塑料油壺蓋注塑模具設計【一模兩腔】【說明書+CAD】
塑料油壺蓋注塑模具設計【一模兩腔】【說明書+CAD】,一模兩腔,說明書+CAD,塑料油壺蓋注塑模具設計【一模兩腔】【說明書+CAD】,塑料,油壺,注塑,模具設計,說明書,仿單,cad
畢業(yè)設計說明書 塑料油壺蓋模具設計
華東交通大學理工學院
畢業(yè)設計說明書
設計題目: LDPE塑料油壺蓋注射模
設計編號:
學 院:華東交通大學理工學院
系 別:機電分院
專 業(yè):材料成型及控制工程
班 級:(二)班
學 號:
姓 名:
指導教師:
完成日期:2010年5月 日
答辯日期:2010年6月 日
摘 要
隨著現(xiàn)代社會的發(fā)展,模具行業(yè)也發(fā)展越來越快,模具加工精度,模具的應該范圍都越來越廣,因此模具在社會發(fā)展中的作用和地位也越來越大,越來越高。本次畢業(yè)設計以塑料油壺蓋為例,講述了模具的設計過程與設計方法。
油壺蓋的模具設計主要分為六個步驟。1分析制品及材料工藝性,2初選注射機的型號和規(guī)格,3.塑件注射工藝參數(shù)的確定,4.注射模的結構設計,5.模具裝配和試模,6.校核計算。
關鍵詞:塑料油壺蓋模具;細水口;;二次開模;拉料桿,螺紋強脫,試模
目 錄
中文摘要……………………………………………………………………………
英文摘要…………………………………………………………………………………
目 錄 ………………………………………………………………………………
引 言………………………………………………………………………………
1.分析制品及材料工藝性………………………………………………………
1.1LDPE材料分析…………………………………………………………………
1.2塑件的結構和尺寸精度及表面質量分析…………………………………………
1.3塑件體積和重量的計算……………………………………………………………
2.初選注射機的型號和規(guī)格……………………………………………………………
3.塑件注射工藝參數(shù)的確定……………………………………………………………
4.注射模的結構設計……………………………………………………………………
4.1分型面確定…………………………………………………………………………
4.2確定澆注系統(tǒng)………………………………………………………………………
4.2.1主流道設計………………………………………………………………………
4.2.2點澆口設計料穴設計…………………………………………………………
4.3確定型腔、型芯的結構及固定方式………………………………………………
4.3.1型腔、型芯的結構設計…………………………………………………………
4.3.2固定方式………………………………………………………………………
4.4型腔和型芯的工作尺寸計算……………………………………………………
4.5型腔壁厚和底版厚度計算………………………………………………………
4.5.1型腔壁厚………………………………………………………………………
4.5.2型腔底版厚……………………………………………………………………
4.6螺紋脫出方式的設計………………………………………………………………
4.7確定模具的導向機構……………………………………………………………
5.模具裝配和試?!?
6.校核計算……………………………………………………………………………
小 結……………………………………………………………………………………
謝 辭……………………………………………………………………………
參考文獻……………………………………………………………
- 4 -
畢業(yè)設計說明書 塑料油壺蓋模具設計
引 言
模具是為制件,也就是成形產品服務的,因此模具必然要以制件(成形產品)的發(fā)展趨勢為自己的發(fā)展趨勢,模具必須滿足他們的要求。制件發(fā)展趨勢主要是輕巧、精美、快速高效生產、低成本與高質量,每一項都預示了模具發(fā)展趨勢。現(xiàn)簡要分析如下:
要輕巧就會增加使用塑料及開發(fā)新材料,包括各種新型塑料、改性塑料、金屬塑料、鎂合金、復合材料等等,這就要求有新的成形工藝,從而也就要求有與之相適應的新型模具。例如,汽車上越來越多地采用高強度板也是為了減輕重量,對一些超高強度板進行熱成形及與之相適應的熱成形模具也就自然而然成為發(fā)展趨勢等等。
要精美,就要求外形美觀大方,內部無缺陷,這就要求有精細、精密和高質量模具與之相適應。目前我們在精細化方面差距很大,精細化往往被忽視,功虧一簣。
快速高效生產,這一方面是要求模具企業(yè)要盡量縮短模具生產周期,盡快向模具用戶交付模具,另一方面更重要的是要使用戶能用你提供的模具來快速高效地生產制品。例如一模多腔多件生產、疊層模具、利用好熱流道技術來縮短成形時間以及使用多層復合技術、模內裝飾技術、高光無痕注塑技術、在線檢測技術、多工序復合技術、多排多工位技術等等。同時制件成形過程智能化還要求有智能化的模具來適應。
低成本,這既要通過模具生產的設計、加工、裝配來實現(xiàn)模具的低成本制造和低成本供應,更重要的是要使模具用戶能使用模具來實現(xiàn)低成本生產。這就對模具提出了更高的要求。模具生產企業(yè)必須做到先使模具用戶賺錢,然后才能使自己賺錢。在要求低成本的過程中,無論是模具生產企業(yè)還是使用模具的企業(yè),不斷改善管理,逐步實現(xiàn)信息化管理都是企業(yè)的共同要求及進步和發(fā)展的方向。
高質量,要做到制品的高質量,首先必須是模具的高質量,模具的穩(wěn)定性一定要好,保證制品的一致性也要好,而且還要保證壽命。高質量模具與技術休戚相關。
除上述各點外,許多新領域、新興產業(yè)、新制件和個性化要求也都會對模具不斷提出新要求。所以發(fā)展趨勢的本身也是在不斷發(fā)展的。
從科技發(fā)展趨勢來看模具發(fā)展趨勢可以先從下列最基本的六個方面進行分析:
????新材料——模具新材料及為成形產品新材料成形的新型模具
????新工藝——新的成形工藝及模具加工的新工藝
????新技術——技術進步帶動模具生產逐步向超高速、超精和高度自動化方向發(fā)展
????信息化——數(shù)字化生產、信息化管理、充分利用IT技術
????網(wǎng)絡化——溶入和利用好世界全球化網(wǎng)絡
循環(huán)經濟與綠色制造一用盡量少的資源來創(chuàng)造盡量多的價值,包括回收再利用與環(huán)保等,不但模具要能這樣,而且更要使模具用戶也能這樣。
除上述所說的發(fā)展趨勢之我見以外,同時我們還認為,從與模具用戶的關系來說,模具和模具生產企業(yè)向來是比較依賴和比較被動的,發(fā)言權很少。我認為,這一現(xiàn)象應逐漸適當改變
上面所述的發(fā)展趨勢還只是一個概念性和東西,我們可以不斷的具體化和不斷的深化,例如CAD/CAE/CAM一體化,軟件的集成化、智能化、網(wǎng)絡化,計算機模擬仿真技術的進一步發(fā)展和三維設計的全面推廣應用,高速與超高速加工、精密與超精細微加工和復合加工及五軸加工等等,不再一一列舉??傊?,模具技術的發(fā)展趨勢是動態(tài)的,它必須不斷地來滿足模具用戶不斷發(fā)展的新趨勢,同時,它也與世界科技發(fā)展密切關聯(lián)。它們相互之間可以互相促進和相得益彰。當然,對于整個模具來說模具技術發(fā)展趨勢只是其中的一個部分,諸如生產組織形式、市場經營模式以及管理等等,都有其一定的發(fā)展趨勢,也是很值得研討的.
