基于工業(yè)機器人的玻璃纖維管自動化鉆孔系統(tǒng)設計與仿真
基于工業(yè)機器人的玻璃纖維管自動化鉆孔系統(tǒng)設計與仿真,基于,工業(yè),機器人,玻璃纖維,自動化,鉆孔,系統(tǒng),設計,仿真
畢 業(yè) 設 計(論 文)任 務 書
??
設計(論文)題目:
基于工業(yè)機器人的玻璃纖維管自動化鉆孔系統(tǒng)設計
?
與仿真
學生姓名:
專????業(yè):
所在學院:
指導教師:
職????稱:
發(fā)任務書日期:年月日
任務書填寫要求
1.畢業(yè)設計(論文)任務書由指導教師根據(jù)各課題的具體情況填寫,經(jīng)學生所在專業(yè)的負責人審查、系(院)領(lǐng)導簽字后生效。此任務書應在畢業(yè)設計(論文)開始前一周內(nèi)填好并發(fā)給學生。
2.任務書內(nèi)容必須用黑墨水筆工整書寫,不得涂改或潦草書寫;或者按教務處統(tǒng)一設計的電子文檔標準格式(可從教務處網(wǎng)頁上下載)打印,要求正文小4號宋體,1.5倍行距,禁止打印在其它紙上剪貼。
3.任務書內(nèi)填寫的內(nèi)容,必須和學生畢業(yè)設計(論文)完成的情況相一致,若有變更,應當經(jīng)過所在專業(yè)及系(院)主管領(lǐng)導審批后方可重新填寫。
4.任務書內(nèi)有關(guān)“學院”、“專業(yè)”等名稱的填寫,應寫中文全稱,不能寫數(shù)字代碼。學生的“學號”要寫全號,不能只寫最后2位或1位數(shù)字。
5.任務書內(nèi)“主要參考文獻”的填寫,應按照《金陵科技學院本科畢業(yè)設計(論文)撰寫規(guī)范》的要求書寫。
?6.有關(guān)年月日等日期的填寫,應當按照國標GB/T 7408—94《數(shù)據(jù)元和交換格式、信息交換、日期和時間表示法》規(guī)定的要求,一律用阿拉伯數(shù)字書寫。如“2002年4月2日”或“2002-04-02”。
畢 業(yè) 設 計(論 文)任 務 書
1.本畢業(yè)設計(論文)課題應達到的目的:
? 本畢業(yè)設計課題的主要目的是培養(yǎng)學生綜合運用所學的基礎(chǔ)理論、專業(yè)知識和專業(yè)基本技能分析和解決實際問題,訓練初步工程設計的能力。根據(jù)機械設計制造及其自動化專業(yè)的特點,著重培養(yǎng)以下幾方面能力: 1.調(diào)查研究、中外文獻檢索、閱讀與翻譯的能力; 2.綜合運用基礎(chǔ)理論、專業(yè)理論和知識分析解決實際問題的能力; 3.查閱和使用專業(yè)設計手冊的能力; 4.設計、計算與繪圖的能力,包括使用計算機進行繪圖的能力; 5.撰寫設計說明書(論文)的能力。
2.本畢業(yè)設計(論文)課題任務的內(nèi)容和要求(包括原始數(shù)據(jù)、技術(shù)要求、工作要求等):
? 一、課題內(nèi)容:本課題來自企業(yè)橫向課題。該企業(yè)專門制造生產(chǎn)玻璃纖維管,需要在其圓周方向加工若干均布孔。由于管材尺寸較大且現(xiàn)有加工設備較低級,因此目前仍采用人工使用鋸片切割的形式加工,加工截面粗糙且精度較差。針對該加工對象,本課題考慮采用基于工業(yè)機器人設計開發(fā)自動化鉆孔系統(tǒng)的模擬試驗平臺,該平臺加工對象為比例縮小的管材,可以實現(xiàn)管材加工工位精確定位和鉆孔。內(nèi)容主要包括工業(yè)機器人系統(tǒng)的建模與加工仿真。二、設計要求: 1.圓管尺寸:長度<2m,直徑<0.5m; 2.圓孔直徑<50mm,圓孔分布數(shù)量12個; 3.鉆孔速度:≤2個/分鐘; 4.加工精度:≤0.1mm; 5.定位精度:≤0.5mm.
