軌道車輛塞拉門傳動(dòng)及攜門裝置設(shè)計(jì)【說(shuō)明書+CAD+UG】
軌道車輛塞拉門傳動(dòng)及攜門裝置設(shè)計(jì)【說(shuō)明書+CAD+UG】,說(shuō)明書+CAD+UG,軌道車輛塞拉門傳動(dòng)及攜門裝置設(shè)計(jì)【說(shuō)明書+CAD+UG】,軌道,車輛,拉門,傳動(dòng),裝置,設(shè)計(jì),說(shuō)明書,仿單,cad,ug
南京工程學(xué)院
畢業(yè)設(shè)計(jì)任務(wù)書
機(jī)械工程 學(xué)院 機(jī)械電子工程專業(yè)
設(shè) 計(jì) 題 目 軌道車輛塞拉門傳動(dòng)及攜門裝置設(shè)計(jì)
學(xué) 生 姓 名
班 級(jí)
起 止 日 期 2012.03.05-2012.06.08
指 導(dǎo) 教 師
教研室主任
發(fā)任務(wù)書日期 2012 年 02 月 20 日
1.畢業(yè)設(shè)計(jì)的原始數(shù)據(jù):
從課題調(diào)查和科技文獻(xiàn)來(lái)獲得軌道車輛塞拉門及承載裝置技術(shù)基本要求;依據(jù)
要求確定塞拉門及承載裝置設(shè)計(jì)構(gòu)架;并提出塞拉門及承載系統(tǒng)的實(shí)現(xiàn)手段。
2.畢業(yè)設(shè)計(jì)(論文)的內(nèi)容和要求(包括技術(shù)要求、圖表要求以及工作要求等):
1)進(jìn)行塞拉門及承載裝置工作原理分析;
2)進(jìn)行塞拉門及承載裝置設(shè)計(jì);
3)進(jìn)行塞拉門及承載裝置仿真實(shí)驗(yàn);
4) 撰寫畢業(yè)設(shè)計(jì)論文。
3.畢業(yè)設(shè)計(jì)應(yīng)完成的技術(shù)文件:
1)設(shè)計(jì)圖紙(CAD完成)A0:2張;
2)論文:1.5萬(wàn)字,中英文摘要。
3)英翻中2000字;查閱文獻(xiàn)10篇以上(至少有1篇外文文獻(xiàn));
4)開(kāi)題報(bào)告不少于3000字。
注:論文答辯合格并按答辯要求修改后,所有畢業(yè)設(shè)計(jì)成果用光盤刻錄留存
4.主要參考文獻(xiàn):
[1] 趙光波等.城軌車輛車門的發(fā)展現(xiàn)狀與展望[J].流體傳動(dòng)與控制,2008(1):38-43
[2] 侯坤,陳俊川. ICE高速列車塞拉門[J].國(guó)外鐵道車輛,1996(4):35-41
[3] 郝新.城軌車輛自動(dòng)門系統(tǒng)傳動(dòng)方式[J].城市軌道交通研究,2005(1):77-78
[4] 高橋一玉(日).鐵道車輛用車門的開(kāi)閉裝置[P].中國(guó),CN200410005904.X:2008
[5] 清政良有,角山浩司(日).自動(dòng)門系統(tǒng)[P].中國(guó),CN200780009638:2009-04
[6] 戴存 等. 塞拉門承載機(jī)構(gòu)[P].中國(guó),2009102331629:公開(kāi)2010.06
[7] 楊清林 等.高速列車塞拉門靜載數(shù)值模擬及驗(yàn)證[J].機(jī)械制造與自動(dòng)化,2006
[8] 史翔 等.無(wú)源螺旋門機(jī)鎖閉機(jī)構(gòu)[P].中國(guó),200610096818.3:公開(kāi)2007-04
[9] FAIVELEY TRANSTORT.200km/h HST Project China Access Doors Installation
& Maintenance Manual[Z].1999
5.畢業(yè)設(shè)計(jì)(論文)進(jìn)度計(jì)劃(以周為單位):
起 止 日 期
工 作 內(nèi) 容
備 注
第3周
第4周
第5周
第6周
第7周
第8周
第9周
第10周
第11周
第12周
第13周
第14周
第15周
第16周
網(wǎng)上收集、借閱資料,熟悉課題內(nèi)容
初步方案及結(jié)構(gòu)形式確定
完成開(kāi)題報(bào)告,外文翻譯
提出設(shè)計(jì)方案
設(shè)計(jì)方案論證
繪制圖紙及設(shè)計(jì)計(jì)算
繪制圖紙及設(shè)計(jì)計(jì)算
繪制圖紙及設(shè)計(jì)計(jì)算
項(xiàng)目實(shí)驗(yàn)測(cè)試
項(xiàng)目實(shí)驗(yàn)分析
項(xiàng)目測(cè)試分析
整理撰寫論文
整理撰寫論文
準(zhǔn)備答辯
教研室審查意見(jiàn):
室主任
年 月 日
院部審查意見(jiàn):
教學(xué)院長(zhǎng)
年 月 日
南 京 工 程 學(xué) 院
畢業(yè)設(shè)計(jì)(論文)選題、審題表
教研室
機(jī)電教研室
指導(dǎo)教師
職稱
申報(bào)課題名稱
軌道車輛塞拉門傳動(dòng)及攜門裝置設(shè)計(jì)
課題性質(zhì)
工程技術(shù)研究
課題來(lái)源
企業(yè)單位委托課題
課
題
簡(jiǎn)
介
企業(yè)使用的軌道車輛塞拉門及傳動(dòng)裝置存在諸多問(wèn)題,影響了軌道車輛運(yùn)行的安全性、輕量化等,企業(yè)提出產(chǎn)品改進(jìn)的要求。
本課題采用輕量化及現(xiàn)代制造技術(shù)對(duì)企業(yè)使用的塞拉門傳動(dòng)及攜門裝置進(jìn)行研究,設(shè)計(jì)具有高安全性、可靠性的塞拉門傳動(dòng)及攜門裝置,達(dá)到提高效率,實(shí)現(xiàn)安全、輕量之目的。
所需經(jīng)費(fèi)
100元
上機(jī)時(shí)數(shù)