1.分析制品及材料工藝性
1.1LDPE材料工藝分析
低密度聚乙烯(LDPE)是高壓下乙烯自由基聚合而獲得的熱塑性塑料。LDPE是樹脂中的聚乙烯家族中最老的成員,二十世紀四十年代早期就作為電線包皮第一次商業(yè)生產。LDPE綜合了一些良好的性能:透明、化學惰性、密封能力好,易于成型加工。這決定了LDPE是當今高分子工業(yè)中最廣泛使用的材料之一。
化學和性能
乙烯是聚乙烯制品的基本結構單元。它是從煉油廠氣、液化的石油氣或液態(tài)烴中獲得的無色氣體。因為它是許多其它工業(yè)化學品和聚合物的成分,所以不斷地存在乙烯供應的競爭。這種獲得乙烯的競爭具有戲劇性地影響著聚乙烯的價格和有效價值。例如:1990年,國內乙烯生產能力約為465億磅,其中 51%用于象聚乙烯這樣的聚合物的生產。
常規(guī)的LDPE可用兩種方法生產:管式法或釜式法。兩種制法都是將高純度乙烯通入高壓(103到276MPa)高溫(300到500F)含有引發(fā)劑的反應器中。引發(fā)劑或是氧氣或是一種有機過氧化物。反應終止的實現(xiàn)是通過加入鏈終止劑或靠兩個分子鏈的連結。
與其它聚乙烯(HDPE和LLDPE)制法獲得的線性結構不同,通過高壓手段制得的聚合物是分支結構。這種分支結構賦與常規(guī)LDPE優(yōu)異的透明性、曲撓性及易于擠出的性能。為滿足不同應用而特制的LDPE樹脂是通過分子量、結晶度及分子量分布MWD的平衡與控制而得到的。
分子量是表示構成聚合物的所有分子鏈的平均長度。為了方便,熔融指數(shù)(MI)被選作塑料工業(yè)分子量大小的量度。熔融指數(shù)用克/10分鐘給出,它與分子量的大小成反比。對于LDPE,熔融指數(shù)反映了樹脂的流動性能和涉及成品大形變的性質。降低MI(增大分子量)在增加大部分強度性能的同時,降低了LDPE的流動性和制造過程中樹脂流向薄壁的能力。LDPE中的結晶度是樹脂中存在的分支短鏈數(shù)量的函數(shù)。對于LDPE,結晶度正常浮動范圍為 30—40%。
增加 LDPE的結晶度將增大 LLDPE的剛度、抗化學腐蝕性、透氣性能、拉伸強度、耐熱性;同時,降低了LDPE的沖擊強度、撕裂強度和抗應力開裂性。分子量分布(MWD)或聚合度分布性定義為重均分子量與數(shù)均分子量的比值。塑料工業(yè)中,MWD值3—5的樹脂被認為是具有窄的分子量分布,MWD值6—12為中等分子量分布,MWD值在13以上視為寬分子量分布。MWD主要反映與流動相關的性能。具有相等平均分于量的樹脂,寬分子量分布的在加工過程顯示了比窄分子量分布的樹脂具有更好的流動性。WD對最終使用性能有些影響。但是,MWD的影響一般都被分子量的變化影響掩蓋。
加工
LDPE級別可以滿足大部分熱塑性成型加工技術的要求。包括:薄膜吹制、薄膜鑄制、擠壓貼膠、電線電纜貼膠、注射成型、吹塑成型。
應用
LDPE可單獨使用或與聚乙烯家族其它成員共混使用。廣泛應用于包裝。建筑、農業(yè)、工業(yè)和消費市場。擠出薄膜。LDPE最大的銷路是制作薄膜(<12毫時)。吹塑或鑄壓工藝生產出的單一和復合LDPE薄膜占LDPE國內消費總量的 55%以上。LLDPE制做的薄膜表現(xiàn)了良好的光學性能、強度、曲撓性、密封性以及緩慢的氣味擴散性和化學穩(wěn)定性。LDPE用來包裝面包、農產品、快餐食品、紡織品、經久性消費品及一些工業(yè)制品。LDPE也可用作非包裝薄膜,比如:一次性尿布、農用薄膜和縮水膜。
擠壓貼膠。它是LDPE的另一個主要市場。由于LDPE分子的結構特點,它是聚乙烯樹脂家族中唯一能夠滿足擠壓貼膠加工工藝要求的樹脂。貼膠提供了有助于成品包裝密封的防護層,必不可少的優(yōu)良的拉伸性能、持久的覆蓋性和低的氣味擴散性。典型的熔融指數(shù)范圍為3—15克/1O分鐘。LDPE貼膠可覆蓋在很多基質上面,如:紙、板,布料和其它高分子材料。LDPE貼膠是保證基質熱密封性和防濕性的一個經濟而有效的手段。使用LDPE貼膠的市場有盛牛奶的盒子,無菌防腐包裝,食品包裝。膠帶和紙制品。
LDPE復合擠壓廣泛作為高阻隔復合層壓板的一種組分。重要的要求就是防濕和密封。滿足不同的要求,樹脂的性能隨之不同。它可用于無菌包裝、藥品與日用品的包裝。
模塑。在聚乙烯樹脂家族的競爭中,吹塑成型與注射成型使用常規(guī)LDPE已經相對穩(wěn)定。LDPE樹脂由于它的抗曲撓性和加工特性而被用于模塑成型。樹脂熔融指數(shù)范圍為0.5—2.0克/10分鐘,密度變化范圍 0.918—0.922克/立方厘米。LDPE模塑應用于制做要求擠壓性能的醫(yī)用和日用消費瓶以及封密件。
