2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 限時(shí)訓(xùn)練6 導(dǎo)數(shù)的應(yīng)用 文.doc
《2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 限時(shí)訓(xùn)練6 導(dǎo)數(shù)的應(yīng)用 文.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 限時(shí)訓(xùn)練6 導(dǎo)數(shù)的應(yīng)用 文.doc(4頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 限時(shí)訓(xùn)練6 導(dǎo)數(shù)的應(yīng)用 文 1.已知函數(shù)f(x)=ax++(1-a)ln x. (1)當(dāng)a=2時(shí),求曲線y=f(x)在x=1處的切線方程; (2)若a≤0,討論函數(shù)f(x)的單調(diào)性. 解:(1)當(dāng)a=2時(shí),f(x)=2x+-ln x,f′(x)=2--,又f′(1)=0,f(1)=3,所以曲線f(x)在x=1處的切線方程為y=3. (2)f′(x)=a-+=(x>0), ①當(dāng)a=0時(shí),f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增;若a≠0,f′(x)==0, 解得x1=1,x2=-, ②當(dāng)-10; ∴f(x)在(1,2)上是單調(diào)減函數(shù),在(2,3)上是單調(diào)增函數(shù), ∴f(x)在x=2處取得極小值f(2)=-ln 2; 又f(1)=,f(3)=-ln 3, ∵ln 3>1,∴-=ln 3-1>0, ∴f(1)>f(3), ∴x=1時(shí)f(x)的最大值為,x=2時(shí)函數(shù)取得最小值為-ln 2. (2)由(1)知當(dāng)x∈[1,3]時(shí),f(x)≤,故對(duì)任意x∈[1,3], f(x)<4-at恒成立, 只要4-at>對(duì)任意t∈[0,2]恒成立,即at<恒成立,記g(t)=at,t∈[0,2]. ,解得a<, 即實(shí)數(shù)a的取值范圍是. 3.已知函數(shù)f(x)=a(x2+1)+ln x. (1)討論函數(shù)f(x)的單調(diào)性; (2)若對(duì)任意a∈(-4,-2)及x∈[1,3],恒有ma-f(x)>a2成立,求實(shí)數(shù)m的取值范圍. 解:(1)由已知,得f′(x)=2ax+=(x>0). ①當(dāng)a≥0時(shí),恒有f′(x)>0,則f(x)在(0,+∞)上是增函數(shù). ②當(dāng)a<0時(shí),若0- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)二輪復(fù)習(xí) 限時(shí)訓(xùn)練6 導(dǎo)數(shù)的應(yīng)用 2019 2020 年高 數(shù)學(xué) 二輪 復(fù)習(xí) 限時(shí) 訓(xùn)練 導(dǎo)數(shù) 應(yīng)用
鏈接地址:http://www.zhongcaozhi.com.cn/p-2637454.html