300h/人
課題要求
(包括所具備的條件)
①要求將所學(xué)知識(shí)應(yīng)用于實(shí)際,設(shè)計(jì)合理、實(shí)用;
②塞拉門傳動(dòng)及攜門裝置總體設(shè)計(jì),選擇合適的零部件、元器件;
③設(shè)計(jì)塞拉門傳動(dòng)及攜門裝置裝配圖、零件圖;
④塞拉門傳動(dòng)及攜門裝置仿真分析;
⑤編制設(shè)計(jì)說(shuō)明書; ⑥建議課題設(shè)計(jì)者:
課題工作量要求
①開(kāi)題報(bào)告不少于3000字,查閱文獻(xiàn)10篇以上;
②設(shè)計(jì)裝配圖、主要零件圖≧2張0#圖;
③符合要求的畢業(yè)設(shè)計(jì)論文≧1.5萬(wàn)字;
④符合要求的英文翻譯,項(xiàng)目實(shí)驗(yàn)報(bào)告。
教研室
審定意見(jiàn)
室主任簽字:
院領(lǐng)導(dǎo)小組審定意見(jiàn)
教學(xué)院長(zhǎng)簽字:
說(shuō)明:1、該表為畢業(yè)設(shè)計(jì)(論文)課題申報(bào)時(shí)專用,由選題教師填寫,經(jīng)教
研室討論、室主任簽字,報(bào)系院領(lǐng)導(dǎo)小組審定,教學(xué)院長(zhǎng)簽字后生效。
2、上機(jī)時(shí)數(shù)可填:xx時(shí)數(shù)/人或者該課題所需總時(shí)數(shù)。
3、選題結(jié)束后,該表要求統(tǒng)一存放在院辦公室備查。
南京工程學(xué)院
畢業(yè)設(shè)計(jì)開(kāi)題報(bào)告
課 題 名 稱: 軌道車輛塞拉門傳動(dòng)及攜門裝置設(shè)計(jì)
學(xué) 生 姓 名: 學(xué) 號(hào):
指 導(dǎo) 教 師: 教授
教授
所在院(系)部: 機(jī) 械 工 程 學(xué) 院
專 業(yè) 名 稱: 機(jī) 械 電 子 工 程
2012 年 3月 18 日
說(shuō) 明
1.根據(jù)南京工程學(xué)院《畢業(yè)設(shè)計(jì)(論文)工作管理規(guī)定》,學(xué)生必須撰寫《畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告》,由指導(dǎo)教師簽署意見(jiàn)、教研室審查,系教學(xué)主任批準(zhǔn)后實(shí)施。
2.開(kāi)題報(bào)告是畢業(yè)設(shè)計(jì)(論文)答辯委員會(huì)對(duì)學(xué)生答辯資格審查的依據(jù)材料之一。學(xué)生應(yīng)當(dāng)在畢業(yè)設(shè)計(jì)(論文)工作前期內(nèi)完成,開(kāi)題報(bào)告不合格者不得參加答辯。
3.畢業(yè)設(shè)計(jì)開(kāi)題報(bào)告各項(xiàng)內(nèi)容要實(shí)事求是,逐條認(rèn)真填寫。其中的文字表達(dá)要明確、嚴(yán)謹(jǐn),語(yǔ)言通順,外來(lái)語(yǔ)要同時(shí)用原文和中文表達(dá)。第一次出現(xiàn)縮寫詞,須注出全稱。
4.本報(bào)告中,由學(xué)生本人撰寫的對(duì)課題和研究工作的分析及描述,應(yīng)不少于2000字,沒(méi)有經(jīng)過(guò)整理歸納,缺乏個(gè)人見(jiàn)解僅僅從網(wǎng)上下載材料拼湊而成的開(kāi)題報(bào)告按不合格論。
5.開(kāi)題報(bào)告檢查原則上在第2~4周完成,各系完成畢業(yè)設(shè)計(jì)開(kāi)題檢查后,應(yīng)寫一份開(kāi)題情況總結(jié)報(bào)告。
畢業(yè)設(shè)計(jì)(論文)開(kāi)題報(bào)告
學(xué)生姓名
孫 軍
學(xué) 號(hào)
201080429
專 業(yè)
機(jī)械電子工程
指導(dǎo)教師
劉極峰、楊小蘭
職 稱
教授、教授
所在院(系)
機(jī)械工程學(xué)院
課題來(lái)源
企業(yè)單位委托課題
課題類型
工程技術(shù)研究
課題名稱
軌道車輛塞拉門傳動(dòng)及攜門裝置設(shè)計(jì)
畢業(yè)設(shè)計(jì)的
內(nèi)容和意義
畢業(yè)設(shè)計(jì)的
內(nèi)容和意義
1.1 課題任務(wù):
從課題調(diào)查和科技文獻(xiàn)來(lái)獲得軌道車輛塞拉門及承載裝置技術(shù)基本要求;依據(jù)要求確定塞拉門及承載裝置設(shè)計(jì)構(gòu)架;并提出塞拉門及承載系統(tǒng)的實(shí)現(xiàn)手段。
1.2 研究背景:
城市軌道車輛以快速、大量的安全輸送旅客為主要目標(biāo),而車門是軌道車輛中的重要組成部分,直接影響著車輛的正常運(yùn)行和旅客的安全。隨著城市軌道交通的迅速發(fā)展,城軌車輛(地鐵、輕軌、電車)的速度不斷提高,對(duì)車輛的密封性、安全性和舒適性的要求也越來(lái)越高,憑借其自身的優(yōu)勢(shì)和特點(diǎn),塞拉門軌道車輛上得到了廣泛應(yīng)用。