電線與電纜。LDPE最初是用作電線、電纜的包皮材料。LDPE顯示了優(yōu)異的電性能和抗磨性能,這些性能是市場上嚴格要求的。樹脂熔融指數(shù)范圍為0.25-2.0克/10分鐘,密度為0.918一0.932克/立方厘米。當今,LDPE樹脂被用作電訊電纜的外皮。
商業(yè)用的PE-LD材料的密度為0.91~0.94 g/cm3。PE-LD對氣體和水蒸汽具有滲透性。PE-LD
的熱膨脹系數(shù)很高不適合于加工長期使用的制品。
如果PE-LD的密度在0.91~0.925 g/cm3之間,那么其收縮率在2%~5%之間;如果密度在
0.926~0.94 g/cm3之間,那么其收縮率在1.5%~4%之間。當前實際的收縮率還要取決于注塑工藝參數(shù)。
PE-LD在室溫下可以抵抗多種溶劑,但是芳香烴和氯化烴溶劑可使其膨脹。同PE-HD類似,PE-LD容易發(fā)生環(huán)境應力開裂現(xiàn)象。
1.2塑件的結構和尺寸精度及表面質量分析 產品如下圖:
二維圖
三維模型圖
產品結構較為簡單,主要結構特點表現(xiàn)為,外側有12個防滑筋,內側有內螺紋M50X3。
該零件尺寸均為一般重要性尺寸,這些尺寸精度為MT7級(GB/T1486—1993)便可,螺紋主,大徑,小徑要控制好,保證以后好裝配。
產品外面要求較高,所以采用細水口進料,去澆口后,澆口痕很小
該零件不屬于受力部件,無特殊受力要求。
1.3計算塑件的體積和重量:
查設計手冊后得知LDPE的密度為0.91g/cm^3,
通過三維軟查詢本產品的質量特性得知產品體積V=23817.240850588 mm^3=23.8cm3
,根據(jù)公式M=ρ V=0.89x23.8=106.37.85=21.66(g)
2.初選注射成型機的型號和規(guī)格
初選取注塑成型設備的原則是產品質量,根據(jù)證計算得知產品的重量21.66g
因為產品為一模二腔,產品的質量為21.66gx2=43.32g,所以我們初步選用HTF58x1/G,它的具體參數(shù)如下圖,
3.塑件注射工藝參數(shù)的確定
注塑模工藝條件:
干燥:一般不需要
熔化溫度:180~280C
模具溫度:20~40C
為了實現(xiàn)冷卻均勻以及較為經濟的去熱,建議冷卻腔道直徑至少為8mm,并且從冷卻腔道到
模具表面的距離不要超過冷卻腔道直徑的1.5倍。
注射壓力:最大可到1500bar。
保壓壓力:最大可到750bar。
注射速度:建議使用快速注射速度。
4.注射模的結構設計
4.1確定分型面
確定分面選擇原則如下:
1. 分型面的選擇應便于脫模,此為必要條件。
2. 分型面的選擇應有利于保證塑件的精度要求
3. 有利于塑料充模成型,有利于排氣。
4. 分型面的選擇應有利于側向抽芯。
5. 不影響制品外觀,尤其對外觀有明確要求的制品,更應該注意分型面。
6. 分型面的選擇應便于模具加工制造。
7. 有利于保證開模后產品留在動模側。
本模具的分型面為產品底面,如下圖:
4.2確定澆注系統(tǒng)
4.2.1 主流道設計
噴嘴前端孔徑:d2=Φ3。6mm;
噴嘴前端球面半徑:SR1=16mm;
主流道錐度為2度,
為便于將凝料從主流道中拔出,將主流道設計成圓錐形,其斜度為2°~ 4°,取2°,,澆口套熱處理要求淬火50-60HRC。為減少熔體充模時的壓力損失和塑料損耗,應盡量縮短主流道的長度, 澆口套主要有如下三種樣式,在模具設計中可根據(jù)實際須要選擇
4.2.2 點澆口設計料穴設計
點澆口優(yōu)點:開模時澆口自動拉斷,澆口處的摻于應力小,可實現(xiàn)自動化生產,提高生產效率,便模具制造成本相對較高。
為了模具結構簡單本點澆品拉斷采用發(fā)下圖方式,
如上圖利用分流道未端斜度倒扣拉斷點澆口
點澆口入膠處如下圖:
如上圖進膠處選用0。6mm
5.3
4.3確定型腔、型芯的結構及固定方式
4.3.1型腔、型芯的結構設計
為了加長模個使用壽命,型腔采用P20鑲塊結構.。
4.3.2固定方式:
如下圖型腔鑲塊用碰模好后用螺釘緊固在動模模板上。
型腔鑲塊的固定
4.4型腔和型芯的工作尺寸計算
成型零件工作尺寸計算公式如下
型腔徑向尺寸計算公式為L+δz =[(1+)L-χΔ] +δz
型腔深度尺寸計算公式為H+δz =[(1+)H-χΔ] +δz
型芯徑向尺寸計算公式為=
型腔深度尺寸計算公式為=
其中為L+δz模具型腔的徑向尺寸;H+δz為模具型腔的深度尺寸;為模具型芯的徑向尺寸;為模具型芯的高度尺寸;
本模個設計中,產品成形部分的工作尺寸按產品的收縮值計算,這種方法實用,且效率高
4.5型腔壁厚和底板厚度計算
4.5.1動模墊板厚度理論計算公式如下
h=K(FL/2B[δ彎])1/2
F=Ap
h——動模墊板厚(mm);
K——修正系數(shù),取0.6~0.75;
F——動模墊板受的總壓力(N);
