高中數(shù)學(xué) 1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)課件 新人教版選修2-2.ppt
《高中數(shù)學(xué) 1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)課件 新人教版選修2-2.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高中數(shù)學(xué) 1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)課件 新人教版選修2-2.ppt(25頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1.3.1 函數(shù)的單調(diào)性與導(dǎo)數(shù),1.求過曲線y=x3-2x上的點(diǎn)(1,-1)的切線方程,求過某點(diǎn)的曲線的切線方程時(shí),除了要判斷該點(diǎn)是否 在曲線上,還要分“該點(diǎn)是切點(diǎn)”和“該點(diǎn)不是切點(diǎn)”兩種 情況進(jìn)行討論,解法復(fù)制。若設(shè)M(x0,y0)為曲線y=f(x)上 一點(diǎn),則以M為切點(diǎn)的曲線的切線方程可設(shè)為 y-y0=f’(x)(x-x0),利用此切線方程可以簡化解題,避免 疏漏。,(4).對數(shù)函數(shù)的導(dǎo)數(shù):,(5).指數(shù)函數(shù)的導(dǎo)數(shù):,,(3).三角函數(shù) :,(1).常函數(shù):(C)/ ? 0, (c為常數(shù));,,(2).冪函數(shù) : (xn)/ ? nxn?1,一、復(fù)習(xí)回顧:基本初等函數(shù)的導(dǎo)數(shù)公式,函數(shù) y = f (x) 在給定區(qū)間 G 上,當(dāng) x 1、x 2 ∈G 且 x 1< x 2 時(shí),函數(shù)單調(diào)性判定,單調(diào)函數(shù)的圖象特征,,,,,,,1)都有 f ( x 1 ) < f ( x 2 ),,則 f ( x ) 在G 上是增函數(shù);,2)都有 f ( x 1 ) > f ( x 2 ),,則 f ( x ) 在G 上是減函數(shù);,若 f(x) 在G上是增函數(shù)或減函數(shù),,增函數(shù),減函數(shù),則 f(x) 在G上具有嚴(yán)格的單調(diào)性。,G 稱為單調(diào)區(qū)間,,,G = ( a , b ),二、復(fù)習(xí)引入:,,在(- ∞ ,0)和(0, +∞) 上分別是減函數(shù)。但在定義域上不是減函數(shù)。,在(- ∞ ,1)上是減函數(shù),在(1, +∞)上是增函數(shù)。,在(- ∞,+∞)上是增函數(shù),概念回顧,畫出下列函數(shù)的圖像,并根據(jù)圖像指出每個(gè)函數(shù)的單調(diào)區(qū)間,(1)函數(shù)的單調(diào)性也叫函數(shù)的增減性;,(2)函數(shù)的單調(diào)性是對某個(gè)區(qū)間而言的,它是個(gè)局部概 念。這個(gè)區(qū)間是定義域的子集。,(3)單調(diào)區(qū)間:針對自變量x而言的。 若函數(shù)在此區(qū)間上是增函數(shù),則為單調(diào)遞增區(qū)間; 若函數(shù)在此區(qū)間上是減函數(shù),則為單調(diào)遞減區(qū)間。,以前,我們用定義來判斷函數(shù)的單調(diào)性.在假設(shè)x1x2的前提下,比較f(x1)f(x2)與的大小,在函數(shù)y=f(x)比較復(fù)雜的情況下,比較f(x1)與f(x2)的大小并不很容易.如果利用導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性就比較簡單.,觀 察:,下圖(1)表示高臺(tái)跳水運(yùn)動(dòng)員的高度 h 隨時(shí)間 t 變化的函數(shù) 的圖象, 圖(2)表示高臺(tái)跳水運(yùn)動(dòng)員的速度 v 隨時(shí)間 t 變化的函數(shù) 的圖象. 運(yùn)動(dòng)員從起跳到最高點(diǎn), 以及從最高點(diǎn)到入水這兩段時(shí)間的運(yùn)動(dòng)狀態(tài)有什么區(qū)別?,,,,,,,,,a,a,b,b,t,t,v,h,O,O,①運(yùn)動(dòng)員從起跳到最高點(diǎn),離水面的高度h隨時(shí)間t 的增加而增加,即h(t)是增函數(shù).相應(yīng)地,,②從最高點(diǎn)到入水,運(yùn)動(dòng)員離水面的高度h隨時(shí)間t的增加而減少,即h(t)是減函數(shù).相應(yīng)地,,(1),(2),,,x,y,O,x,y,O,x,y,O,x,y,O,y = x,y = x2,y = x3,觀察下面一些函數(shù)的圖象, 探討函數(shù)的單調(diào)性與其導(dǎo)函數(shù)正負(fù)的關(guān)系.,在某個(gè)區(qū)間(a,b)內(nèi),如果 ,那么函數(shù) 在這個(gè)區(qū)間內(nèi)單調(diào)遞增; 如果 ,那么函數(shù) 在這個(gè)區(qū)間內(nèi)單調(diào)遞減.,如果恒有 ,則 是常數(shù)。