目前國(guó)內(nèi)的動(dòng)車組多數(shù)采用單翼塞拉門,地鐵采用雙翼塞拉門。國(guó)內(nèi)常用的自動(dòng)門主要是氣動(dòng)門,如單翼氣動(dòng)塞拉門、雙翼氣動(dòng)內(nèi)藏式對(duì)開(kāi)門,但是電動(dòng)門作為一種新型的自動(dòng)門系統(tǒng),也逐漸被推廣使用。由于城市軌道車輛自動(dòng)塞拉門系統(tǒng)在機(jī)械、電動(dòng)、控制和制造工藝等方面具有高技術(shù)集成的技術(shù)特征,以前國(guó)內(nèi)地鐵、輕軌自動(dòng)門系統(tǒng)一直被奧地利IFE、法國(guó)Faiveley等國(guó)外系統(tǒng)公司所壟斷。因此,開(kāi)發(fā)研制適合我國(guó)國(guó)情的城市軌道車輛塞拉門系統(tǒng),參與國(guó)內(nèi)、國(guó)際市場(chǎng)競(jìng)爭(zhēng),有利于促進(jìn)國(guó)產(chǎn)自動(dòng)門產(chǎn)業(yè)技術(shù)進(jìn)步,保護(hù)、促進(jìn)和發(fā)展我國(guó)民族工業(yè)。
1.3 研究意義:
作為輕軌和地鐵車輛重要部件的車門在車輛的運(yùn)營(yíng)中扮演著重要的角色,車門形式的設(shè)計(jì)、開(kāi)關(guān)機(jī)構(gòu)以及它們的加工制造與控制都直接影響著城市軌道車輛的安全運(yùn)營(yíng)狀況。因此,車門的重要地位也是其他任何部件所不能取代的。近二十年來(lái),國(guó)家不斷對(duì)塞拉門的研究加大投資力度,國(guó)內(nèi)的塞拉門產(chǎn)業(yè)取得了突破性的發(fā)展,擁有了多項(xiàng)自主知識(shí)產(chǎn)權(quán)。然而與國(guó)際先進(jìn)水平的塞拉門相比,國(guó)內(nèi)的塞拉門還存在笨重、體積大、噪聲大等缺點(diǎn),在國(guó)際市場(chǎng)上缺乏競(jìng)爭(zhēng)力。隨著鐵路客車運(yùn)用時(shí)間的延長(zhǎng),既有塞拉門在使用性、檢修維護(hù)性等方面暴露出了越來(lái)越多的問(wèn)題。
企業(yè)使用的軌道車輛塞拉門及傳動(dòng)裝置存在諸多問(wèn)題,影響了軌道車輛運(yùn)行的安全性、輕量化等。本課題采用輕量化及現(xiàn)代制造技術(shù)對(duì)企業(yè)使用的塞拉門傳動(dòng)及攜門裝置進(jìn)行研究,設(shè)計(jì)具有高安全性、可靠性的塞拉門傳動(dòng)及攜門裝置,達(dá)到提高效率,實(shí)現(xiàn)安全、輕量之目的,對(duì)產(chǎn)品進(jìn)行改進(jìn)。
文獻(xiàn)綜述
文獻(xiàn)綜述
國(guó)內(nèi)外研究現(xiàn)狀:
德國(guó)、奧地利和日本的鐵路工業(yè)是世界的佼佼者,尤其是日本的鐵路新干線開(kāi)創(chuàng)了日本鐵路產(chǎn)業(yè)的里程碑,也為其他國(guó)家鐵路事業(yè)的發(fā)展樹(shù)立了榜樣。在車門的研究方面日本也有實(shí)質(zhì)性的突破,尤其表現(xiàn)在自動(dòng)關(guān)門機(jī)的開(kāi)發(fā)上。他們?cè)谠O(shè)計(jì)通勤電動(dòng)客車時(shí),車門沒(méi)有設(shè)臺(tái)階,以便旅客能平穩(wěn)流動(dòng)以及安全、迅速上下車,具有縮短停車時(shí)間的顯著功能。為了選擇適合我國(guó)國(guó)情的塞拉門,從1995年起,國(guó)內(nèi)幾家鐵路客車制造廠就已陸續(xù)批量試裝了IFE、康尼、BODE及FAIVELEY四家公司的塞拉門 產(chǎn)品,為以后我國(guó)塞拉門的最終定型以及合資奠定了基礎(chǔ)。上述四家國(guó)外公司生產(chǎn)的車門代表當(dāng)前國(guó)際城市軌道交通車門技術(shù)發(fā)展的現(xiàn)狀。 現(xiàn)有塞拉門工作原理主要有以下兩種方式:一是門扇沿X軸向和Y軸向按預(yù)定軌道平移的運(yùn)動(dòng)組合實(shí)現(xiàn)門扇塞拉(Y軸向位移)動(dòng)作。在X軸向和Y軸向必須具備兩套承載導(dǎo)向 ,結(jié)構(gòu)復(fù)雜造價(jià)昂貴。二是門扇沿X軸的平移和在X、Y平面的擺動(dòng)的運(yùn)動(dòng)組合實(shí)現(xiàn)門扇的塞拉(Y軸向的位移),同樣需要兩套承載導(dǎo)向系統(tǒng)。
南京康尼機(jī)電股份有限公司的戴存、史翔等人針對(duì)兩種現(xiàn)有的塞拉門工作方式,提出了一種全新的塞拉門承載機(jī)構(gòu),其目的旨在克服現(xiàn)有塞拉門所存在的不足,不僅具有良好的密封性能,而且結(jié)構(gòu)簡(jiǎn)單、可靠性高、零部件精度要求低、加工工藝性好、造價(jià)低廉。該塞拉門承載機(jī)構(gòu)其特征包括承載導(dǎo)軌、承載輪、導(dǎo)向滑道、承載小車、攜門架、上連接軸、下連接軸、上鉸鏈座、下鉸鏈座和導(dǎo)向輪,其中承載小車、上連接軸、下鉸鏈座和攜門架依次相接形成回轉(zhuǎn)副Ⅰ;攜門架、下連接軸、下鉸鏈座和門扇依次相接形成回轉(zhuǎn)副Ⅱ;承載輪與承載導(dǎo)軌相接,形成移動(dòng)副Ⅰ;導(dǎo)向滑道與導(dǎo)向輪相接,形成預(yù)定軌跡的移動(dòng)副Ⅱ;承載小車沿承載導(dǎo)軌作X軸向平移運(yùn)動(dòng)同時(shí)攜門架帶動(dòng)門扇繞承載小車的X軸作旋轉(zhuǎn)運(yùn)動(dòng);攜門架沿承載導(dǎo)軌作X軸向平移運(yùn)動(dòng)同時(shí)攜門架帶動(dòng)門扇繞承載小車的C軸作旋轉(zhuǎn)運(yùn)動(dòng);攜門架沿承載導(dǎo)軌作直線運(yùn)動(dòng)的同時(shí)繞承載小車的X軸做旋轉(zhuǎn)運(yùn)動(dòng),攜門架帶動(dòng)門扇在導(dǎo)向輪的作用下依照導(dǎo)向滑道的軌跡完成門扇Y軸方向的位移。該發(fā)明將平移運(yùn)動(dòng)和旋轉(zhuǎn)運(yùn)動(dòng)集成在一套承載導(dǎo)向機(jī)構(gòu)上,具有結(jié)構(gòu)緊湊、可靠性高,零部件精度要求低、加工工藝性好,造價(jià)低廉的優(yōu)點(diǎn)。