畢 業(yè) 設 計(論 文)任 務 書
3.對本畢業(yè)設計(論文)課題成果的要求〔包括圖表、實物等硬件要求〕:
1.外文專業(yè)文獻翻譯(原文和譯文,譯文3000漢字以上); 2.畢業(yè)設計開題報告一份; 3.編寫設計說明書一份; 4.完整的設計圖紙一套,必要的仿真結(jié)果和動畫一套。
4.主要參考文獻:
1、曹文祥, 馮雪梅. 工業(yè)機器人研究現(xiàn)狀及發(fā)展趨勢. 機械制造, 2011, 558(49):41~43 2、陳煥明, 熊震宇, 劉頻. 弧焊機器人離線編程系統(tǒng)的設計與實現(xiàn). 上海交通大學學報, 2008, 42(Sup): 25~31 3、張牧, 李亮玉, 王天琪等. 基于 SolidWorks 的海洋平臺導管架弧焊機器人離線編程系統(tǒng). 上海交通大學學報, 2008, 42(Sup): 7~9 4、胡廣勝, 吳向陽, 李波. 高速列車轉(zhuǎn)向架焊接機器人離線編程系統(tǒng)的分析與開發(fā). 金屬加工, 2011, 4: 58~60 5、周青松. 噴涂機器人人機交互及離線編程系統(tǒng)的研究: [碩士論文]. 廣州: 華南理工大學圖書館, 2010. 6、韓光超, 孫明, 張海鷗等. 基于 CAM 的機器人拋光軌跡規(guī)劃. 華中科技大學學報, 2008, 36(5): 60~62 7、許家忠, 尤波, 孔祥冰. 高壓水射流切割機器人離線編程系統(tǒng)研究. 哈爾濱理工大學學報, 2009, 14(2): 63~65 8、居正月, 吳建國, 張永康. 基于 ABB 機器人光纖激光加工系統(tǒng)的研究. 應用激光, 2010, 30(4): 295~299 9、盧正君. 基于 CAD 的機器人離線編程與仿真系統(tǒng)設計: [碩士論文]. 南京: 東南大學圖書館, 2010. 10、劉為志, 欒楠, 劉寶生. 基于 G 代碼的工業(yè)機器人的自動編程. 機器人, 2002,24(6): 497~501 11、熊有倫. 機器人技術(shù)基礎(chǔ). (第一版). 武漢: 華中科技大學出版社, 1996. 32~43 12、趙松年,張奇鵬. 機電一體化機械系統(tǒng)設計[M] . 第一版,北京:機械工業(yè)出版社,1996 13、徐龍祥,歐陽祖行.機械設計[M]. 第二版,北京:航空工業(yè)出版社,1999. 14、王海波.機電一體化設計基礎(chǔ)[M],北京:化學工業(yè)出版社,2012 15范欽珊.材料力學[M].北京:清華大學出版社,2008. 16、李柱.互換性與技術(shù)測量[M].北京:高等教育出版社,2004. 17、哈爾濱工業(yè)大學理論力學教研室.理論力學[M].北京:高等教育出版社,2009
畢 業(yè) 設 計(論 文)任 務 書
5.本畢業(yè)設計(論文)課題工作進度計劃:
15.11.20-----15.12.20 學生明確選題 15.12.20----16.01.15 學生完成開題報告 16.01.15----16.03.18 學生完成設計草圖階段,明確設計方案 16.03.18----16.04.08 學生完善設計正稿, 撰寫畢業(yè)設計論文初稿 16.04.08----16.04.30 學生畢業(yè)設計完成階段,提交畢業(yè)論文正稿,完成期中檢查 16.05.01----16.05.10 學生提交畢業(yè)設計論文,布置畢業(yè)設計展 16.05.10----16.05.15 布展、畢業(yè)答辯準備
所在專業(yè)審查意見:
?同意?
負責人: ??????????? ?2016? 年??? 1 ?月???18 ?日
畢 業(yè) 設 計(論 文)開 題 報 告
設計(論文)題目:
基于工業(yè)機器人的玻璃纖維管自動化鉆孔系統(tǒng)設計
?
與仿真
學生姓名:
專????業(yè):
所在學院:
指導教師:
職????稱:
?
?年? ?月??日 ?
開題報告填寫要求
?
1.開題報告(含“文獻綜述”)作為畢業(yè)設計(論文)答辯委員會對學生答辯資格審查的依據(jù)材料之一。此報告應在指導教師指導下,由學生在畢業(yè)設計(論文)工作前期內(nèi)完成,經(jīng)指導教師簽署意見及所在專業(yè)審查后生效;
2.開題報告內(nèi)容必須用黑墨水筆工整書寫或按教務處統(tǒng)一設計的電子文檔標準格式打印,禁止打印在其它紙上后剪貼,完成后應及時交給指導教師簽署意見;
3.“文獻綜述”應按論文的框架成文,并直接書寫(或打?。┰诒鹃_題報告第一欄目內(nèi),學生寫文獻綜述的參考文獻應不少于15篇(不包括辭典、手冊);
4.有關(guān)年月日等日期的填寫,應當按照國標GB/T 7408—94《數(shù)據(jù)元和交換格式、信息交換、日期和時間表示法》規(guī)定的要求,一律用阿拉伯數(shù)字書寫。如“2004年4月26日”或“2004-04-26”。
5、開題報告(文獻綜述)字體請按宋體、小四號書寫,行間距1.5倍。
?