L——支承塊間距(mm);
B——動模墊板寬度(mm);
[δ彎]——彎曲許用應力(MPa);
A——塑件及澆注系統(tǒng)在分型面上的投影面積(mm2);
p——型腔壓力,一般取25~45MPa。
在本模具設計中采用下面的經驗數(shù)把確定
4.6螺紋強脫方設計
內螺紋采用推件板強脫方式,如下圖
動定模分開后,由注塑機上的頂棍通過頂動推板,推板向上運動帶動推件板上運
動,使產品脫離型芯。
4.7確定導向機構
導向機構主要就是導柱和導套配合,通常配合公差帶取H7/h6,導套和模板配合公差帶取為H7/n6。另為了更好的證合模精度,模具還設計了輔助導向機構—矩形精定位組件,如下圖:
導柱,導套零件圖如下
導柱
導套
導柱外圓要求用磨削加工到尺寸,表面粗糙度在0.8以內。直線度,圓度在0.01以內,與導大套配合處要求開設油槽。
導套內孔研磨到尺寸,粗糙度在0.6以內。
5模具裝配和試模
模具裝配是模具制造過程中的關鍵工序。模具裝配的質量將影響制件的質量及模具的使用、維修和模具的壽命,又將影響模具的制造周期和生產成本,是模具制造中的重要環(huán)節(jié)。
A, 裝配目的
模具裝配是根據(jù)模具的結構特點、各零件間的相互關系和技術條件,以一定的裝配順序和方法,將符合圖樣技術要求的模具零件連接固定為組件、部件,直至裝配成滿足使用要求的模具。模具裝配可分為組件裝配、部件裝配和總裝配等。
B, 裝配內容
選擇裝配基準,組件裝配、調整,修配、研磨拋光、檢驗和試模等環(huán)節(jié),通過裝配達到模具各項精度指標和技術要求
2,試模產品質量分析
當注射成型得到了近乎完整的制件時,制件本身必然存在各種各樣的缺陷,這種缺陷的形成原因是錯綜復雜的,一般很難一目了然,要綜合分析,找出其主要原因來著手修正,逐個排出,逐步改進,方可得到理想的樣件。下面就對度模中常見的成型制品主要缺陷及其改進的措施進行分析。
(1) 注射填充不足
所謂填充不足是指在足夠大的壓力、足夠多的料量條件下注射不滿型腔而得不到完整的制件。這種現(xiàn)象極為常見。其主要原因有:
a. 熔料流動阻力過大
這主要有下列原因:主流道或分流道尺寸不合理。流道截面形狀、尺寸不利于熔料流動。盡量采用整圓形、梯形等相似的形狀,避免采用半圓形、球缺形料道。熔料前鋒冷凝所致。塑料流動性能不佳。制品壁厚過薄。
b. 型腔排氣不良
這是極易被忽視的現(xiàn)象,但以是一個十分重要的問題。模具加工精度超高,排氣顯得越為重要。尤其在模腔的轉角處、深凹處等,必須合理地安排頂桿、鑲塊,利用縫隙充分排氣,否則不僅充模困難,而且易產生燒焦現(xiàn)象。
c. 鎖模力不足
因注射時動模稍后退,制品產生飛邊,壁厚加大,使制件料量增加而引起的缺料。應調大鎖模力,保證正常制件料量。
(2) 溢邊(毛刺、飛邊、批鋒)
與第一項相反,物料不僅充滿型腔,而且出現(xiàn)毛刺,尤其是在分型面處毛刺更大,甚至在型腔鑲塊縫隙處也有毛刺存在,其主要原因有:
a. 注射過量
b. 鎖模力不足
c. 流動性過好
d. 模具局部配合不佳
e. 模板翹曲變形
(3) 制件尺寸不準確
初次試模時,經常出現(xiàn)制件尺寸與設計要求尺寸相差較大。這時不要輕易修改型腔,應行從注射工藝上找原因。
a. 尺寸變大
注射壓力過高,保壓時間過長,此條件下產生了過量充模,收縮率趨向小值,使制件的實際尺寸偏大;模溫較低,事實上使熔料在較低溫度的情況下成型,收縮率趨于小值。這時要繼續(xù)注射,提高模具溫度、降低注射壓力,縮短保壓時間,制件尺寸可得到改善。
b. 尺寸變小
注射壓力偏低、保壓時間不足,制在冷卻后收縮率偏大,使制件尺寸變小;模溫過高,制件從模腔取出時,體積收縮量大,尺寸偏小。此時調整工藝條件即可。通過調整工藝條件,通常只能在極小范圍內使尺寸京華,可以改變制件相互配合的松緊程度,但難以改變公稱尺寸。
對以上出現(xiàn)的缺陷調試時,盡可能先采用改變成形工藝條件,后采用修正模具來消除成形缺陷。以下的內容均從這兩個方面來討論。
熱塑性塑料注射成形件的常見缺陷及消除措施如下。
1. 缺料(注射量不足)
消除措施如下:
工藝條件:增大注射壓力;延長成形周期;延長保壓時間;調整材料供給;提高熔料溫度;提高模具溫度;供給干燥過的熔料。
模具條件:加大主流道、分流道和澆口;減小澆口區(qū)面積;加大噴嘴;增加排氣槽;改變澆口位置。
2. 氣孔
消除措施如下:
工藝條件:增大注射壓力;延長成形周期;調整材料供給;降低熔料溫度;降低模具溫度。
模具條件:加大主流道、分流道和澆口;改變冷卻水道位置;改變澆口位置。
3. 溢料飛邊
消除措施如下:
工藝條件:減小注射壓力;縮短保壓時間;降低熔料溫度;增大合模壓力。
模具條件:矯正修理分型面。
4. 著色不均勻
消除措施如下:
工藝條件:縮短保壓時間;降低熔料溫度;提高模具溫度;供給干燥過的物料;物料不得帶有雜質、灰塵。
模具條件:加大主流道、分流道和澆口;減小澆口區(qū)面積。
5. 翹曲變形
消除措施如下:
工藝條件:增大注射壓力;延長成形周期;延長保壓時間;降低熔料溫度;降低模具溫度;使用矯正框架。
模具條件:加大噴嘴;改變冷卻水道位置。
6. 波狀痕跡
消除措施如下:
工藝條件:增大注射壓力;延長成形周期;延長保壓時間;調整原料供給;降低熔料溫度;降低模具溫度。
模具條件:加大噴嘴;改變冷卻水道位置。
7. 尺寸不穩(wěn)定
消除措施如下:
工藝條件:增大注射壓力;延長成形周期;延長保壓時間;降低熔料溫度;降低模具溫度。
模具條件:加大主流道、分流道和澆口;減小澆口區(qū)面積;加大噴嘴;改變冷卻水道位置;改變澆口位置。
8. 熔接痕強度低
消除措施如下:
工藝條件:減小注射壓力;延長保壓時間;降低熔料溫度;減慢注射速度。
模具條件:增加排氣槽;檢查噴嘴加熱部分。
9. 表面質量差
消除措施如下:
工藝條件:增大注射壓力;縮短保壓時間;增大合模壓力;提高模具溫度;降低模具溫度;減慢注射速度;物料不得帶有雜質、灰塵;使用矯正框架。
模具條件:加大主流道、分流道和澆口;改變冷卻水道位置;增加排氣槽;改變澆口位置;研磨模腔表面;增加冷料穴容量;研磨主流道、分流道和澆口。
10. 塑件粘模
消除措施如下:
工藝條件:減小注射壓力;縮短保壓時間;降低熔料溫度;降低模具溫度。
模具條件:加大主流道、分流道和澆口;減小澆口區(qū)面積;研磨模腔表面。
11. 主流道凝料粘模
消除措施如下:
工藝條件:縮短保壓時間。
模具條件:改變噴嘴位置;研磨主流道襯套;改變主流道拉料桿形式。
12. 脆
消除措施如下:
工藝條件:縮短保壓時間;降低熔料溫度;提高模具溫度;供給干燥過的物料。
模具條件:加大主流道、分流道和澆口。
13. 表面硬度、強度不足
消除措施如下:
工藝條件:增大注射壓力;延長保壓時間;縮短保壓時間;降低熔料溫度;提高模具溫度;供給干燥過的物料;減慢注射速度;物料不得帶有雜質、灰塵。
模具條件:加大主流道、分流道和澆口;減小澆口區(qū)面積;改變冷卻水道位置;增加排氣槽;改變澆口位置;研磨模腔表面;增加冷料穴容量;研磨主流道、分流道和澆口。
3、注塑機操作過程注意事項
養(yǎng)成良好的注塑機操作習慣對提高機器壽命和生產安全都大有好處。
開機之前:(1)檢查電器控制箱內是否有水、油進入,若電器受潮,切勿開機。應由維修人員將電器零件吹干后再開機。(2)檢查供電電壓是否符合,一般不應超過±15%。(3)檢查急停開關,前后安全門開關是否正常。驗證電動機與油泵的轉動方向是否一致。(4)檢查各冷卻管道是否暢通,并對油冷卻器和機筒端部的冷卻水套通入冷卻水。(5)檢查各活動部位是否有潤滑油(脂),并加足潤滑油。(6)打開電熱,對機筒各段進行加溫。當各段溫度達到要求時,再保溫一段時間,以使機器溫度趨于穩(wěn)定。保溫時間根據(jù)不同設備和塑料原料的要求而有所不同。 (7)在料斗內加足足夠的塑料。根據(jù)注塑不同塑料的要求,有些原料最好先經過干燥。(8)要蓋好機筒上的隔熱罩,這樣可以節(jié)省電能,又可以延長電熱圈和電流接觸器的壽命。
操作過程中:(1)不要為貪圖方便,隨意取消安全門的作用。(2)注意觀察壓力油的溫度,油溫不要超出規(guī)定的范圍。液壓油的理想工作溫度應保持在45~50℃之間,一般在35~60℃范圍內比較合適。(3)注意調整各行程限位開關,避免機器在動作時產生撞擊。
工作結束時:(1)停機前,應將機筒內的塑料清理干凈,預防剩料氧化或長期受熱分解。(2)應將模具打開,使肘桿機構長時間處于閉鎖狀態(tài)。(3)車間必須備有起吊設備。裝拆模具等笨重部件時應十分小心,以確保生產安全。
6. 注射機校核
本次模具設計中初選注塑機型號為HTF58X1/G,它的技術參數(shù)如下
6.1注射壓力的校核
注射機的額定壓力Pe=184MPa,塑料成型時所需的壓力Po=127MPa,Pe≥Po,
所以滿足要求。
6.2模具厚度H與注射機閉合高度的校核
Hmin<H<Hmax
Hmin—注射機允許最小模厚(310mm)
Hmax—注射機允許最大模厚(110mm)
而模具閉合的高度H為276mm. 因為110<276<310 所以滿足要求
模具總高度如下圖
6.3頂出行程的校核
注射機最大頂出距離為70mm,產品的高度為30mm,所以頂出行程40到45。因此滿足要求。
結論:根據(jù)校核注射機,完全能夠滿足該模具的使用要求。
小 結
1.本模具內螺紋采用了強脫方式脫模,螺紋脫模方很還有用齒輪旋轉脫模,用嵌件方式手動脫模。
2.為了加長模個使用壽命,型腔采用P20鑲塊結構.