南京工程學(xué)院的劉極峰、楊小蘭目針對(duì)現(xiàn)有技術(shù)的不足之處,構(gòu)建一種新的塞拉門齒帶雙軸導(dǎo)桿槽型凸輪組合空間機(jī)構(gòu),以實(shí)現(xiàn)減小機(jī)構(gòu)尺寸和重量、降低制造成本、提高運(yùn)動(dòng)-密封可靠性的目的。該發(fā)明與國(guó)內(nèi)外塞拉門機(jī)構(gòu)相比,其特征在于:
1、主副承載軸雙軸固定在門架上,不僅承載能力大幅提高,整體強(qiáng)度、剛度顯著增加,而且運(yùn)動(dòng)部件零部件數(shù)量、重量明顯下降,可實(shí)現(xiàn)塞拉門機(jī)構(gòu)與傳動(dòng)系統(tǒng)的輕量化;
2、結(jié)構(gòu)簡(jiǎn)單緊湊,構(gòu)件數(shù)少,具有尺寸小、重量輕、成本低的明顯優(yōu)勢(shì),且運(yùn)動(dòng)是沒(méi)有上下的擺動(dòng)量,使門扇快速開(kāi)關(guān)時(shí)的動(dòng)態(tài)穩(wěn)定性明顯提高,具有塞拉密封可靠與門扇啟閉迅速的特點(diǎn)。
3、攜門導(dǎo)桿與塞拉門門扇相固結(jié),機(jī)構(gòu)中巧妙地將攜門桿套與軸套、螺母相互聯(lián)接,一方面增加了攜門導(dǎo)桿長(zhǎng)度,使其強(qiáng)度、剛度顯著提高,另一方面大大提高了攜門桿套自身抗彎扭變形的承載能力。
4.選用花鍵聯(lián)接進(jìn)一步提高了攜門導(dǎo)桿、攜門桿套的承載能力,同時(shí)具有定心精度高、應(yīng)力集中小和相對(duì)運(yùn)動(dòng)的穩(wěn)定性好等特點(diǎn)。
北京博得交通設(shè)備有限公司的郝新對(duì)自動(dòng)門的傳動(dòng)方式進(jìn)行了仔細(xì)研究。目前國(guó)內(nèi)外自動(dòng)門系統(tǒng)有兩種傳動(dòng)方式——齒帶傳動(dòng)和螺旋傳動(dòng)。齒帶傳動(dòng)是指自動(dòng)門系統(tǒng)的左、右兩扇門頁(yè)分別通過(guò)齒帶夾板與齒帶兩側(cè)相連,齒帶兩端有齒帶輪架,使得齒帶形成一個(gè)閉環(huán);通過(guò)驅(qū)動(dòng)元件的驅(qū)動(dòng),使齒帶繞著齒帶輪做旋轉(zhuǎn)運(yùn)動(dòng),同時(shí)帶動(dòng)兩扇門頁(yè)做相反方向的運(yùn)動(dòng),達(dá)到兩扇門頁(yè)同步運(yùn)動(dòng)的狀態(tài)。而螺旋傳動(dòng)是指自動(dòng)門系統(tǒng)的左、右兩扇門頁(yè)分別通過(guò)螺母組件與螺桿相連,螺桿為左旋和右旋對(duì)稱結(jié)構(gòu),通過(guò)驅(qū)動(dòng)元件的驅(qū)動(dòng),使螺桿做旋轉(zhuǎn)運(yùn)動(dòng),同時(shí)帶動(dòng)兩扇門頁(yè)的螺母組件做相反方向的運(yùn)動(dòng),達(dá)到兩扇門頁(yè)同步運(yùn)動(dòng)的狀態(tài)。螺旋傳動(dòng)具有運(yùn)動(dòng)準(zhǔn)確、易于平衡、扭矩大等特點(diǎn),但制造精度要求高,占用空間大、重量大,易磨損,潤(rùn)滑、密封要求高,維護(hù)維修頻次高;齒帶傳動(dòng)有柔性傳動(dòng),精度要求低,易于維護(hù),制造成本低等優(yōu)點(diǎn),但帶易打滑和延伸等缺點(diǎn),導(dǎo)致其應(yīng)用受限。
通過(guò)以上綜述可以分析出在對(duì)塞拉門傳動(dòng)及攜門裝置的研究中,我們可以通過(guò)建立仿真模型,從實(shí)際出發(fā),以輕量,高效,經(jīng)濟(jì)為目的,從材料和結(jié)構(gòu)方面入手展開(kāi)研究。
參考文獻(xiàn)
1. 趙光波等.城軌車輛車門的發(fā)展現(xiàn)狀與展望[J].流體傳動(dòng)與控制,2008
(1):38-43
2. 侯坤,陳俊川. ICE高速列車塞拉門[J].國(guó)外鐵道車輛,1996(4):35-41
3. 郝新.城軌車輛自動(dòng)門系統(tǒng)傳動(dòng)方式[J].城市軌道交通研究,2005(1):
77-78
4. 高橋一玉(日).鐵道車輛用車門的開(kāi)閉裝置[P].中國(guó),
CN200410005904.X:2008
5. 清政良有,角山浩司(日).自動(dòng)門系統(tǒng)[P].中國(guó),CN200780009638:
2009-04
6. 戴存等. 塞拉門承載機(jī)構(gòu)[P].中國(guó),2009102331629:公開(kāi)2010.06
7. 楊清林等.高速列車塞拉門靜載數(shù)值模擬及驗(yàn)證[J].機(jī)械制造與自動(dòng)化,
2006
8. 史翔等.無(wú)源螺旋門機(jī)鎖閉機(jī)構(gòu)[P].中國(guó),200610096818.3:公開(kāi)
2007-04
9. FAIVELEY TRANSTORT.200km/h HST Project China Access Doors
Installation& Maintenance Manual[Z].1999
10. 劉極峰,楊小蘭.一種塞拉門齒帶雙軸導(dǎo)桿槽型凸輪組合空間機(jī)構(gòu)[P].
中國(guó),CN201110248444.3:2011.08
11. 劉極峰,楊小蘭.一種塞拉門齒帶搖塊導(dǎo)桿槽型凸輪組合空間機(jī)構(gòu)[P].