畢 業(yè) 設 計(論文) 開 題 報 告
1.結(jié)合畢業(yè)設計(論文)課題情況,根據(jù)所查閱的文獻資料,每人撰寫不少于1000字左右的文獻綜述:
本設計題目是 基于工業(yè)機器人的玻璃纖維管自動鉆孔系統(tǒng)設計與仿真。 隨著高新技術(shù)的迅猛發(fā)展,新的學科門類層出不窮,機械制造被認為是一門比較古典的學科。然而,隨著材料科學、微電子技術(shù)、計算機科學和傳感器技術(shù)的發(fā)展,特別是近二十年來,數(shù)控技術(shù)的廣泛應用,傳統(tǒng)制造模式向柔性化、自動化、數(shù)字化的反向發(fā)展,制造技術(shù)出現(xiàn)了許多新的特點,從學科發(fā)展的角度看,主要是制造技術(shù)已經(jīng)成為一門綜合技術(shù)。 尤其是科技的進步與革新,建立了更加合理的生產(chǎn)關(guān)系,人力勞動已經(jīng)逐漸被機械所取代,而這種變革為人類社會創(chuàng)造出巨大的財富,極大地推動了人類社會的進步。時至今天,機電一體化、機械智能化等技術(shù)應運而生。人類充分發(fā)揮主觀能動性,進一步增強對機械的利用效率,使之為我們創(chuàng)造出更加巨大的生產(chǎn)力,并在一定程度上維護了社會的和諧。工業(yè)機器人的出現(xiàn)是人類在利用機械進行社會生產(chǎn)史上的一個里程碑。在發(fā)達國家中,工業(yè)機器人自動化生產(chǎn)線成套設備已經(jīng)成為自動化的主流及未來的發(fā)展方向。工業(yè)機器人的普及是實現(xiàn)自動化生產(chǎn)、提高社會生產(chǎn)效率、推動企業(yè)和社會生產(chǎn)力發(fā)展的有效手段。全球領(lǐng)先的工業(yè)機器人制造商瑞典ABB致力于研發(fā)、生產(chǎn)機器人已有40多年的歷史,是工業(yè)機器人的先行者,擁有全球超過17.5萬多臺機器人安裝經(jīng)驗,在瑞典、挪威和中國等地設有機器人研發(fā)、制造和銷售基地。ABB于1969年售出全球第一臺噴涂機器人,于1974年發(fā)明了世界上第一臺工業(yè)機器人,并擁有當今種類最多、最全面的機器人產(chǎn)品、技術(shù)和服務,以及最大的機器人裝機量。機器人是“ROBOT”一詞的中文譯名。由于影視宣傳和科幻小說的影響,人們往往把機器人想像成外貌似人的機械和電子裝置。但事實并不是這樣,特別是工業(yè)機器人,與人外貌往往毫無相似之處。根據(jù)國家標準主,工業(yè)機器人定義為“其操作機是自動控制的,可重復編程、多用途,并可以對3個以上軸進行編程。它可以是固定式或者移動式。在工業(yè)自動化應用中使用”。操作機又定義為“是一種機器,其機構(gòu)通常由一系列相互鉸接或相對滑動的構(gòu)件所組成。它通常有幾個自由度,用以抓取或移動物體(工具或工件)。”所以對工業(yè)機器人可能理解為:擬人手臂、手腕和手功能 的機械電子裝置;它可把任一物件或工具按空間位姿(位置和姿態(tài))的時變要求進行移動,從而完成某一工業(yè)生產(chǎn)的作業(yè)要求。如夾持焊鉗或焊槍,對汽車或摩托車車體進行了點焊或弧焊;搬運壓鑄或沖壓成型的零件或構(gòu)件;進行激光切割;噴涂;裝配機械零部件等等。我的課題主要內(nèi)容是運用三維繪圖軟件對機械手臂進行設計與仿真,主要通過對機械手臂進行設計建模和后期的仿真計算。通過本次設計,對工業(yè)機械人在運用方面做到一個簡單的認識。 [參考文獻] [1]曹文祥, 馮雪梅. 工業(yè)機器人研究現(xiàn)狀及發(fā)展趨勢. 機械制造, 2011 [2]陳煥明, 熊震宇, 劉頻. 弧焊機器人離線編程系統(tǒng)的設計與實現(xiàn). 上海交通大學學報, 2008 [3]張牧, 李亮玉, 王天琪等. 基于 SolidWorks 的海洋平臺導管架弧焊機器人離線編程系統(tǒng). 