通過對本模具的總體結構的精心設計,加深了對模具各部件及模具生產中的條個環(huán)節(jié)的了解,加強了專業(yè)知識的實際運用能力,綜合上述,本次設計較為成功。
謝 辭
參考文獻
[1]廖月瑩.塑料模具設計指導與資料匯編.大連:大連理工大學出版社,2007
[2]曲華昌.塑料成型工藝與模具設計.北京:高等教育出版社,2009
[3]任先明.塑料模具設計指導.國防工業(yè)出版社,2006
[4]鄒繼強.塑料模具設計參考資料匯編.北京:清華大學出版社,2005
[5]王鵬駒.塑料模具技術手冊.北京:機械工業(yè)出版社,1999
[6]李德群.塑料成型模具設計.武漢:華中理工大學出版社,1990
[7]許發(fā)樾主編.實用模具設計與制造手冊.北京:機械工業(yè)出版社,2001
29
編號:
畢業(yè)設計(論文)外文翻譯
(原文)
學 院: 國防生學院
專 業(yè): 機械設計制造及其自動化
學生姓名: 柯招軍
學 號: 1000110104
指導教師單位: 機電工程學院
姓 名: 曹泰山
職 稱: 講 師
2014年 3 月 9 日
桂林電子科技大學畢業(yè)設計(論文)外文翻譯原文 第37頁 共38頁
Incorporating Manufacturability Considerations during Design of Injection Molded Multi-Material Objects
Ashis Gopal Banerjee, Xuejun Li, Greg Fowler, Satyandra K. Gupta1
Mechanical Engineering Department and
The Institute for Systems Research
University of Maryland, College Park, MD 20742, U.S.A.
ABSTRACT
The presence of an already molded component during the second and subsequent molding stages makes multi-material injection molding different from traditional injection molding process. Therefore, designing multi-material molded objects requires addressing many additional manufacturability considerations. In this paper, we first present an approach to systematically identifying potential manufacturability problems that are unique to the multi-material molding processes and design rules to avoid these problems. Then we present a comprehensive manufacturability analysis approach that incorporates both the traditional single material molding rules as well as the specific rules that have been identified for multi-material molding. Our analysis shows that sometimes the traditional rules need to be suppressed or modified. Lastly, for each of the new manufacturability problem, this paper describes algorithms for automatically detecting potential occurrences and generating redesign suggestions. These algorithms have been implemented in a computer-aided manufacturability analysis system. The approach presented in this paper is applicable to multi-shot and over molding processes. We expect that the manufacturability analysis techniques presented in this paper will help in decreasing the product development time for the injection molded multi-material objects.
Keywords: Automated manufacturability analysis, generation of redesign suggestions, and multi-material injection molding.
1 INTRODUCTION
Over the last few years, a wide variety of multi-material injection molding (MMM) processes have emerged for making multi-material objects, which refer to the class of objects in which different portions are made of different materials. Due to fabrication and assembly steps being performed inside the molds, molded multi-material objects allow significant reduction in assembly operations and production cycle times. Furthermore, the product quality can be improved, and the possibility of manufacturing defects, and total manufacturing costs can be reduced. In MMM, multiple different materials are injected into a multi-stage mold. The sections of the mold that are not to be filled during a molding stage are temporally blocked. After the first injected material sets, then one or more blocked portions of the mold are opened and the next material is injected. This process continues until the required multi-material part is created. Nowadays, virtually every industry (e.g., automotive, consumer goods, toys, electronics, power tools, appliances) that makes use of traditional single-material injection molding (SMM) process is beginning to use multi-material molding processes. Some common applications include multi-color objects, skin-core arrangements, in-mold assembled objects, soft-touch components (with rigid substrate parts) and selective compliance objects. Typical examples of each class of application are shown in Fig. 1.
There are fundamentally three different types of multi-material molding processes. Multi-component injection molding is perhaps the simplest and most common form of MMM. It involves either simultaneous or sequential injection of two different materials through either the same or different gate locations in a single mold. Multi-shot injection molding (MSM) is the most complex and versatile of the MMM processes. It involves injecting the different materials into the mold in a specified sequence, where the mold cavity geometry may partially or completely change between sequences. Over-molding simply involves molding a resin around a previously-made injection-molded plastic part. Each of the three classes of MMM is considerably different. Each specific MMM process requires its own set of specialized equipment; however, there are certain equipment requirements that are generally the same for all types of MMM. Techniques described in this paper are applicable to over-molding and multi-shot molding.
