其密封性好,阻力較小
UP1型密封圈
注:詳細資料見參考文獻[2]表37.7-48
4.4.3 活塞的材料
液壓缸活塞常用的材料為耐磨鑄鐵、灰鑄鐵(HT300、HT350)、鋼(有的在外徑上套有尼龍66、尼龍1010或夾布酚醛塑料的耐磨環(huán))及鋁合金等。
4.4.4 活塞的技術要求
⑴ 活塞外徑φAL對內孔D1的徑向跳動公差值,按7、8級精度選取。
⑵ 端面T對內孔D1軸線的垂直度公差值,應按7級精度選取。
⑶ 外徑φAL的圓柱度公差值,按9、10或11級精度選取。
圖4-4 活塞
4.5 活塞桿
4.5.1 端部結構
活塞桿端部結構見表4-5:
表4-5 活塞桿端部結構
結構形式
外螺紋
內螺紋
單耳環(huán)
結構簡圖
結構形式
雙耳環(huán)
半球鉸單耳環(huán)
球頭
結構簡圖
結構形式
銷軸
柱銷
結構簡圖
結構形式
錐銷
法蘭
結構簡圖
4.5.2 端部尺寸
⑴ 端部為螺紋聯接時,其尺寸見表4-6:
表4-6 液壓缸活塞桿螺紋尺寸系列
直徑與螺距
螺紋長A
直徑與螺距
螺紋長A
直徑與螺距
螺紋長A
Φkk × t
短型
長型
Φkk × t
短型
長型
Φkk × t
短型
長型
M3×0.35
6
9
M22×1.5
30
44
M110×3
112
M4×0.5
8
12
M24×2
32
48
M125×4
125
M4×0.7*
8
12
M27×2
36
54
M140×4
140
M5×0.5
10
15
M30×2
40
60
M160×4
160
M6×0.75
12
16
M33×2
45
66
M180×4
180
M6×1*
12
16
M36×2
50
72
M200×4
200
M8×1
12
20
M42×2
56
84
M220×4
220
M8×1.25*
12
20
M48×2
63
96
M250×6
250
M10×1.25
14
22
M56×2
75
112
M280×6
280
M12×1.25
16
24
M64×3
85
128
M14×1.5
18
28
M72×3
85
128
M16×1.5
22
32
M80×3
95
140
M18×1.5
25
36
M90×3
106
140
M20×1.5
28
40
M100×3
112
4.5.3 活塞桿結構
活塞桿有實心桿和空心桿兩種,見圖 (4-5 )??招幕钊麠U的一端,要留出焊接和熱處理時用的通氣孔d2。
a)
b)
圖(4-5 )活塞桿
a)實心活塞桿 b)空心活塞桿
4.5.4 活塞桿材料
實心活塞桿材料為35、45號鋼;空心活塞桿材料為35、45號無縫鋼管。
4.5.5 活塞桿的技術要求
⑴ 活塞桿的熱處理:粗加工后調質到硬度為229~285HB,必要時,再經高頻淬火,硬度達HRC45~55。
⑵ 活塞桿φMM和d1的圓度公差值,按9、10或11級精度選取。
⑶ 活塞桿φMM的圓柱度公差值,應按8級精度選取。
⑷ 活塞桿φMM對d1的徑向跳動公差值,應為0.01mm。
⑸ 端面T的垂直度公差值,則應按7級精度選取。
⑹ 活塞桿上的螺紋,一般應按6級精度加工;如載荷較小,機械振動也較小時,允許按7級或8級精度制造。
⑺ 活塞桿上若有聯接銷孔時,該孔徑應按H11級加工,該孔軸線與活塞桿軸線的垂直度公差值,按6級精度選取。
⑻ 活塞桿上工作表面的粗糙度為0.63μm,必要時,可以鍍鉻,鍍層厚度為0.05mm,鍍后拋光。
4.6 活塞桿的導向、密封和防塵
4.6.1 導向套
⑴ 導向套的結構 導向套的結構見表4-7。
⑵ 導向套材料 導向套常用材料為鑄造青銅或耐磨鑄鐵。
⑶ 導向套的技術要求 導向套內徑的配合,一般取為H8/f9(或H9/f9),其表面粗糙度則為0.63~1.25μm。
表4-7 導向套的結構
導向方式
備注
缸蓋導向
減少零件數量,裝配簡單。磨損快
導向套
導向
普通導向套
可利用壓力油潤滑導向套,并使其處于密封狀態(tài)
可拆導向套
容易拆卸,便于維修。適用于工作條件惡劣、
經常更換導向套的場合
球面導向套
導向套自動調整位置,磨損比較均勻
注:詳細資料見參考文獻[2]表37.7-52
4.6.2 桿的密封與防塵
選用O型密封圈和三角形防塵圈。
(其結構見參考文獻[2]表37.7-53)
4.7 液壓缸的緩沖裝置
緩沖裝置是為了防止或減小液壓缸運動時的沖擊。通常是通過節(jié)流作用產生的內壓,抵抗液壓推力、慣性力和載荷力,降低液壓缸的運動速度。本設
收藏
編號:2680628
類型:共享資源
大?。?span id="v999rz9" class="font-tahoma">1.81MB
格式:RAR
上傳時間:2019-11-28
15
積分
- 關 鍵 詞:
-
液壓機
液壓
系統(tǒng)
設計
- 資源描述:
-
單注液壓機液壓系統(tǒng)設計,液壓機,液壓,系統(tǒng),設計
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。