上海交通大學學報, 2008 [4]胡廣勝, 吳向陽, 李波. 高速列車轉(zhuǎn)向架焊接機器人離線編程系統(tǒng)的分析與開發(fā). 金屬加工, 2011 [5]周青松. 噴涂機器人人機交互及離線編程系統(tǒng)的研究: [碩士論文]. 廣州: 華南理工大學圖書館, 2010 [6]韓光超, 孫明, 張海鷗等. 基于 CAM 的機器人拋光軌跡規(guī)劃. 華中科技大學學報, 2008 [7]許家忠, 尤波, 孔祥冰. 高壓水射流切割機器人離線編程系統(tǒng)研究. 哈爾濱理工大學學報, 2009 [8]居正月, 吳建國, 張永康. 基于 ABB 機器人光纖激光加工系統(tǒng)的研究. 應用激光, 2010 [9]盧正君. 基于 CAD 的機器人離線編程與仿真系統(tǒng)設計: [碩士論文]. 南京: 東南大學圖書館, 2010 [10]劉為志, 欒楠, 劉寶生. 基于 G 代碼的工業(yè)機器人的自動編程. 機器人, 2002 [11]熊有倫. 機器人技術(shù)基礎(chǔ). (第一版). 武漢: 華中科技大學出版社, 1996 [12]趙松年,張奇鵬. 機電一體化機械系統(tǒng)設計[M] . 第一版,北京:機械工業(yè)出版社,1996 [13]徐龍祥,歐陽祖行.機械設計[M]. 第二版,北京:航空工業(yè)出版社,1999 [14]王海波.機電一體化設計基礎(chǔ)[M],北京:化學工業(yè)出版社,2012 [15]范欽珊.材料力學[M].北京:清華大學出版社,2008 [16]李柱.互換性與技術(shù)測量[M].北京:高等教育出版社,2004 [17]哈爾濱工業(yè)大學理論力學教研室.理論力學[M].北京:高等教育出版社,2009
畢 業(yè) 設 計(論文) 開 題 報 告
2.本課題要研究或解決的問題和擬采用的研究手段(途徑):
課題研究內(nèi)容 本課題來自企業(yè)橫向課題。該企業(yè)專門制造生產(chǎn)玻璃纖維管,需要在其圓周方向加工若干均布孔。由于管材尺寸較大且現(xiàn)有加工設備較低級,因此目前仍采用人工使用鋸片切割的形式加工,加工截面粗糙且精度較差。針對該加工對象,本課題考慮采用基于工業(yè)機器人設計開發(fā)自動化鉆孔系統(tǒng)的模擬試驗平臺,該平臺加工對象為比例縮小的管材,可以實現(xiàn)管材加工工位精確定位和鉆孔。內(nèi)容主要包括工業(yè)機器人系統(tǒng)的建模與加工仿真。課題研究手段 本課題主要是對基于工業(yè)機器人的玻璃纖維管自動鉆孔系統(tǒng)設計與仿真。首先使用三維制圖軟件對鉆孔的機械手臂進行設計建模,后期使用該軟件對機械手臂加工孔的過程進行簡單的仿真。最終通過數(shù)控系統(tǒng)連接玻璃纖維管支架的光電編碼器和機器人工作小車,組建一套玻璃纖維管自動鉆孔設備。
畢 業(yè) 設 計(論文) 開 題 報 告
指導教師意見:
1.對“文獻綜述”的評語:
對工業(yè)機器人應用于現(xiàn)場加工的研究現(xiàn)狀、發(fā)展趨勢、設計原則、存在問題、未來發(fā)展方向作了較豐富的綜述,內(nèi)容充實、條理清晰、表述清楚。
?
?
?
?
2.對本課題的深度、廣度及工作量的意見和對設計(論文)結(jié)果的預測:
本課題涉及玻璃纖維管自動鉆孔數(shù)控系統(tǒng)設計,具有非常現(xiàn)實的應用背景。本設計主要包括基于工業(yè)機器人的玻璃纖維管自動鉆孔系統(tǒng)結(jié)構(gòu)設計,要求設計者不僅掌握較扎實的機電一體化設計能力,還應掌握較深的機器人專業(yè)理論基礎(chǔ),因此本課題較難,工作量較大。本設計的成果應包括基于工業(yè)機器人的玻璃纖維管自動鉆孔系統(tǒng)結(jié)構(gòu)模型、裝配圖、零件圖、運動仿真等內(nèi)容。
?