中國(guó),CN201110248446.2:2011.08
12. 劉極峰,楊小蘭.一種塞拉門齒帶雙軸搖桿導(dǎo)桿槽型凸輪組合空間機(jī)構(gòu)
[P].中國(guó),CN201110248437.3:2011.08
研究?jī)?nèi)容
研究?jī)?nèi)容:
1. 進(jìn)行塞拉門及承載裝置工作原理分析;
2. 進(jìn)行塞拉門及承載裝置設(shè)計(jì);
3. 進(jìn)行塞拉門及承載裝置仿真實(shí)驗(yàn)。
研究計(jì)劃
研究計(jì)劃:
第三周:網(wǎng)上收集、借閱資料,熟悉課題內(nèi)容
第四周:初步方案及結(jié)構(gòu)形式確定
第五周:完成開(kāi)題報(bào)告,外文翻譯
第六周:提出設(shè)計(jì)方案
第七周:設(shè)計(jì)方案論證
第八周:繪制圖紙及設(shè)計(jì)計(jì)算
第九周:繪制圖紙及設(shè)計(jì)計(jì)算
第十周:繪制圖紙及設(shè)計(jì)計(jì)算
第十一周:項(xiàng)目實(shí)驗(yàn)測(cè)試
第十二周:項(xiàng)目實(shí)驗(yàn)分析
第十三周:項(xiàng)目測(cè)試分析
第十四周:整理撰寫論文
第十五周:整理撰寫論文
第十六周:準(zhǔn)備答辯
特色與創(chuàng)新
1、針對(duì)國(guó)內(nèi)塞拉門普遍采用的螺旋傳動(dòng)方式,本次設(shè)計(jì)采用齒帶傳動(dòng),該傳動(dòng)具有噪聲少,承載能力高,傳動(dòng)準(zhǔn)確等特點(diǎn)。
2、本次設(shè)計(jì)采用劉極峰、楊小蘭老師的專利—一種塞拉門齒帶雙軸導(dǎo)桿槽型凸輪組合空間機(jī)構(gòu),相較于國(guó)內(nèi)塞拉門達(dá)到了輕量化和低噪聲的目的。
指導(dǎo)教師
意 見(jiàn)
指導(dǎo)教師簽名:
年 月 日
教研室意見(jiàn)
院部意見(jiàn)
主任簽名:
年 月 日
教學(xué)院長(zhǎng)簽名:
年 月 日
7
南京工程學(xué)院
機(jī)械工程學(xué)院畢業(yè)設(shè)計(jì)材料清單
專業(yè): 機(jī)械電子 學(xué) 生 學(xué)號(hào)
題目: 軌道車輛塞拉門傳動(dòng)及攜門裝置設(shè)計(jì)
序號(hào)
畢業(yè)設(shè)計(jì)清單
份數(shù)
備 注
1
畢業(yè)設(shè)計(jì)任務(wù)書
1份
2
畢業(yè)設(shè)計(jì)開(kāi)題報(bào)告
1份
3
外文翻譯
1份
4
畢業(yè)設(shè)計(jì)說(shuō)明書(論文)
1本
5
畢業(yè)設(shè)計(jì)其它成果
(1)
塞拉門裝配圖 0#
1張
(2)
塞拉門左門扇 0#
1張
(3)
塞拉門攜門裝置圖 2#
1張
(4)
塞拉門導(dǎo)向槽 3#
1張
(5)
塞拉門承載軸 3#
1張
(6)
塞拉門仿真
1張
填表人:孫軍 驗(yàn)收人:
南京工程學(xué)院
畢業(yè)設(shè)計(jì)(論文)外文資料翻譯
原 文 題 目: Simulation of an SM90 door
system in ADAMS
原 文 來(lái) 源: European ADAMS User' Conference
學(xué) 生 姓 名: 孫軍 學(xué) 號(hào): 201080429
所在院(系)部: 機(jī)械工程學(xué)院
專 業(yè) 名 稱: 機(jī)械電子工程
SM90門系統(tǒng)在ADAMS的仿真
Edward de Jong,Christiaan Wattèl NedTrain Consulting BV
介紹
如今,荷蘭鐵路(NS)處理的火車乘客人數(shù)以每年約6%的速度強(qiáng)勁增長(zhǎng)。這意味著,現(xiàn)有鐵路車輛的可用性和可靠性對(duì)運(yùn)營(yíng)商和NS乘客具有重大意義。當(dāng)然列車運(yùn)行的效率也將對(duì)它的工作穩(wěn)定性產(chǎn)生影響。最重要的措施表明列車服務(wù)的效率是因?yàn)楸姸唷凹夹g(shù)上的延誤”。這意味著眾多延誤是因?yàn)椋夹g(shù))失敗,這直接影響列車運(yùn)行和導(dǎo)致延誤超過(guò)3分鐘。
坐火車旅行時(shí),行車時(shí)間取決于行駛距離、剎車/加速性能以及在中途站停車時(shí)間等方面。這一次是離開(kāi)或進(jìn)入火車乘客人數(shù),門的幾何形狀,開(kāi)啟和關(guān)閉門的動(dòng)作決定。列車停車時(shí)間的長(zhǎng)度從約60秒至180秒。門打開(kāi)或關(guān)閉所需的時(shí)間大約是6秒。這意味著,開(kāi)關(guān)門所需的時(shí)間可高達(dá)20%的總停車時(shí)間。任何減少開(kāi)關(guān)門時(shí)間的措施,將更好的直接減少停機(jī)時(shí)間和達(dá)到更好的性能。
在開(kāi)啟和關(guān)閉門的運(yùn)動(dòng)結(jié)束時(shí),門被推離中心位置,這導(dǎo)致系統(tǒng)中產(chǎn)生一個(gè)預(yù)緊力。橡膠停止時(shí)的位置和狀態(tài)確定了門系統(tǒng)中開(kāi)啟或關(guān)閉時(shí)的位置上產(chǎn)生的預(yù)緊量,為了以防這些停止塊在磨損、沉陷或維護(hù)過(guò)程中被修改而退化,這可能導(dǎo)致運(yùn)行失敗。門不能關(guān)閉,鎖定或不留在打開(kāi)位置。這些故障導(dǎo)致列車延誤和門的故障卻從運(yùn)行中排除。關(guān)閉列車門時(shí)一個(gè)故障的影響可能是積極的,當(dāng)檢測(cè)到門板之間有什么東西時(shí)。門運(yùn)動(dòng)速度變化表明了可能有物體在門板之間,這導(dǎo)致列車門自動(dòng)打開(kāi)了。然而擋在門板中間的物體的特點(diǎn)決定了門的響應(yīng)而且并不一定會(huì)自動(dòng)導(dǎo)致門板的反向運(yùn)動(dòng)。在這種情況下,關(guān)閉動(dòng)作可能不會(huì)停止,這會(huì)使乘客受傷或處在危險(xiǎn)的狀況。減少門的關(guān)閉時(shí)間將因此還需要審查障礙抑制系統(tǒng)的正常運(yùn)行。這種安全系統(tǒng)需要對(duì)物體的形狀大小超過(guò)65-70mm。較小的對(duì)象將不會(huì)被檢測(cè)到,門也將不會(huì)打開(kāi)。
本次調(diào)查的目的
因?yàn)镹S客運(yùn)是我們最重要的客戶,我們正在積極尋找有利于我們的客戶的任何可能性,并進(jìn)行改善。專業(yè)車輛由于NedTrain咨詢,我們必須看清楚在各次列車系統(tǒng)存在的可能性和限制。隨著技術(shù)持續(xù)不斷的發(fā)展,在多體軟件程序的幫助下將表現(xiàn)出提高了系統(tǒng)的功能。由于門系統(tǒng)復(fù)雜的三維機(jī)制和需要工程領(lǐng)域內(nèi)的廣泛互動(dòng)(機(jī)械、電氣和氣動(dòng)),以前的分析方法被證明是限制在一定的復(fù)雜程度內(nèi)的。但多體模型會(huì)讓我們更直觀的觀察在列車門的運(yùn)動(dòng)中發(fā)生的各種現(xiàn)象。定義以下參數(shù):
●通過(guò)不同的幾何性質(zhì)的分析觀察列車門的開(kāi)啟和關(guān)閉動(dòng)作
●安全失效分析
●障礙抑制設(shè)備控制器的改進(jìn)
●檢修優(yōu)化
●探討改進(jìn)控制器的可行性和效益
●列車運(yùn)行和風(fēng)力與門運(yùn)動(dòng)的關(guān)系
●乘客誘導(dǎo)力量與門運(yùn)動(dòng)的關(guān)系
為了確定模擬的附加值,SM90列車門系統(tǒng)的ADAMS模型已開(kāi)發(fā)。本報(bào)告將重點(diǎn)放在模型開(kāi)發(fā)的第一步,并顯示上述目標(biāo)的可行性。這樣的結(jié)果將用來(lái)說(shuō)服NS的乘客相信對(duì)列車門系統(tǒng)的這些改進(jìn)是有益處的。系統(tǒng)描述圖1所示為SM90門系統(tǒng)的基本工作原則
圖1 SM90門系統(tǒng)
圖2 扭矩氣缸
按下“打開(kāi)或關(guān)閉”按鈕,激活一個(gè)微處理器并提供充分的壓力在扭矩缸的驅(qū)動(dòng)艙上。為了提高門的開(kāi)閉速度,此缸的排氣艙通過(guò)脈沖寬度調(diào)制的減壓閥與大氣相連。微處理器通過(guò)改變流出量實(shí)現(xiàn)減壓。瞬時(shí)流量控制是在門的角速度和非線性控制器的基礎(chǔ)上實(shí)現(xiàn)的。微處理器可以通過(guò)一個(gè)增壓閥提高排氣艙的壓力從而來(lái)降低門的速度。裝置這個(gè)增壓閥的作用是為了以防萬(wàn)一門的角速度過(guò)高從而超過(guò)某一閥值。這是一個(gè)普遍的規(guī)則,通過(guò)控制排氣艙從而使粘滑現(xiàn)象降到最低。壓力差導(dǎo)致扭矩缸活塞的位移,此位移結(jié)果作用在一個(gè)旋轉(zhuǎn)的圓柱體上(通過(guò)齒輪齒條傳動(dòng))。一處桿聯(lián)動(dòng)將這旋轉(zhuǎn)作用在兩個(gè)門扇機(jī)制中。通過(guò)這樣的方法此位置與門位置之間建立了獨(dú)特的位置鏈接(通過(guò)非線性機(jī)械傳動(dòng)方式)。扭矩氣缸的角位移通過(guò)位移傳感器測(cè)量。基于角度信息的微處理器控制扭矩缸的實(shí)時(shí)位置從而確定門的位置。圖3所示為該模型的圖形表示。
圖3 ADAMS上門系統(tǒng)模型
仿真模型是能夠重現(xiàn)開(kāi)啟和關(guān)閉門的動(dòng)作。它由機(jī)械門系統(tǒng)(門板、桿、密封件、停止塊),氣動(dòng)元件(活塞、高壓艙、氣動(dòng)閥)和電子元件(測(cè)量和控制部件)組成。所有的系統(tǒng)已在ADAMS/View環(huán)境下建模。氣動(dòng)系統(tǒng)的Saint Venant方程組已用于高壓艙氣體介質(zhì)的狀態(tài)描述。該模型已被測(cè)量結(jié)果驗(yàn)證,圖4顯示了在關(guān)門操作中的系統(tǒng)響應(yīng)。
圖4關(guān)門操作過(guò)程中的狀態(tài)響應(yīng)
圖5關(guān)門過(guò)程中的計(jì)算響應(yīng)
在開(kāi)門過(guò)程中開(kāi)啟腔壓力從1bar到10bar迅速增加,而關(guān)閉腔的壓力下降并由控制器控制以保持門所需的運(yùn)動(dòng)。由于活塞運(yùn)動(dòng),開(kāi)啟腔的壓力改變了一點(diǎn)導(dǎo)致體積增加。在開(kāi)啟門期間這種現(xiàn)象是清晰可見(jiàn)的,因?yàn)闄C(jī)械系統(tǒng)通過(guò)越過(guò)中心位置導(dǎo)致了一個(gè)很高的開(kāi)啟速度。在t=5時(shí)門已經(jīng)關(guān)閉而開(kāi)啟運(yùn)動(dòng)開(kāi)始。測(cè)量結(jié)果和計(jì)算響應(yīng)呈現(xiàn)良好的對(duì)應(yīng)。當(dāng)在中心位置是壓力暫時(shí)增加,這在測(cè)量圖中比計(jì)算響應(yīng)圖中顯示的更加明顯。這是由于現(xiàn)有的旁通閥,通過(guò)與關(guān)閉腔的連接限制了壓力的快速下降。此閥并未在計(jì)算機(jī)中建立模型。