Currently only limited literature exists that describes how to design molded multi-material objects. Consequently very few designers have the required know-how to do so. Consider an example of a two piece assembly consisting of part A and part B to be produced by multi-material molding. In fact, many new users believe that if part A and part B meet the traditional molding rules then assembly AB will also be moldable using multi-material molding. By moldable we mean that the assembly (or part) can be molded using one or more MMM (or SMM) processes such that basic functional and aesthetic requirements for the part or assembly are satisfied and the mold cavity shape can be changed (i.e. mold can be opened, pieces may be removed or inserted and then mold can be closed) without damaging the mold pieces. However, this notion is not always correct. Fig. 2 shows an assembly to be molded by MMM. In this case, both parts can be individually molded without any problem. However, molding them as an assembly using over-molding process leads to manufacturability problems. After molding the inner part in the first stage, it is not possible to carry out second stage molding as the injected plastic will flow over the inner part and damage the surfaces of the already molded component. This emphasizes the need for developing new design rules that are specific to addressing manufacturability problems encountered in multi-material molding. Detection of this problem and corresponding redesign suggestion will be described in sub-section 5.3.
On the other hand, there are molded multi-material assemblies where at least one of the parts would have not been moldable as an individual piece using traditional molding. However, this part can be molded when done as a part of the assembly. Fig. 3 highlights such a case. Although application of traditional plastic injection molding rules would have concluded that component B cannot be manufactured, it is possible to mold assembly AB by choosing an appropriate molding sequence. For example, in this case we first need to mold part A and then mold part B using overmolding operation.
The reason why MMM appears to be significantly different from SMM can be explained as follows. The part that has been molded first (component A) acts as the “mold piece” during the second molding stage. Thus, a plastic mold piece is present in addition to the metallic mold pieces during this molding stage. Hence, this second stage is fundamentally different in nature from conventional single-material injection molding. Fig. 4 illustrates this condition by depicting the two molding stages in rotary platen multi-shot molding. Although the shape of the core remains identical in both the stages, the cavity shape changes and already molded component A acts as an additional “mold piece” in the second shot.
Moreover, the first stage part that acts as plastic “mold piece” is not separated from the final assembly. This forces us to avoid applying some of the traditional molding design rules on certain portions of the gross shape of the overall object also referred as gross object. By gross object, we mean the solid object created by the regularized union of the two components. That is why, simply ensuring that the first stage part and the gross shape are moldable do not solve this problem either. Fig. 5 illustrates this fact; blindly checking all the faces of the gross object for presence of undercuts leads us to wrongly conclude that it cannot be molded. In reality, this is not the case and we should only test the faces that need to be demolded (i.e., separated from the mold pieces) during that molding stage while determining a feasible molding sequence.
Based on the above discussion, we conclude that a new approach needs to be developed to analyze manufacturability of molded multi-material objects. In the current paper we only consider manufacturability problems arising due to the shape of the components and the gross object. Fig. 6 shows an example where undercuts create problems; they need to be eliminated in order to form a feasible molding sequence. The gross object shown in that figure cannot be made by any MMM process, because neither of the two components is moldable due to the presence of deep, internal undercuts. Slight redesign of component A enables us to carry out MMM operation – component A can be injected first and then component B, provided they have similar melting points or A melts at a higher temperature than B. Section 3 systematically derives five such new manufacturability problems that arise in multi-material molding from the state transition diagram representing the process flow.
The next task in developing a systematic manufacturability analysis methodology is to develop a detailed approach for applying these new rules. A comprehensive approach to outline how and when the new multi-material molding design rules need to be applied and traditional single material molding rules have to be applied, modified or suppressed has been proposed in Section 4. Finally, algorithms have been presented to detect violations of such rules and generate feasible redesign suggestions in Section 5. All the algorithms have been implemented in a computer-aided manufacturability analysis system. We conclude this paper by stating its contributions and limitations in Section 6.
2 RELATED RESEARCH
A wide variety of computational methods have emerged to provide software aids for performing manufacturability analysis [Gupt97a, Vlie99]. Such systems vary significantly by approach, scope, and level of sophistication. At one end of the spectrum are software tools that provide estimates of the approximate manufacturing cost. At the other end are sophisticated tools that perform detailed manufacturability analysis and offer redesign suggestions. For analyzing the manufacturability of a design, the existing approaches can be roughly classified into two categories. In direct approaches [Ishi92, Rose92, Shan93], shape-based rules are used to identify infeasible design attributes from direct inspection of the design description. In indirect or plan-based approaches [Gupt95, Gupt97b, Gupt98, Haye89, Haye94, Haye96], the first step is to generate a manufacturing plan, and then to evaluate the plan in order to assess the manufacturability of design. This approach is useful in domains where there are complex interactions between manufacturing operations.
Several leading professional societies have published manufacturability guidelines for molded plastic parts to help designers take manufacturability into account during the product design phase [Bake92, Truc87]. Poli [Poli01] has also described qualitative DFM rules for all the major polymer processing processes including injection molding, compression molding and transfer molding. Moreover, companies such as General Electric [Gene60] have generated their own guidelines for the design of plastic parts. Such guidelines show examples of good and bad designs. It is left to the designer’s discretion to apply them as and when necessary. Basically, there are two types of guidelines. The first type deals with manufacturability issues, whereas the second type deals with part functionality. We will only cover the first type of guidelines here. They are listed as follows.
a) Fillets should be created and corners should be rounded so that the molten plastic flows smoothly to all the portions of the part. Use of radii and gradual transitions minimize the degree of orientation associated with mold filling, thereby resulting in uniform mold flow [Mall94]. Moreover, this also avoids the problem of having high stress concentration. Fig. 7 shows an example of how part design needs to be altered to get rid of sharp corners.