?
?
?
3.是否同意開題:√ 同意 □ 不同意
?
???????????????????????????????????? ??指導教師:??????????????
???????????????????????????????????????? 2016 年?? 03 月?? 09 日
所在專業(yè)審查意見:
同意
???????????????????????????????????????? 負責人:??????????????
?????????????????????????????????????????? 2016 年??? 03 月?? 09 日
畢 業(yè) 設 計(論 文)外 文 參 考 資 料 及 譯 文
譯文題目:基于工業(yè)機器人的玻璃纖維管自動化鉆孔系統(tǒng)設 計與仿真
學生姓名:
?! I(yè):
所在學院:
指導教師:
職 稱:
P A R T
5
C H A P T E R 9 Fire Fighting Vessels
S E C T I O N 1 General
1 Classification
In accordance with 1-1-3/3, the classification.A1 Fire Fighting Vessel Class 1 will be assigned to vessels with water spray protection for cooling the Fire Fighting Vessel’s surfaces to enable close operation for early stages of fire fighting and rescue operations, with capabilities in accordance with 5-9-1/Table 1, built in compliance with these requirements and other relevant sections of the Rules. Where the vessel has been built in compliance with these requirements and for continuous fighting of large fires and cooling structures on fire, with capabilities in accordance with 5-9-1/Table 1, and other relevant sections of the Rules, the classification.A1 Fire Fighting Vessel Class 2 or 3 will be assigned. Where A1 Fire Fighting Vessel Class 2 or 3 also meet A1 Fire Fighting Vessel Class 1 requirements, combined Class notation A1 Fire Fighting Vessel Class 1 and Class
2, or A1 Fire Fighting Vessel Class 1 and Class 3 may be given.
3 Additional Coverage of Fire Fighting Vessel Classification
The following special items related to fire fighting operations are covered under classification:
? Vessel’s fire fighting capabilities
? Vessel’s stability and its ability to maintain station while fire fighting monitors are in full operation.
? The degree of vessel’s self-protection against external fires.
5 Special Vessels with Fire Fighting Capabilities
Vessels not in compliance with these Rules or not specifically built for the service intended to be covered by these Rules, but which have special fire fighting capabilities in addition to their regular service, may be specially considered and reviewed under the intent of these Rules as they relate to fire fighting. See also 5-9-1/1. Such vessels complying with these special requirements may be distinguished in the Record with their assigned designation followed by the special designation (Fire Fighting Capability) such as A1 Towing Vessel (Fire Fighting Capability). Data on the extent of this special fire fighting capability will be entered into the Record, and such special fire fighting systems will be subject to annual surveys.
TABLE1
Minimum Requirements for Fire Fighting Vessels
FFV Class 1, 2 and 3. Additional minimum requirements for foam operation, fixed water-spray systems, and searchlights are given in subsections 5-9-4/13, 5-9-5/3 and 5-9-6/3
Class Notation
Class 1
Class 2
Class 3
Number of water monitors
2
3
4
4
Discharge rate per monitor,m3/hour,(gpm)
1200(5280)
2400(10,560)
1800(7920)
2400(10,560)
Number of pumps
1-2
2-4
2-4
Total capacity,m3/hour,(gpm)
2400(10,560)
7200(31,680)
9600(44,240)
Monitor range(1),m,(ft)
120(394)
150(492)
150(492)
Height,monitor(2),m,(ft)
45(148)
70(230)
70(230)
Number of hose connections each side of vessel
4
8
10
Number of fireman’s outfits
4
8
10
Fuel oil capacity(3),hours
24
96
96
Notes:
1 Range: measured horizontally from the monitor outlet to the mean impact area.
2 Height: minimum height of the trajectory of water monitor jet measured vertically from sea level assuming a mean impact area located at a horizontal distance not less than 70 m (230 ft) from the nearest part of the fire fighting vessel.
3 Fuel oil capacity is to include provisions for continuous operation of all monitors in addition to the total capacity of the vessel’s fuel oil tanks required for continuous fire fighting operations. See also 5-9-2/5.
P A R T
5
C H A P T E R 9 Fire Fighting Vessels
S E C T I O N 2 Plans and Calculations
1 Plans
In addition to the plans required to be submitted by Sections 1-1-7 and 4-1-1/7, the following additional plans are to be submitted in the same manner.