門沉降
在火車的運(yùn)行中,門中停止塊的位置會(huì)因?yàn)槟p、橡膠或鋼構(gòu)件的塑性變形或維護(hù)操作而改變。據(jù)了解,在實(shí)際過(guò)程中,這些停止塊的錯(cuò)位會(huì)導(dǎo)致門不能關(guān)閉或者門在閉合位置的預(yù)緊力不足。同樣,門板的制導(dǎo)機(jī)制也被證明會(huì)因?yàn)檫@種現(xiàn)象而導(dǎo)致強(qiáng)度失效。要研究這種現(xiàn)象,停止塊的位置精度已被更改為1mm。圖6和圖7所示為開(kāi)啟和關(guān)閉動(dòng)作時(shí)凸起停止塊的壓力和推力(只顯示開(kāi)啟動(dòng)作)
圖6不同的凸起停止塊位置:壓力計(jì)算響應(yīng)
圖7不同的凸起停止塊位置:推力計(jì)算響應(yīng)
很明顯,壓力顯示表明只在開(kāi)啟或關(guān)閉動(dòng)作結(jié)束時(shí)和標(biāo)準(zhǔn)情況有偏差。推力作用在凸起停止塊上,因此門的制導(dǎo)機(jī)制增加約190%。這表明凸起停止塊位置的微小偏差也會(huì)造成嚴(yán)重的影響。由于火車的運(yùn)行導(dǎo)致的門移動(dòng)
出于安全原因,顯而易見(jiàn)的是列車門在列車運(yùn)行的時(shí)候應(yīng)是關(guān)閉的。在外力作用在門上時(shí),門不應(yīng)該出現(xiàn)明顯的位移。例如,當(dāng)火車通過(guò)隧道或乘客靠在門上時(shí)。當(dāng)這些情況發(fā)生時(shí),該系統(tǒng)應(yīng)進(jìn)一步推到鎖定位置。例:
●車速160km/h:運(yùn)行的火車在一米的距離上運(yùn)行速度為200km/h
●倚靠乘客:800N,400N每扇門因?yàn)檐囁佼a(chǎn)而添加到模型中的力如下圖所示
圖8作用在門板上的力與門位移的關(guān)系
最大側(cè)向位移約為1mm。制導(dǎo)機(jī)制的最大位移約為1000納米。結(jié)果表明,門應(yīng)該被進(jìn)一步推到鎖定位置。
總結(jié)
機(jī)械、氣動(dòng)、電子系統(tǒng)都集成在一個(gè)模型中的SM90門系統(tǒng)多體模型已經(jīng)被開(kāi)發(fā)出來(lái)了。雖然模型需要依據(jù)真實(shí)情況進(jìn)行改善,但仿真結(jié)果還是具有前瞻性的。進(jìn)一步改進(jìn)模型必須綜合包括氣動(dòng)室中的橡膠密封件的摩擦和減壓閥速度的實(shí)施。
它已被證明,目前的模式是有能力處理各種現(xiàn)實(shí)生活中的問(wèn)題與現(xiàn)有的門系統(tǒng)的運(yùn)作。該模型的初步結(jié)果將可用于顯示多體仿真的好處,為今后改進(jìn)SM90列車門系統(tǒng)打下基礎(chǔ)。
Simulation of an SM90 door system in ADAMS Edward de Jong, Christiaan Wattl NedTrain Consulting BV Introduction Nowadays the Dutch railways (NS) deals with a strong increase of the number of train passengers of approximately 6 percent per year. This means that the availability and reliability of the existing rolling stock is of major importance for the operator NS Passengers. Also the efficiency during train operation will have its impact on the daily train services. The most important measure to indicate the efficiency of the train service is by means of the number of technical primary delays. This means the number of delays caused by a (technical) failure which directly effect the train operation and results in a delay of more then 3 minutes. When travelling by train, the travelling time is determined by aspects like travelled distance, braking/accelerating performance as well as the stopping time at the intermediate stations. This time is determined by the number of passengers leaving or entering the train, the door geometry, and the opening and closing movements of the doors. The stop length for stop trains varies from approximately 60 seconds to 180 seconds. The amount of time needed to open or close the doors is approximately 6 seconds. This means that the time needed to operate the door can be as high as 20% of the total stopping time. Any limitation of this value will lead a direct decrease of the stopping time and results in a better performance. At the end of the closing and opening movement, the door is pushed in a overcentered position, resulting in a pretension of the system. The position and condition of the rubber stops define the amount of pre tension in the door system in the closed or opened position. In case these stops are degenerated by wear or settlement or when the position is modified during maintenance, this can result in operating failures. The door can not be closed and locked or does not stay in the open position. Both failures lead to delays in the train service and passenger discomfort while doors must be excluded from operation. While closing the doors an obstacle inhibition device is active which detects possible objects between the door blades. A change of sign in the speed of the door movements indicates a possible object between the door blades, resulting in the doors automatically being opened. However the characteristics of the object defines the resulting response of the doors and will not automatically lead to a reverse speed of the door blades. In that case the closing movement will not be stopped resulting in possible passenger injury or hazardous situations. Reducing the closing time of the door will therefore require also a review of the proper operation of the obstacle inhibition system. This safety system is only operative for object larger then 65-70 mm. Smaller object will not be detected and the door will not be opened. Purpose of this investigation With NS Passenger being our most important client we are actively looking for any possibilities and improvements which are beneficial to our client. As NedTrain Consulting is specialized in the rolling stock we have a clear look at the possibilities nd restrictions of the various train systems. With the ongoing technical possibilities and developments, the help of multi body software programs will give the opportunity to show the benefits by improving the functionality of the system. Because of the complex three dimensional mechanism of a door system and the interaction of various fields of engineering (mechanics, electrics and pneumatics) previous analysis methods proved to be limited to a certain complexity level. It is assumed that a multi body model will give insight in the various phenomena during door operation. The following goals are defined: Improved insight in the door opening and closing action with varying geometric properties Safety failure analysis Improvement of the obstacle inhibition device controller Overhaul optimisation Investigate the feasibility and benefits of an improved controller. Door movements due to train passage and wind forces Door movements due to passenger induced forces To determine the added value of simulation, an ADAMS model of a door system of an SM90 train has been developed. This presentation will focus on the first steps of development of the model and showing the feasibility to get to the above mentioned goals. The results will be used to convince NS Passenger of the potentials of these improvements in door system operation. System description The elementary working principle of a SM 90 swing-plug door system can be explained by figure 1. Figure 1 SM 90 door system Pushing an open or close button activates a microprocessor and puts full pressure on the driving compartment of a torque cylinder. To increase the speed of the door, the exhausting compartment of this cylinder is connected with the atmosphere via a depressurisation valve which is pulse width modulated. The microprocessor controls the depressurisation by varying this outflow. The momentary outflow control is found on the basis of the angular velocity of the door and a non-linear controller. The microprocessor can reduce the speed of the door by raising the pressure in the exhausting department using inflow control of a pressurisation valve. This pressurisation valve is activated in case the angular velocity is far too high and thereby exceeds a certain threshold value. It is a general rule that by controlling the exhausting compartment, the stick-slip phenomena are minimized. s cyl p opn V opn T opn p slt V slt T slt P_omgeving nozzle_slt1 G_slt1 phi_slt1 P_reservoir nozzle_slt10 G_slt10 phi_slt10 P_reservoir nozzle_opn10 G_opn10 phi_opn10 P_omgeving nozzle_opn1 G_opn1 phi_opn1 openzijde sluitzijde zuiger cilinder Figure 2 Torque cylinder The pressure difference leads to a displacement of the piston in the torque cylinder. This displacement results (via a gear-rack transmission) in a rotation of the cylinder. A rod-linkage translates this rotation into a transportation of the two door leaf mechanisms. In this way the position is linked (by means of a non-linear mechanical transmission) to a uniquely defined position of the door. The angular displacement of the torque cylinder is measured by means of a displacement sensor. on the basis of this angular information the microprocessor control the time-dependent position of the torque cylinder and thereby the position of the door system. Figure 3 shows a graphical representation of the model. Figure 3 ADAMS door model The simulation model is able to reproduce the opening and closing action of the door. It consists of the mechanical door system (door blades, levers, seals, stops) pneumatic units (piston and high pressure chambers, pneumatic valves) and electronic units (measuring and control part). All systems have been modelled within the ADAMS/View environment. For the pneumatic system the Saint Vennant equations have been used for the state description of the gas medium in the chambers. The model has been verified with measurement results. Figure 4 shows the response of the system during a closing operation. Figure 4 Measured response during closing operation Figure 5 Calculated response during closing operation During opening the pressure in the opening chamber increases quickly from 1 bar to 10 bar, while the pressure in the closing chamber decreases and is controlled by the controller to maintain the desired door movement. The pressure at the opening side changes a little due to the movement of the piston resulting in a volume increase. This phenomena is clearly visible during start of the opening movement as the mechanism moves through the overcentering position resulting in a high opening speed at a relieve small chamber volume. At t=5 s the door is closed and the opening movement starts. The measured and computed response show good correspondence. When in overcentering position the pressure temporarily increases which is in the measured response more visible then for the calculated response. This is due to the existing of a bypass valve which limits the fast decreasing pressure by connecting the closing chamber temporarily with the high pressure (10 bar) reservoir. This valve has not yet been modelled in the calculation program. Door settlement During the life of the train the position of the stops on the door and coach structure can change due to wear, plastic deformation of rubber or steel components or maintenance operations. It is known from practice that a false position of these stops can lead to doors not being closed or an insufficient pretension of the door in the closed position. Also the guidance mechanism of the door blades has shown strength failures due to this phenomena. To study this behaviour the position of the stops have been varied by 1 mm. Figure 6 and figure 7 below show the resulting pressures in the opening