b) The parting line must be chosen carefully so that “parting” and metal “shut-off” flashes can be minimized. Typically, flashes (solidified leakages of plastic material) occur along the parting line, where the mold pieces come in direct contact with each other. Fig. 8 illustrates how the stiffening ribs on a part have to be redesigned in order to change the location of the parting line. This consequently changes the flash formation position. In the first case, flashes run all along the part, destroying the part quality. However, they occur on the top surface of the part in the second design, and hence can be easily removed later on.
c) Thin and uniform section thickness should be used so that the entire part can cool down rapidly at the same rate. Thick sections take a longer time to cool than thin sections. For example, in the first part shown in Fig. 9, the thicker, hotter sections of the molding will continue to cool and shrink more than the thinner sections. This will result in a level of internal stress in the portions of the part where the wall thickness changes. These residual, internal stresses can lead to warpages and reduced service performances. If possible, the part must be redesigned to eliminate such thickness variations altogether. Otherwise, tapered transitions can be used to avoid residual stresses, high stress concentrations and abrupt flow transitions during mold filling. Whenever feasible, wall section thickness must be reduced by coring out sections of the molding, and by using ribs to compensate for the loss in stiffness of a thinner part [Mall94].
d) Side actions (side cores, split cores, lifters etc.) must be used to create undercut features on the part or the part should be redesigned to eliminate undercut features. Fig. 10 shows an example of a plastic part, whose undercut region cannot be molded by any side action. A simple redesign shown in this figure solves this problem.
e) Draft angles need to be imparted to vertical or near-vertical walls for ease of removal of the part from the mold assembly. Fig. 11 shows that incorrect draft angles make it impossible to eject the part. Tapering the side walls inward (towards the core side) resolves this issue satisfactorily. Drafting also reduces tool and part wear considerably – sliding friction as well as scuffing or abrasion of the outer (cavity) faces of the part are eliminated to a large extent. Typically, the required draft angle ranges from a fraction of a degree to several degrees and depends on a lot of parameters such as depth of draw, material rigidity, surface lubricity and material shrinkage [Mall94].
Computational work in the field of manufacturability analysis of injection molded parts mainly focuses on two different areas. The first area deals with demoldability of a single material part. The demoldability of a part is its ability to be ejected easily from the mold assembly (core, cavity and side actions) when the mold opens. Deciding if a part is demoldable is equivalent to deciding if there exists a combination of main parting direction, side cores and split cores such that the criterion of demoldability is satisfied. Chen et al. [Chen93] describe a visibility map based approach to find a feasible parting direction that minimizes the number of side cores. Hui [Hui97] describes a heuristic search technique for selecting a combination of main parting, core and insert directions. Approaches based on undercut-feature recognition have also been developed [Gu99, Fu99, Lu00, Yin01]. The basic idea behind these approaches is to find potential undercuts on the part using feature recognition techniques. Each type of feature has its own set of candidate parting directions. The optimal main, parting direction is then chosen on the basis of some evaluation functions.
Ahn et al. [Ahn02] describe mathematically sound algorithms to test if a part is, indeed, moldable using a two-piece mold (without any side actions) and if so, to obtain the set of all such possible parting directions. Building on this, Elber et al. [Elbe05] have developed an algorithm based on aspect graphs to solve the two-piece mold separability problem for general free-form shapes, represented by NURBS surfaces. McMains and Chen [McMa04] have determined moldability and parting directions for polygons with curved (2D spline) edges. Recently, Kharderkar et al. [Khar05] have presented new programmable graphics hardware accelerated algorithms to test the moldability of parts and help in redesigning them by identifying and graphically displaying undercuts. Dhaliwal et al. [Dhal03] described exact algorithms for computing global accessibility cones for each face of a polyhedral object. Using these, Priyadarshi and Gupta [Priy04] developed algorithms to design multi-piece molds. Other notable work in the area of automated multi-piece mold design includes that by Chen and Rosen [Chen02, Chen03].
The second area of active work deals with the simulation of molten, plastic flow in injection molding process. Many commercial systems are available to help designers in performing manufacturability analysis. Also, finite element analysis software like ANSYS, ABAQUS, FEMLAB etc. can be used to predict and solve some problems, such as whether the strength of some portion of the part is adequate. Since these types of problems arising during multi-material injection molding are the same as those experienced in case of single material molding, appropriate commercial packages can be used to overcome them.
3 IDENTIFYING SOURCES OF MOLDING PROBLEMS
Many different reasons can contribute to manufacturability problems during MMM. These reasons include material incompatibility, interactions among cooling systems for different stages, placement of gates, demoldability, and ejection system problems. In this paper we mainly focus on the manufacturability problems that result from the shape of the multi-material objects. Specifically, we focus on those manufacturing complications that arise due to the presence of plastic material inside the mold cavity during the second shot. The work presented in this paper is applicable to multi-shot rotary platen (shown in Fig. 4 and Fig. 12), multi-shot index plate (shown in Fig. 13 and Fig. 14), and over-molding processes (shown in Fig. 15). Appendix A describes each of these processes in details.
It is important to note here that part designs need to be modified significantly depending upon the nature of the MMM process that will be used to mold it. Fig. 16 illustrates this idea by using three different part designs. The first object can be molded by overmolding process only, whereas the second object can be molded using either overmolding or index plate multi-shot molding process. Rotary platen process should be used to mold the last part. Thus, it is clear that specific process-dependent design rules are essential in multi-material injection molding.
Let us now try to systematically identify the manufacturability problems so that corresponding design rules can be framed to handle them. These design rules will be later utilized by the algorithms in Sections 4 and 5 to offer meaningful solutions once the problems have been detected. A new way of identifying all the potential sources of manufacturability problems using state transition diagrams and studying failure mode matrices is presented below. The effectiveness of this technique is first validated by comparing the identified failure modes and corresponding design rules wi
收藏