1.1 Hull Plans
Structural fire protection details
Lines and offsets
Curves of form, or equivalent
Cross curves of stability
Capacity plan, giving centers of gravity and tank free surface corrections
1.3 Fire Fighting Plans and Data
General arrangement plan detailing all fire fighting equipment, including the monitors, fire pumps,fire mains, hydrants, hoses, nozzles, water-spray systems, firemen outfits.
Details of pumps and monitors, including locations, capacities and the range of the monitors’ delivery capabilities, including water-spray system capacity data (when fitted).
Details of high pressure air compressor required for filling cylinders of air breathing apparatus, including purity specifications.
Foundations for fire fighting pumps, their prime movers and the water monitors.
Sea chest arrangements for fire fighting systems.
Remote and local control arrangements for monitors.
For FFV Class 1 only:
Water-spray piping systems, including location of nozzles, pumps and valves, with system
corrosion protection arrangements.
For FFV Class 2 or 3:
Details of foam generators and their capacity.
For FFV Class 3:
Foam monitor arrangements, capacity and supports, including remote and local control arrangement for the foam monitors.
3 Calculations (2005)
The following calculations are to be submitted.
? Calculations demonstrating the adequacy of the vessel’s stability during all fire fighting
operations. See also 5-9-3/1.
? Calculations demonstrating adequacy of monitor supports during monitor operations. See also 5-9-4/1.5.
? Calculations demonstrating adequacy of propulsion power required for the vessel to maintain station during firefighting operations. See 5-9-3/3.5.
Submitted calculations are to be suitably documented.
5 Additional Data
In addition to the submitted items required for classification, the following items are to be submitted.
Data indicating that the vessel will be capable of carrying sufficient fuel oil for continuous fire fighting operation and propulsion operation with all fixed water monitors in use at the maximum required capacity for not less than:
? 24 hours: FFV Class 1
? 96 hours: FFV Class 2 or 3
Verification that FFV Class 3 will be capable of foam production from fixed foam monitors
for at least 30 minutes continuous operation.
Verification that FFV Class 2 or 3 will be capable of foam production from mobile generators for at least 30 minutes continuous operation.
Verification that the water monitor range, required by 5-9-1/Table 1, is not less than:
? 120 meters (394 feet): FFV Class 1
? 150 meters (492 feet): FFV Class 2 or 3
Verification that the vessel is in compliance with the minimum requirements of 5-9-1/Table 1,with data on the vessel’s actual design capacities also recorded.
Verification of light ship characteristics. See also 5-9-3/1.3.
The Operating Booklet: It is incumbent upon the Owner to provide information, instructions, data and training for the fire fighting operations of the vessel to help assure that the loadings and operational limits upon which classification is based are not exceeded. An operating booklet detailing operation of the fire fighting installation, installation maintenance data, fire fighting procedures, equipment locations and capacity data, and particulars on maneuvering operations of the vessel during fire fighting or rescue operations are to be submitted for recordor file. A copy of this operating booklet, in a language, or languages, understood by the crew,is to be placed onboard to provide data and information to the crew, and to be accessible tothe Surveyor during survey. See also 5-9-6/9 and 5-9-8/1.
Stability Information: Stability information in the form of a maximum KG versus draft curve, or in another suitable form, based upon the submitted stability calculations required by 5-9-2/3 for all fire fighting operations described in 5-9-3/1 is to be submitted to the Bureau for approval. This information is to be placed onboard the fire fighting vessel for the information of the Master and may become part of the operating booklet.
P A R T
5
C H A P T E R 9 Fire Fighting Vessels
S E C T I O N 3 Seakeeping
1 Stability
1.1 General
Each vessel is to have adequate stability for all fire fighting operations conditions, with all fire fighting monitors operating at maximum output in the direction most unfavorable to the stability of the vessel. Stability calculations and corresponding information for the Master are to be submitted for review and approval, respectively. See 5-9-2/3 and 5-9-2/5.
Alternatively, consideration will be given to written confirmation of compliance for all fire fighting operations with the stability requirements of the appropriate national Administration. See also Section 1-1-5.
1.3 Light Ship Weight and Center of Gravity
An inclining test will be required for the first vessel of a series, when as near to completion as practical, to determine accurately the light ship weight and position of center of gravity. The inclining test is to be witnessed by a Surveyor.
For successive vessels of a series considered by the Bureau to be basically identical, submitted detailed weight calculations, accounting only for differences in weights and centers from the inclined vessel, will be satisfactory, provided their accuracy is confirmed by a deadweight survey witnessed by a Surveyor. Inclining experiment results, detailed weight calculations and deadweight survey results are to be submitted for review. See also 5-9-2/5.