and closing chambers as well as the forces exerted on the bump stops (displayed for opening action only). Figure 6 Calculated response with varying bump stop position: pressures Figure 7 Calculated response with varying bump stop position: forces It is clear that the pressure show only deviations form the standard situation at the end of the opening or closing movement. The forces on the bump stops and as a result also on the guidance mechanism of the door blades show an increase of approximately 190%. This indicates the serious implications of small disturbance of the bump stop position. Door movements due to train passage For safety reasons it is obvious that the door should be closed at all times when the train is moving. No significant displacement should occur as a results of external forces on the door blades, e.g. when passing train, tunnel passage or passenger leaning on the door. When these situations occur the system should be pushed further into the locking position. As an example the following requirements are used: At vehicle speed 160 km/h: passing train with 200 km/h at 1 m distance Leaning passengers: 800 N, 400 N per door blade The resulting forces where added to the model with a short delay between the two door blades as a result of the vehicle speed. The resulting forces are show in the figure below: Figure 8 Door movements with external forces on door blades The maximum lateral displacement is approximately 1 mm. The maximum moment in the guidance mechanism of the door is approximately 1000 Nm. The results show that the doors are pushed further into the locking mechanism. Conclusion A multi body model of a SM90 door system is developed where the mechanical, pneumatic and electric systems are integrated in one model. Although the model needs improvements to fully represent the real life situation, the simulation results up till now are promising. Further model improvement have to be integrated including friction of the rubber seals in the pneumatic chambers and the implementation of the speed reducing valve. It has been shown that the current model is capable to deal with the various real life problems with the existing door system currently in operation by Dutch Railways. The preliminary results of the model will be used to show the benefits of multi body simulation for future improvement of the SM90 train door system. 1 N T D P A4 - P 1 European ADAMS User Conference November 15-16 2000, Rome Simulation of an SM90 door system in ADAMS Edward de Jong, Christiaan Wattl N T D P A4 - P 2 European ADAMS User Conference November 15-16 2000, Rome Introduction to NedTrain Consulting Formerly NS Materieel Engineering Subsidiary of Netherlands Railways (NS) Rolling stock engineering and consultancy 200 qualified employees 50% owner of ADAMS/Rail 2 N T D P A4 - P 3 European ADAMS User Conference November 15-16 2000, Rome Operational issues: Door controller: up to 20% needed for opening/closing movement Technical Primary Delays (TPD): Decreased reliability through varying door settlement Liability: increases risk of passenger injury through obstacle inhibition system Geometric properties Door movements due to external forces Feasibility is investigated by using simulation N T D P A4 - P 4 European ADAMS User Conference November 15-16 2000, Rome ADAMS simulations SM90 door system: first controlled door system Goals: Define maintenance requirements Reduce opening/closing time Minimize forces generated by obstacle inhibition system Investigate the influence of wind forces and passenger induced forces Total Service: Results will be used to show benefits to customer 3 N T D P A4 - P 5 European ADAMS User Conference November 15-16 2000, Rome Door system SM90 N T D P A4 - P 6 European ADAMS User Conference November 15-16 2000, Rome ADAMS door model Mechanical Electrical Pneumatic 4 N T D P A4 - P 7 European ADAMS User Conference November 15-16 2000, Rome Validation results Opening and closing movement Door angle and door velocity Pressures N T D P A4 - P 8 European ADAMS User Conference November 15-16 2000, Rome Validation results Opening and closing movement: measured response fair compliance within current scope , however improvements needed 5 N T D P A4 - P 9 European ADAMS User Conference November 15-16 2000, Rome Animation Normal closing and opening movement N T D P A4 - P 1 0 European ADAMS User Conference November 15-16 2000, Rome Simulation results (2) Door settlement (adjustment of stops) 6 N T D P A4 - P 1 1 European ADAMS User Conference November 15-16 2000, Rome Door settlement Force increase of 190% within range +1 to 1 mm ! Forces exerted on door stops N T D P A4 - P 1 2 European ADAMS User Conference November 15-16 2000, Rome Simulation results (3) External forces on door blades Relative speed 360 km/h at 1 m Passenger exerted force 800 N 7 N T D P A4 - P 1 3 European ADAMS User Conference November 15-16 2000, Rome Conclusions Model is capable of showing fair correspondence with measurements Can be used for various simulations Results will be used to initiate future improvements and optimization of door systems
收藏