,題1 已知導(dǎo)函數(shù) 的下列信息:,當(dāng)1 x 4 時(shí),,當(dāng) x 4 , 或 x 1時(shí),,當(dāng) x = 4 , 或 x = 1時(shí),,試畫出函數(shù) 的圖象的大致形狀.,解:,當(dāng)1 x 4 時(shí), 可知 在此區(qū)間內(nèi)單調(diào)遞增;,當(dāng) x 4 , 或 x 1時(shí), 可知 在此區(qū)間內(nèi)單調(diào)遞減;,當(dāng) x = 4 , 或 x = 1時(shí),,綜上, 函數(shù) 圖象的大致形狀如右圖所示.,,,,,,題2 判斷下列函數(shù)的單調(diào)性, 并求出單調(diào)區(qū)間:,解:,(1) 因?yàn)? , 所以,因此, 函數(shù) 在 上單調(diào)遞增.,(2) 因?yàn)? , 所以,當(dāng) , 即 時(shí), 函數(shù) 單調(diào)遞增;,當(dāng) , 即 時(shí), 函數(shù) 單調(diào)遞減.,題2 判斷下列函數(shù)的單調(diào)性, 并求出單調(diào)區(qū)間:,解:,(3) 因?yàn)? , 所以,因此, 函數(shù) 在 上單調(diào)遞減.,(4) 因?yàn)? , 所以,當(dāng) , 即 時(shí), 函數(shù) 單調(diào)遞增;,當(dāng) , 即 時(shí), 函數(shù) 單調(diào)遞減.,1、求可導(dǎo)函數(shù)f(x)單調(diào)區(qū)間的步驟: (1)求f’(x) (2)解不等式f’(x)0(或f’(x)0) (3)確認(rèn)并指出遞增區(qū)間(或遞減區(qū)間),2、證明可導(dǎo)函數(shù)f(x)在(a,b)內(nèi)的單調(diào)性的方法: (1)求f’(x) (2)確認(rèn)f’(x)在(a,b)內(nèi)的符號(hào) (3)作出結(jié)論,練習(xí),判斷下列函數(shù)的單調(diào)性, 并求出單調(diào)區(qū)間:,例3 如圖, 水以常速(即單位時(shí)間內(nèi)注入水的體積相同)注入下面四種底面積相同的容器中, 請分別找出與各容器對應(yīng)的水的高度h與時(shí)間t的函數(shù)關(guān)系圖象.,(A),(B),(C),(D),,,,,,,,,,,,,h,t,O,h,t,O,h,t,O,h,t,O,一般地, 如果一個(gè)函數(shù)在某一范圍內(nèi)導(dǎo)數(shù)的絕對值較大, 那么函數(shù)在這個(gè)范圍內(nèi)變化得快, 這時(shí), 函數(shù)的圖象就比較“陡峭”(向上或向下); 反之, 函數(shù)的圖象就“平緩”一些.,如圖,函數(shù) 在 或 內(nèi)的圖象“陡峭”,在 或 內(nèi)的圖象平緩.,練習(xí),2.函數(shù) 的圖象如圖所示, 試畫出導(dǎo)函數(shù) 圖象的大致形狀,練習(xí),3.討論二次函數(shù) 的單調(diào)區(qū)間.,解:,由 , 得 , 即函數(shù) 的遞增區(qū)間是 ; 相應(yīng)地, 函數(shù)的遞減區(qū)間是,由 , 得 , 即函數(shù) 的遞增區(qū)間是 ; 相應(yīng)地, 函數(shù)的遞減區(qū)間是,練習(xí),4.求證: 函數(shù) 在 內(nèi)是減函數(shù).,解:,由 , 解得 , 所以函數(shù) 的遞減區(qū)間是 , 即函數(shù) 在 內(nèi)是減函數(shù).,一、求參數(shù)的取值范圍,增例2:求參數(shù),,解:由已知得,因?yàn)楹瘮?shù)在(0,1]上單調(diào)遞增,增例2:,,在某個(gè)區(qū)間上, ,f(x)在這個(gè)區(qū)間上單調(diào)遞增 (遞減);但由f(x)在這個(gè)區(qū)間上單調(diào)遞增(遞減)而 僅僅得到 是不夠的。還有可能導(dǎo)數(shù)等于0 也能使f(x)在這個(gè)區(qū)間上單調(diào), 所以對于能否取到等號(hào)的問題需要單獨(dú)驗(yàn)證,增例2:,,本題用到一個(gè)重要的轉(zhuǎn)化:,例3:方程根的問題 求證:方程 只有一個(gè)根。,作業(yè): 已知函數(shù)f(x)=ax+3x-x+1在R上是減函數(shù),求a的取值范圍。,- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高中數(shù)學(xué) 1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)課件 新人教版選修2-2 1.3 函數(shù) 調(diào)性 導(dǎo)數(shù) 課件 新人 選修
鏈接地址:http://www.zhongcaozhi.com.cn/p-2300974.html