3 Maneuverability
3.1 Thrusters and Propulsion Machinery
The vessel is to have thrusters and propulsion machinery of sufficient power for maneuverability during fire fighting operations and as follows.
3.3 Positioning
Thrusters and the vessel’s propulsion machinery are to be able to maintain the vessel on position in still water during all combinations of operation and capacity of the water monitors, at not more than 80 percent of available propulsion force in any direction.
3.5 Control (2005)
Adequate operating control systems are to be provided for fire fighting operations which are to include an alarm condition at 80 percent of available propulsion power and automatic reduction of power action at 100 percent available propulsion power to prevent sudden or complete loss of power due to power overload. Calculations are to be submitted verifying that an equilibrium state between the reaction force from the water monitors and the force from the vessel's propulsion machinery and its side thrusters (at the most unfavorable combination) is at or less than 80 percent of the available propulsion power. This is to confirm that the vessel would maintain its position without setting off the 80 percent alarm condition. See 5-9-2/3.
P A R T
5
C H A P T E R 9 Fire Fighting Vessels
S E C T I O N 4 Fire Fighting Systems
1 Water Monitors
1.1 General
Water monitor systems are to be in compliance with 5-9-1/Table 1.
1.3 Location
Water monitors are to be located to allow for an unobstructed range of operation. Means are to be provided to prevent monitor jets from impinging on vessel structures and equipment.
1.5 Supports
Monitor supports are to be adequately designed for all modes of operation, with particular attention given to loadings at maximum operation and from water jet reactions. Calculations demonstrating adequacy of the design are to be submitted. See also 5-9-2/3.
3 Monitor Control
3.1 Operation
Monitors are to be capable of being operated and maneuvered both locally and at the remote-control station. The monitor remote-control station is to have adequate overall operational visibility, communications and protection.
3.3 Control
Control systems are to be suitably protected from external damage. Electrical control systems are to be provided with overload and short circuit protection. Hydraulic or pneumatic monitor control systems are to be provided in duplicate. Shut-off and control equipment are to be clearly marked.
5 Pumps and Piping for Water Monitors and Water Spray
5.1 General
Pumps and piping systems used for water monitors are to be available for no service other than fire fighting and water spray. Independent sea suctions are to be provided for each pump.
5.3 Pumps
Where two pumps are provided, they are to have equal or near equal capacity. Minimum total pump capacity requirements are given in 5-9-1/Table 1. Pumps are to have piping arrangements that will prevent overheating at low pump delivery rates. For fixed water-spray systems, see 5-9-5/1.
5.5 Piping Systems
Piping systems are to be protected from overpressure. Piping systems used for water spray are to be independent from the system supplying water monitors, except that water monitor pumps may be used. See also 5-9-5/3. All piping is to be suitably protected from corrosion and freezing.
5.7 Suction and Discharge Velocity
It is recommended that fire pump suction velocity generally not exceed 2 m/s (7 ft/s), and discharge piping to water monitors generally not exceed 4 m/s (13 ft/s) operational velocity to assure adequate system capacity. Data showing compliance with 5-9-1/Table 1 piping system capacities are to be submitted. See also 5-9-2/1.3.
7 Sea Suction
Sea suction inlets for fire fighting are not to be used for any other purposes. Sea water inlets for fire fighting and sea chests are to be arranged as low as practical to avoid clogging due to debris or ice, and oil intake from sea’s surface. The location of sea water inlets for fire fighting and sea chest is to be such that water suction is not impeded by ship motions or water flow from propellers or thrusters.
9 Sea Suction Strainer Plates and Valves (2005)
9.1 Valves
All sea water inlets and sea chests are to be fitted with strainer plates at the vessel’s shell. The strainer plates are to have a clear area of at least twice that of the sea valves. Low pressure steam, compressed air or other effective means are to be provided for clearing the strainer plates. Each sea water inlet for fire fighting is to be equipped with a shut off valve.
9.3 Operation of Pump and Valves
The fire fighting pump, the sea water shut off valve and the sea water discharge valve are to be operable from the same locations. Starting of the fire fighting pump when the shut off valve is closed is to be prevented by providing either an interlock system or by audible and visual alarms.
11 Hose Stations
11.1 Number
Hose stations are to be provided at each side of the vessel, in accordance with 5-9-1/Table 1.
11.3 Stations
Each hose station nozzle is to be able to produce a jet or spray. Hoses are to be not less than 38 mm(1.5 in.) nor more than 65 mm (2.5 in.) in diameter, and generally are to be 15 m (49 ft) in length. A water jet flow of at least 12 m (39 ft) is to be provided.
11.5 Location
At least half of the required number of hose connections required by 5-9-1/Table 1 are to be located on the main weather deck.
13 Foam Generators (FFV Class 2 or 3)
FFV Class 2 or 3 are to have 100 m3/minute (3530 ft3/min) minimum capacity mobile high expansion foam generators for fire fighting. On FFV Class 3, this foam generator requirement is in addition to the fixed foam monitor system requirement in 5-9-4/15. Total foam forming liquid carried is to be capable of a least 30 minutes foam production.
15 Foam Monitor System (FFV Class 3)
15.1 Capacity
FFV Class 3 are to have two fixed low expansion foam monitors in addition to the required water monitors. Each foam monitor is to have a minimum capacity of 5000 liters/minute (177 ft3/min) with a foam expansion ratio of 15 to 1, and is to be capable of a height of throw 50 m (164 ft) above sea level with both foam monitors in simultaneous use at maximum foam generation. The foam concentration tank is to have a minimum capacity for 30 minutes at an assumed admixture of 5 percent.
15.3 Arrangements
The foam monitor system is to be of a fixed design with separate foam concentration tank, foam mixing unit and pipelines to the foam monitors. The water supply may be taken from the water monitor pumps. Means to reduce supply water pressure may be required to assure correct water pressure for maximum foam generation.
15.5 Control
The fixed foam monitors are to have both local (manual) and remote control. The remote control of the foam monitors is to be located at the remote-control station for the water monitors and is to include remote control of water and foam concentrate.
P A R T
5
C H A P T E R 9 Fire Fighting Vessels
S E C T I O N 5 Fixed Water-spray System
1 General (2005)
FFV Class 1 are to be provided with a permanently installed water-spray system. The water-spray system is to provide protection for all outside vertical/exposed deck areas of the hull, superstructure and deckhouses, including water monitor foundations and equipment. The water-spray system’s piping, valves and nozzles are to be suitably protected from damage during fire fighting operations.
3 Water-spray System Capacity (2005)
The minimum capacity of the water-spray system is to be in accordance with 5-9-5/Table 1 for the total protected area. See also 5-9-7/1. Necessary visibility of water-spray operations from the navigating bridge and from the monitor’s remote-control station is to be provided.
TABLE 1
Minimum Requirements for Water Capacity (2005)
Location to be Protected
Minimum Water Capacity
liters/minute/m2 (gpm/ft2)
Un-insulated steel (vertical/horizontal)
10 (0.25)
Wood sheathed steel decks
10 (0.25)
Steel boundaries internally insulated to Class A-60(Note: Applicable for outside vertical areas only. No requirements for exposed deck insulated by A-60)
5 (0.12)
5 Spray System Pumps
Spray system pumping capacity is to be sufficient to insure a supply pressure and volume for adequate operation of the water-spray system. If the water monitor pumps are used, they are to be provided with sufficient capacity to provide pressure and volume for both the water monitors and the water spray systems.
7 Maintenance
Water-spray systems are to be protected from corrosion. Drainage arrangements are to be provided to protect against freezing water damage. Deck scuppers and freeing ports are to be provided to assure efficient drainage of water from deck surfaces when the water-spray system is in operation.
P A R T
5
C H A P T E R 9 Fire Fighting Vessels
S E C T I O N 6 Special Equipment
1 Fireman’s Outfit
1.1 Number
FFV Class 1, Class 2 and Class 3 are to have the minimum number of fireman’s outfits indicated in5-9-1/Table 1.
1.3 Components
Fireman’s outfits are to include the following:
? A self-contained breathing apparatus capable of functioning for at least 30 minutes and having a capacity of at least 1200 liters (42 ft3) of free air. At least one set of fully charged spare air bottles of at least equivalent capacity is to be provided for each apparatus.
? An electric hand lantern capable of at least three hours continuous operation.
? Protective helmet, boots and gloves composed of an electrically resistant substance.
? Water-resistant, protective clothing to protect skin from heat radiation, fire and from burns and scalding by steam.
? A fireproof lifeline, with lifeline belt or harness, attached by means of a snap hook. The lifeline is to be certified by the manufacturer as being of a strength suitable for the service intended, with a length suitable for the range of operations intended.
? Information on the fireman’s outfit is to be displayed at a storage area for the user. Data is also to be included in the operating booklet, which is to be accessible for the crew’s information. The information to be displayed and operating booklet data are to include particulars on capability of lifelines (holding capacity and length), lanterns (operating time) and breathing ap
收藏